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Abstract

Pseudo bounding boxes from the self-training paradigm are
inevitably noisy for semi-supervised object detection. To
cope with that, a dual decoupling training framework is pro-
posed in the present study, i.e. clean and noisy data decou-
pling, and classification and localization task decoupling. In
the first decoupling, two-level thresholds are used to catego-
rize pseudo boxes into three groups, i.e. clean backgrounds,
noisy foregrounds and clean foregrounds. With a specially
designed noise-bypass head focusing on noisy data, back-
bone networks can extract coarse but diverse information; and
meanwhile, an original head learns from clean samples for
more precise predictions. In the second decoupling, we take
advantage of the two-head structure for better evaluation of
localization quality, thus the category label and location of
a pseudo box can remain independent of each other during
training. The approach of two-level thresholds is also applied
to group pseudo boxes into three sections of different loca-
tion accuracy. We outperform existing works by a large mar-
gin on VOC datasets, reaching 54.8 mAP (+1.8), and even up
to 55.9 mAP (+1.5) by leveraging MS-COCO train2017 as
extra unlabeled data. On MS-COCO benchmark, our method
also achieves about 1.0 mAP improvements averaging across
protocols compared with the prior state-of-the-art.

Introduction

Great progress has been made in object detection owing
to the development of deep convolutional neural networks.
Yet, training an accurate detector still demands a large
well-annotated dataset, which is labor-consuming. To lessen
the demand for expensive labeled data, semi-supervised
learning (SSL) in image classification has been widely re-
searched, while semi-supervised object detection (SSOD) is
still an open issue with little literature about it.

Recent SSOD works following the self-training paradigm
show better performance than the consistency-based method
(Jeong et al. 2019). For self-training, a teacher model gen-
erates a set of predicted boxes on unlabeled images, with
a fixed confidence threshold filtering out possible negative
predictions. Remaining boxes, named pseudo boxes, are
then used as targets for training a student model. The lower
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Figure 1: Illustration of 2-dimension decoupling. X-axis is
about tasks. Localization is decoupled from classification
with the help of the localization score. Pseudo-labels with
scores from 0 to 1 are split into three parts for each task, and
noisy ones teach the noise-bypass head as ground truths.

the threshold, the higher the recall for pseudo boxes, yet the
more wrongly classified the boxes, i.e. false positives, in-
terfering with the convergence of semi-supervised training.
The higher the threshold, the higher the precision for pseudo
boxes, but positive recalls with low confidence may be fil-
tered, undermining the ability of trained models to detect
tiny or hard samples. It seems fair to conclude that there is
always a trade-off between recall and precision when there
is only one confidence threshold, and thus noise in pseudo
boxes is unavoidable.

Since confidence is based on outputs of classifiers, it can
be argued that confidence alone may be able to qualify clas-
sification, but not localization. Considering that, Liu et al.
remove the localization training for pseudo boxes, which is
not a best solution in our perspective.

In the present study, a dual decoupling training (DDT)
framework is proposed to overcome the above-mentioned
problems in SSOD. DDT introduces two-dimensional de-
coupling for self-training, specifically, clean and noisy data



decoupling as well as classification and localization task de-
coupling, as shown in Figure 1.

(1) decoupling clean and noisy data. Most existing studies
decide on the threshold without much deliberation. For ex-
ample, STAC (Sohn et al. 2020b) uses 0.9, Unbiased Teacher
(Liuetal. 2021a) uses 0.7, and ISMT (Yang et al. 2021) uses
0.9. By contrast, we use two thresholds to get three types of
pseudo boxes. Boxes with their classification score above
the higher threshold, which implies that their category label
is likely to be correct, are called “clean foregrounds”, while
those with their classification score below the lower thresh-
old “clean backgrounds”. All the other boxes are treated
as noisy foregrounds, as they are a mix of false positives
and true positives. Inspired by Luo and Yang, the noise-
bypass ROI head (bypass head for short) is designed to learn
noisy pseudo boxes, parallel with the original main ROI
head (main head for short). The bypass head is responsible
for digging out general categorizing and locating informa-
tion for shared backbone networks from noisy pseudo boxes.
And the main head handles clean data to reach better conver-
gence and performance.

(2) decoupling classification and localization tasks. Ob-
ject detection handles classification and localization tasks si-
multaneously, but classification confidence is the only score
to evaluate predictions, which is not a proper way to esti-
mate localization quality. In this paper, an approach is pro-
vided to calculate the localization score via the bypass head.
As a result, each pseudo box has two scores attached, in-
cluding the classification score and the localization score.
Like what we do to decouple noise from clean pseudo cat-
egory labels, another two thresholds are used to discrimi-
nate pseudo boxes with different localization quality. During
semi-supervised training, classification and localization are
treated separately, which implies that there may be a pseudo
box with clean classification but noisy localization. We will
elaborate on it further in Methodology.

Our DDT framework follows the teacher-student scheme
with asymmetrical augmentations. The teacher generates
pseudo boxes on weakly augmented unlabeled images, and
the same images after strong augmentation will then feed the
student for training. The student is learnable, and the teacher
updates weights via exponential moving average (EMA)
from the student to generate stable pseudo annotations.

Strong augmentations in this work not only include intra-
data augmentations like photometric distortion and Cutout
(Devries and Taylor 2017), but also inter-data augmentations
like Mixup (Zhang et al. 2018; Guo, Mao, and Zhang 2019)
and Mosaic (Bochkovskiy, Wang, and Liao 2020; Zhou
et al. 2021). Inter-data augmentations alleviate the overfit-
ting problem of two-head structure and gain extra improve-
ments in our framework. Attributed to