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Abstract

We present a novel framework that brings the 3D motion
retargeting task from controlled environments to in-the-wild
scenarios. In particular, our method is capable of retargeting
body motion from a character in a 2D monocular video to a
3D character without using any motion capture system or 3D
reconstruction procedure. It is designed to leverage massive
online videos for unsupervised training, requiring neither 3D
annotations nor motion-body pairing information. The pro-
posed method is built upon two novel canonicalization oper-
ations, structure canonicalization and view canonicalization.
Trained with the canonicalization operations and the derived
regularizations, our method learns to factorize a skeleton se-
quence into three independent semantic subspaces, i.e., mo-
tion, structure, and view angle. The disentangled represen-
tation enables motion retargeting from 2D to 3D with high
precision. Our method achieves superior performance on mo-
tion transfer benchmarks with large body variations and chal-
lenging actions. Notably, the canonicalized skeleton sequence
could serve as a disentangled and interpretable representation
of human motion that benefits action analysis and motion re-
trieval.

Introduction
3D motion retargeting aims at transferring one character’s
motion to a virtual 3D avatar. It is an important and chal-
lenging task in computer vision and computer graphics with
a wide spectrum of applications in human-computer inter-
action (Hoshyari et al. 2019; Kim and Lee 2020) and aug-
mented reality (Kang et al. 2019; Kim et al. 2016). Tra-
ditional approaches rely on motion capture (MoCap) sys-
tems (Ott, Lee, and Nakamura 2008; Koenemann, Burget,
and Bennewitz 2014), which are capable of capturing pre-
cise 3D motion but are limited to sophisticated environments
only available to film and game studios. This kind of setup is
inaccessible for everyday users with in-the-wild usage sce-
narios, e.g., on-device augmented reality.

The challenge of in-the-wild motion retargeting lies in
that videos recorded on mobile devices or downloaded from
the Internet only provide 2D visual information (usually
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Figure 1: 3D Motion Retargeting in the Wild. Motion is
extracted from the video clip and retargeted to the virtual
avatar. Our method extracts 2D skeleton sequences rather
than 3D sequences from in-the-wild videos.

noisy), from which 3D motion needs to be inferred. The
common practice is to estimate 3D pose first, then perform
3D-to-3D retargeting through Inverse Kinematics (IK). Nev-
ertheless, the results of current 3D pose estimation (Ci et al.
2019; Pavllo et al. 2019; Moon, Chang, and Lee 2019; Yang
et al. 2018) and model-based mesh reconstruction (Liu et al.
2019; Kocabas, Athanasiou, and Black 2020; Choi, Moon,
and Lee 2020) methods deteriorate severely under occlu-
sions, large body variations and uncommon actions from un-
constrained real-world videos, as discussed in (Dong et al.
2020; Chen et al. 2019b; Duan et al. 2021). The errors orig-
inated from 3D pose estimation can easily propagate to the
IK stage and degrade the quality of retargeted motion.

In this work, we argue that the conventional way of per-
forming IK after 3D estimation is not sufficiently robust and
reliable for in-the-wild motion retargeting. To this end, we
propose an end-to-end learnable model, Canonicalization
Networks, which allows us to bypass the error-prone direct
3D pose estimation and use an off-the-shelf 2D pose estima-
tor to extract geometrical information that is more robust and
reliable. Our method then takes the 2D skeleton sequences
and generates 3D retargeted skeleton sequences, as shown
in Fig. 1. However, retargeting motion from 2D skeleton se-
quences is not a trivial task. Arbitrarily captured real-world
videos contain large structural variations and diverse camera
views. The same action, e.g., standing up, may appear dra-
matically different in 2D under different views given differ-
ent body structures. It is therefore meaningful and challeng-
ing to extract the unmixed motion in a high-level semantic
modality.

We tackle the challenge through the novel notion of
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Figure 2: Canonicalization Operations. The first row shows
the idea of Structure Canonicalization, and the second row
shows the idea of View Canonicalization. Each skeleton rep-
resents an individual video clip.

canonicalization and retargeting. Canonicalization, by def-
inition, aims at eliminating variations in a specific domain.
In our context, we explore the canonicalization of structure
and view angle from 2D skeleton sequences while keep-
ing the motion unchanged. Specifically, we design two par-
allel canonicalization operations, structure canonicalization
and view canonicalization, as shown in Fig. 2. Structure
canonicalization yields skeleton sequences with a uniform
body structure, while the motion and other features are pre-
served. Similarly, view canonicalization provides skeleton
sequences with the same view angle, casting different se-
quences to a uniform view. The idea behind is that a 2D
skeleton sequence can be formulated as a product of three
independent latent variables, namely, motion, structure, and
view. By learning the canonicalization operations, the model
should be able to disentangle the three meaningful factors
from 2D skeleton sequences. It then allows us to freely re-
combine motion with arbitrary structures and view angles to
generate the desired 3D output, as shown in Fig. 3.

Based on these canonicalization operations, we formulate
a set of novel self-supervised canonicalization losses, which
randomly perturb a targeted factor (structure or view angle
subspaces) and apply canonicalization in that space for both
the original sequence and the manipulated sequence. Hence,
the model can be trained on an extensive collection of hu-
man pose sequences extracted from Internet videos with-
out any annotation, which notably increases the robustness
and generalization of the model. Thanks to canonicalization
and unsupervised training, the network is exposed to a wide
range of variations. Such exposure and the requirement of
restoring them to a specific canonical form (structure and
view) allows the network to learn focusing on the inherent
motion and omitting noisy information from the input se-
quence. This contributes to learning well-disentangled rep-
resentations for precise motion retargeting.

The contributions of this work are three-fold: 1) We pro-
pose an end-to-end learnable model, Canonicalization Net-
works to tackle the challenging in-the-wild 2D-to-3D mo-
tion retargeting problem. 2) We design an unsupervised
learning approach based on the novel canonicalization op-
erations, requiring neither paired data nor 3D annotations.
Our approach circumvents the errors in monocular 3D es-
timation and benefits from large-scale web data for un-
supervised training, which leads to improved performance
demonstrated in our experiments. 3) Canonicalized skeleton
sequences could serve as an interpretable representation of
human motion, paving the way for related research and ap-
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Figure 3: Motion Retargeting Inference Pipeline. The en-
coder,E, decomposes the input skeleton sequence into three
latent codes. The decoder, G, takes the motion code from
the source character and the structure code from the target
character, then cast the decoded 3D skeleton sequence to the
source view angle. This yields the retargeted 3D sequence,
which could be used to animate the target character.

plications.

Related Work
Motion Retargeting. Motion retargeting has been exten-
sively studied in the area of computer vision and graphics.
Classical motion retargeting methods (Hodgins and Pollard
1997; Gleicher 1998; Tak and Ko 2005; Lee and Shin 1999)
mainly rely on simplified assumptions and hand-crafted
kinematic constraints. In recent years, deep-learning-based
approaches show promising results on obtaining human pose
and action, which not only increases the availability of mo-
tion data, but also inspires motion retargeting research with
deep neural networks. Villegas et al. proposed to capture
high-level motion with Forward Kinematics (FK) layers in
recurrent neural networks. Lim, Chang, and Choi further op-
timized the retargeting precision by disentangling pose and
movement. Skeleton-Aware Networks (Aberman et al. 2020)
could automatically adapt to different skeleton topologies.
Nevertheless, the above methods all require high-precision
3D motion (e.g., quaternions), which takes expensive motion
capture systems or complex optimization in practice. Oth-
erwise, estimating 3D motion from monocular RGB video
could be error-prone (Dong et al. 2020; Chen et al. 2019b;
Duan et al. 2021).

Several works have also explored to retarget motion from
2D inputs that are more accessible to everyday use cases.
Aberman et al. proposed a two-branch framework with part
confidence map as 2D pose representations. Chan et al. de-
signed a global pose normalization to handle different body
structures. Aberman et al. proposed a supervised learning
approach to retarget motion in 2D. It requires the exact same
motion performed by different characters at different view
angles as training data. TransMoMo (Yang et al. 2020) ex-
plored unsupervised motion retargeting via invariance prop-
erties. These methods all generate 2D label maps for further
rendering via image-to-image translation methods. There-
fore, they can not be readily applied to driving 3D charac-
ters. They only consider accuracy for 2D joint positions and
assume static view angle. Meanwhile, our canonicalization-
based approach enables applying regularization on 3D poses
directly and training with time-varying explicit 3D view.

In our framework, 2D poses are used as input and our
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method produces 3D skeletons as output. Therefore, our
approach can exploit user-friendly monocular RGB videos
with the help of robust 2D pose estimation algorithms (Cao
et al. 2018; Bulat et al. 2020; Artacho and Savakis 2020).
In addition, the 3D skeleton output allows combination with
state-of-the-art neural rendering (Wang et al. 2018, 2019)
and avatar creation (Saito et al. 2020; Deng et al. 2020;
Alldieck et al. 2018; Weng, Curless, and Kemelmacher-
Shlizerman 2019) techniques. Our flexible approach thus
provides a viable alternative to the traditional 3D reconstruc-
tion+IK pipeline.
Representation Disentanglement. Disentangling latent
variables from observations has been a fundamental topic
in machine learning. Previous approaches (Kingma et al.
2014; Mathieu et al. 2016) use labeled data to separate class-
dependent and class-independent features. A vast literature
focuses on unsupervised learning of disentangled represen-
tations with generative models (Chen et al. 2016; Denton
and Birodkar 2017; Villegas et al. 2017; Tulyakov et al.
2018; Higgins et al. 2017; Lee et al. 2018; Huang et al.
2018). A recent line of work explored view-angle-agnostic
motion representations aimed at improving motion recogni-
tion performance (Liu et al. 2021; Nie, Liu, and Liu 2020;
Zhao et al. 2021). In this work, we achieve disentanglement
of motion, body-structure and view-angle via unsupervised
canonicalization.
3D Canonicalization. Several different methods have been
proposed for automatically computing the canonical form
from a 3D pose or mesh. (Pickup et al. 2015b,a, 2018,
2016) propose to learn pose-neutral shape of any non-rigid
meshes for 3D shape retrieval. (Shamai, Zibulevsky, and
Kimmel 2015) further improves the method with multidi-
mensional scaling. Lian, Godil, and Xiao present a feature-
preserved canonical form that directly deforms the 3D mod-
els. Body reconstruction methods (Saito et al. 2020; Wang,
Geiger, and Tang 2021) sometimes involve the canonical
pose space for handling pose-dependent deformations. In
those papers, canonicalization refers to pose canonicaliza-
tion, that is, “transforming to a standard pose”. In this
work, we explore the canonicalization of different factors,
namely structure and view angle, while keeping the mo-
tion unchanged. C3DPO (Novotny et al. 2019) designed a
rotation-invariant canonical shape for structure reconstruc-
tion. CanonPose (Wandt et al. 2021) learns a canonical
camera view and respective camera rotations, but it relies
on multiple synchronized cameras for training. We design
canonicalization operations for both structure and view an-
gle, which are applied to the entire action sequence rather
than a single pose. Based on the designed operations, our
model can be trained without data pairing.

Methodology
Overview
Our solution to in-the-wild 3D motion retargeting uses 2D
skeleton sequences for training and inference. Specifically,
we extract pose sequences from unannotated web videos
with an off-the-shelf human pose estimator (Alp Güler,
Neverova, and Kokkinos 2018; Girshick et al. 2018). We
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Figure 4: 2D-to-3D AutoEncoder Structure. The encoder
E encodes an input 2D skeleton sequence x as character-
agnostic motion m, structure s and view v. The decoder G
takes as input the concatenation of m and s and outputs a
3D skeleton sequence Xvc in canonical view. The recon-
structed 3D sequence in original camera view is obtained by
rotating Xvc with the encoded view angles v, i.e., Xrec =
r(Xvc, g(v)). The function g(·) converts the view v to ro-
tation matrices. The reconstructed 2D sequence xrec is ob-
tained after an orthographic projection, i.e., xrec = o(Xrec).

devise a 2D-to-3D autoencoder that factorizes the input 2D
human pose sequence into three independent spaces, namely
character-agnostic 3D motion, body structure of the charac-
ter and view angle. Notably, we formulate the view angle to
be explicit and dynamic, which allows for direct manipula-
tion. 3D motion retargeting is then achieved through decod-
ing a recombination of motion and structure encoded from
different sources.

We design a training scheme that simultaneously achieves
(i) 3D geometry inference and (ii) disentangled motion rep-
resentation learning. The two goals are tightly coupled and
mutually beneficial. The first goal is addressed via a 2D-
to-3D AutoEncoder trained with adversarial learning (Chen
et al. 2019a). The second challenge is addressed via the pro-
posed self-supervised canonicalization.

2D-to-3D AutoEncoder
As shown in Fig. 4, the proposed 2D-to-3D AutoEncoder is a
modular encoder-decoder network, where the encoding part
decomposes an input 2D skeleton sequence x ∈ R2N×T into
three spaces: motion, structure and view angle, while the de-
coding part takes any combination of motion and structure
and decodes a 3D skeleton sequence. Here, N denotes the
number of body joints and T denotes the sequence length.
The decoded 3D skeleton sequence should reproduce the in-
put when projected back to 2D while remain plausible when
it is viewed at different angles. This serves as the foundation
of the representation learning framework and allows us to
manipulate the data for canonicalization training.

Encoders. The encoded representation of the three spaces
are defined as follows: Motion is represented as a tempo-
ral sequence of latent vectors Em(x) = m ∈ RM×Cm

where M is the encoded length and Cm is the number of
latent channels. The motion encoder uses several 1-D tem-
poral convolutional layers to extract this information, yield-
ing the encoded length M = T/8. The structure encoder
has a similar network structure Es(x) = s ∈ RM×Cs =
[s(1), s(1), ..., s(M)]. This can be interpreted as performing
multiple structure estimations in sliding windows. Since the
structure does not change with time, we use a temporal max
pooling to aggregate information from these estimations to
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Figure 5: Canonicalization. (a) View canonicalization φvc(·) is to restore canonical view angle vcano for a skeleton sequence.
During training, view canonicalization is applied to both the input 2D sequence x and its randomly rotated versions x

(k)
r , i.e.,

Xvc = φvc(x), X̃
(k)
vc = φvc(x

(k)
r ). (b) Structure canonicalization φsc(·) is to store standard body structure scano for a skeleton

sequence. During training, structure canonicalization is applied to both the input 2D sequence x and its randomly limb-scaled
version xs, i.e., Xsc = φsc(x), X̃sc = φsc(xs).

get the final structure: Ēs(x) = s̄ = maxpool(s), s̄ ∈ RCs .
We assume view angle to be dynamic, therefore it is encoded
as a temporal sequence of explicit 3D rotations. Instead of
the commonly used Euler angles or quaternions, we choose
to use a continuous 6D representation, which is better suited
for deep learning regression (Zhou et al. 2019). Specifically,
Ev(x) = v ∈ RT×6, i.e., v is a sequence of 6D rotation vec-
tors, each rotation vector vi is responsible for rotating one
frame. v can be uniquely translated to a sequence of rota-
tion matrices Ω ∈ RT×3×3 = [ω(1),ω(2), ...,ω(T )],ω(i) ∈
SO3 using a function: g(v) = Ω.

Decoder. As shown in Fig. 4, the decoder takes the con-
catenation of the motion and structure as input to decode
a 3D skeleton sequence G(m, s) = Xvc ∈ R3N×T . The
decoded sequence is assumed to be in the canonical view
angle. To reproduce the input 2D sequence, the output 3D
skeleton sequence Xvc is rotated using the encoded view an-
gles v and then projected to 2D, i.e., Xrec = r(Xvc, g(v)),
xrec = o(Xrec). The function r(X,Ω) is one which rotates
a 3D skeleton sequence X with a sequence of SO3 rotation
matrices Ω. o(X) stands for orthographic projection.

3D Self-Supervision. Since 3D ground-truth is not avail-
able, the ill-posed 2D-to-3D lifting is achieved via supervi-
sion in 2D space. Specifically, we use (i) an L1 reconstruc-
tion loss to ensure that the reprojected 2D skeleton sequence
reproduces the input and (ii) an adversarial loss to ensure
the reconstructed 3D skeleton, when viewed at random an-
gles, still lies within the distribution of real 2D skeleton se-
quences. Specifically, the L1 reconstruction loss is defined
as

Lrec = |x− xrec| , (1)

where x is the input 2D sequence and xrec is the sequence
reconstructed by the autoencoder. To calculate the adversar-
ial loss, we rotate the lifted 3D sequence with some random
view angles. We generate K versions of rotated sequences

X
(k)
r = r(Xrec, Ωk),x

(k)
r = o(X

(k)
r ). Note that the ro-

tation matrices are time-varying, and in practice we keep
them temporally smooth by interpolation. A discriminatorD
is used for the adversarial training. The discriminator tries
to distinguish between real and reprojected 2D sequences
while the AutoEncoder tries to make its 3D output indistin-
guishable regardless of viewing angle. This process elimi-
nates the ambiguity in the 2D-to-3D mapping by penaliz-
ing unusual structures in the reprojected views (Chen et al.
2019a). The adversarial loss is defined as

Ladv =
K∑

k=1

Ex∼px [logD(x) + log(1−D(x(k)
r )] (2)

Canonicalization
Canonicalization aims at restoring canonicality in one of the
spaces while leaving the other two unchanged, a process that
enforces the independence of one space against the other
two. We propose view canonicalization (restore canonical
view for any 3D skeleton sequence) and structure canonical-
ization (restore canonical body structure for any 3D skele-
ton sequence). We randomly manipulate the 3D sequence in
only one of the three spaces and apply canonicalization in
that space for both the original sequence and the manipu-
lated sequence. This process gives us several variants that
can be used to derive the supervision signals.

View Canonicalization. View canonicalization φvc(x) re-
stores canonical view for any skeleton sequence, i.e., per-
forming view canonicalization on figures with arbitrary ori-
entation should yield figures facing the same direction, while
leaving the motion and body structure unchanged. This is
achieved by reconstructing the 3D sequence with the de-
coder and then rotating it to canonical view, i.e., φvc(x) =
r(G(Em(x), Es(x)), g(vcano)). The canonical view vcano

is defined as corresponding to the identity matrix, i.e., no ro-
tation. Thus, the output of the decoder is assumed to be in a
canonical view, see Fig. 5 (a) for an example.
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Recall in the previous section that we generated 2D repro-
jections x

(k)
r of the input sequence x. For training, we per-

form view canonicalization on both the input and the repro-
jected versions. Since x and x

(k)
r contain the same motion

and structure and the only variable is the view angle, the re-
sults of view canonicalization should be identical. From this
property we derive the view canonicalization loss in skeleton
space:

Lvc
X =

K∑
k=1

∣∣∣Xvc − X̃(k)
vc

∣∣∣ , (3)

where Xvc = φvc(x) and X̃
(k)
vc = φvc(x

(k)
r ). Also, since

rotation and view canonicalization does not modify infor-
mation in the motion and structure space, the re-encoded
motion and structure should stay the same. These properties
give us the view canonicalization loss in feature space.

Lvc
m = |m−mvc|+

K∑
k=1

∣∣∣m−m(k)
r

∣∣∣ , (4)

Lvc
s = |s− svc|+

K∑
k=1

∣∣∣s− s(k)r

∣∣∣ , (5)

where m and s are the motion and structure encoded from
the input sequence x. Together, the view canonicalization
loss is defined as

Lvc = λvcXLvc
X + λvcmLvc

m + λvcs Lvc
s . (6)

Structure Canonicalization. Structure canonicalization
restores a standard body structure for any skeleton se-
quence while leaving the motion and view angle un-
changed. During training, we estimate a centroid of the
structure space and define it as the canonical structure
scano. Structure canonicalization is defined as φsc(x) =
r (G(Em(x), scano), Ev(x)). The pipeline for structure
canonicalization training is shown in Fig. 5 (b).

To achieve self-supervision, a technique called limb-
scaling (Yang et al. 2020), i.e., randomly shortening or ex-
tending the length of the limbs in the input 2D sequence x,
is used to obtain a sequence xs, which has the same mo-
tion and view angle but a different body structure. We then
perform structure canonicalization on both sequences, i.e.,
Xsc = φsc(x), X̃sc = φsc(xs). By definition, this pair
of canonicalization results should be the same, from which
we derive the structure canonicalization loss in the skeleton
space:

Lsc
X =

∣∣∣Xsc − X̃sc

∣∣∣ . (7)

Since limb-scaling and structure canonicalization does
not modify information in the other two spaces, the re-
encoded motion and view angle should stay the same. These
properties give us the structure canonicalization loss in fea-
ture space.

Lsc
m = |m−msc|+ |m−ms| , (8)

Lsc
v = |v − vsc|+ |v − vs| . (9)

Together, the structure canonicalization loss is defined as

Lsc = λscXLsc
X + λscmLsc

m + λscv Lsc
v . (10)
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Figure 6: 3D Motion Retargeting in-the-Wild. The upper-
most row gives the source videos, and the leftmost column
gives the target videos. For each source-target combination,
the network transfers the motion from source to target and
produces 3D results.

Total Loss
The total training loss is given as

L = λrecLrec + λadvLadv + Lvc + Lsc. (11)

We back-propagate L and train the whole network in an
end-to-end fashion.

Experiments
In this section, we first evaluate and compare the motion
retargeting performance on both in-the-wild and synthetic
data. Then, we investigate the effects of canonicalization
on the learned representations. We also conduct an ablation
study to examine the effectiveness of each module. We in-
clude the details of the neural network and the datasets in
the appendix due to space limit.

Motion Retargeting
Figure 6 shows the motion retargeting results of our method.
Each output skeleton is conditioned on the motion and
view code from the source character and the structure code
from the target character. The results demonstrate that our
method could transfer the motion naturally and realistically
to the target body. In addition, we compare our method with
the state-of-the-art methods. To implement the conventional
3D+IK pipeline, we use several SOTA 3D pose estimation
and mesh reconstruction methods as detailed below. Two
sets of results of our method are presented. The Ours model
is trained on the synthetic Mixamo training set and the Ours
(wild) model is trained on a web-crawled video dataset Solo-
Dancer (Yang et al. 2020). Please refer to the supplementary
materials for detailed setups and formal definitions of met-
rics.

Video-to-3D (In-the-Wild) Comparison. We first test
under the in-the-wild setting where the source and target
are given by dancing videos downloaded from the Internet,
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Methods 3DGT+IK Ours Ours (wild) TransMoMo LCN+IK Pose2Mesh+IK VideoPose3D+IK
Metrics MSE MPJPE MSE MPJPE MSE MPJPE MSE MPJPE MSE MPJPE MSE MPJPE MSE MPJPE
Andro.↔ P. Hulk 0.049 0.325 0.799 1.221 0.792 1.215 1.246 1.563 1.986 1.925 2.822 2.361 3.198 2.469
Andro.↔ S. Granny 0.042 0.294 0.948 1.320 0.945 1.320 1.668 1.830 1.973 1.881 2.504 2.159 5.309 3.173
Andro.↔ TY 0.016 0.168 0.853 1.206 0.832 1.191 1.497 1.725 1.769 1.730 1.910 1.878 4.044 2.678
P. Hulk↔ S. Granny 0.131 0.507 0.955 1.334 0.951 1.333 2.057 2.072 2.235 2.013 3.182 2.491 6.390 3.760
P. Hulk↔ TY 0.064 0.371 0.874 1.230 0.853 1.220 1.837 1.965 2.135 1.942 2.544 2.235 5.471 3.429
S. Granny↔ TY 0.024 0.209 0.927 1.266 0.912 1.256 2.166 2.147 2.141 1.886 2.313 2.073 7.542 4.077
OVERALL 0.056 0.316 0.891 1.261 0.878 1.253 1.750 1.888 2.046 1.899 2.552 2.204 5.329 3.272

Table 1: 2D-to-3D (Synthetic) Motion Retargeting Comparison. We calculate the 3D Mean Square Error (MSE ×10−2) and
3D Mean Per Joint Position Error (MPJPE ×10−1). Both MSE and MPJPE are root-relative and normalized by the target
character’s body height, following the practice of (Aberman et al. 2019b).

Source Video Target Video 3DMPPE + IK VP3D + IK TransMoMo Ours

Figure 7: Video-to-3D (In-the-Wild) Motion Retargeting
Comparison. The compared methods retarget the motion
from source videos to target videos in the form of 3D skele-
ton sequences. Please zoom in for details, especially those
circled with red that shows the erroneous results produced
by existing methods.

and the results are shown in Fig. 7. VideoPose3D (Pavllo
et al. 2019) takes a 2D skeleton sequence and lifts it to 3D
with temporal convolutions. 3DMPPE (Moon, Chang, and
Lee 2019) regresses 3D pose from the 2D image directly. In
the traditional two-stage pipeline, errors in the 3D pose esti-
mation stage are accumulated and enlarged in the IK stage.
Therefore, these methods are highly reliant on the quality of
3D pose estimation, which tends to fail due to occlusions or
short 2D projections. TransMoMo (Yang et al. 2020) pro-
duces an intermediate 3D result before projection. However,
it is designed to generate 2D label maps for further render-
ing, so they only consider 2D supervision with an oversim-
plified static view assumption. Although its 2D projection
results are plausible, multiple artifacts can be found in 3D,
e.g., wrong direction, temporally twisted moves.

2D-to-3D (Synthetic) Comparison. In order to quantita-
tively compare the motion retargeting performance with the
previous methods, we compute the 2D-to-3D motion retar-
geting error on a synthetic animation dataset called Mix-
amo (Adobe 2021) because it has ground-truths available.
The training set comprises 32 characters, and each character
has 800 actions. During evaluation, we test the models on a
held-out partition with 4 new characters and 64 new actions.
Since 3DMPPE (Moon, Chang, and Lee 2019) is not appli-
cable to the 2D pose input, we further add two recent SOTA
methods LCN (Ci et al. 2020) and Pose2Mesh (Choi, Moon,
and Lee 2020) for the conventional pipeline. We further
compare a strong benchmark where ground-truth 3D motion
is retargeted with IK. It resembles the practice of using high-
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Figure 8: Canonicalization Results. The first row is the in-
put 2D skeleton sequences, all from the Mixamo test set.
The following rows show the 3D results after applying view
canonicalization, structure canonicalization, and both.

precision MoCap systems and serves as a lower bound of the
error. The results are shown in Table 1. Our approach out-
performs previous methods by a considerable margin on all
the test character pairs. The performance of 3DGT+IK (the
upper-bound baseline with 3D pose grouth-truths) proves
that the IK step itself is almost error-free. Hence, errors are
mainly produced at the 3D stage and amplified in the IK
stage as for the conventional two-stage pipeline. It is also no-
table that Solo-Dancer is only 30% of Mixamo training set
in terms of video length. The model trained on Solo-Dancer
performs better, which demonstrates the strength of training
on in-the-wild data with higher motion diversity.

Canonicalization and Disentanglement
By canonicalization training, the model learns to disentan-
gle the three latent factors without external supervision. We
first visualize the canonicalization results, which shows that
the model learns to transform the skeleton sequences as in-
tended. In addition, we show that the learned canonical form
could serve as an effective representation of human motion.

Canonicalization Effects. As shown in Fig. 8, input
skeleton sequences with different orientations are aligned to
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w/o adv w/o VC w/o SC T(3D) T(3D+DV) Ours (Full)
MSE× 10−2 1.579 1.240 1.599 1.652 1.688 0.891

MPJPE× 10−1 1.785 1.602 1.693 1.776 1.743 1.261

Table 2: Ablation Study. w/o adv refers to the model with adversarial loss ablated, w/o VC refers to the model with view
canonicalization loss ablated, w/o SC refers to the model with structure canonicalization loss ablated. T(3D) refers to Trans-
MoMo re-implemented with 3D loss terms. T(3D+DV) refers to TransMoMo trained with 3D loss terms and dynamic view.
The numbers are measured on the Mixamo dataset.

Query Results

Figure 9: Motion Retrieval Results. The leftmost column
shows a frame sampled from a query video depicting a short
motion, and the three other columns show the top three re-
trieved videos.

the same view angle after view canonicalization (Row 2),
while the motion and structure information are not changed.
The view canonicalization requires the network to infer the
underlying 3D structure of the input motion sequence and
automatically cast it to a specific view. Despite the large in-
put body structure discrepancies, structure canonicalization
(Row 3) generates a “standard character” performing the
same motion at the exact view angle. The structure canoni-
calization requires the network to capture the average struc-
ture and learn a character-agnostic motion representation.
As shown in the last row of Fig. 8, the 3D skeleton sequence
after both structure and view canonicalization contains un-
mixed motion information, independent of body structure
and view angle. Therefore, it can be used as a direct, dis-
entangled, and interpretable motion representation. We con-
duct further experiments to show the practicability of using
the dual-canonicalized skeleton sequence as a distilled mo-
tion representation.

Motion Clustering. We apply a simple K-Means algo-
rithm to cluster the Mixamo test set by motions. The dataset
consists of 64 different motions performed by 4 characters
and observed at 7 view angles. For K-Means, we setK = 64
and iterate 300 times. The clustering results are evaluated
by ARI (Adjusted Rand index) (Hubert and Arabie 1985),
AMI (Adjusted Mutual Information) (Gleicher 1998), Ho-
mogeneity, Completeness, and V-Measure (Rosenberg and
Hirschberg 2007). We compare two motion representations:
1) Latent motion embedding learned by TransMoMo (Yang
et al. 2020), and 2) Skeleton sequence after our canonical-
ization operations.

Motion Retrieval. The dual-canonicalized motion repre-
sentation also enables the motion retrieval task, i.e., retrieve
videos that exhibit similar motions with the query video. We
first extract pose from the Solo-Dancer dataset, then slice the
pose sequences into clips of 64 frames, producing a motion
library of 33678 clips. Then, for a query motion, we retrieve
its nearest neighbors in the dual-canonicalized motion rep-
resentation space. The results in Fig. 9 show that our method
is able to retrieve videos with similar motion semantics even
if they appear drastically different due to body structure and
view angle variations. It is because canonicalization opera-
tions make the proposed representation independent of both
structure and view angle. For video results of motion re-
trieval, please refer to the attached video.

Ablation Study
We first ablate several loss terms to show the importance of
the designed modules. Then, we provide a stepwise compar-
ison with TransMoMo (Yang et al. 2020). In Table 2, the
removal of any part of our full model results in non-trivial
performance degradation. More specifically, we observe that
the network trained without adversarial loss tends to gener-
ate poses with a wrong depth, and the network trained with-
out canonicalization loss fails to keep the desired motion.
Although directly applying dynamic view and 3D loss terms
to TransMoMo (Yang et al. 2020) slightly helps, the models
still exhibit a considerable performance gap compared to the
proposed canonicalization-based approach. The models also
fail to learn time-varying 3D view angle as expected. We ar-
gue that the proposed canonicalization operations not only
help to learn disentangled motion better, but also ease the
learning of dynamic view representations, which are more
realistic yet more complex.

Conclusion
In this work, we present Canonicalization Networks for
tackling in-the-wild 2D-to-3D motion retargeting. The pro-
posed method robustly infers and transfers motion from 2D
monocular videos to drive 3D humanoids, enabling motion
retargeting in everyday use cases. We derive self-supervision
from the canonicalization operations in factorized semantic
spaces, from which the presented framework can be trained
easily with web-crawled videos only given no annotations.
To sum up, our 3D motion retargeting approach enables both
training and inference in-the-wild. The experiment results
show improvement of the proposed method over the exist-
ing methods, especially in terms of robustness and general-
ization.
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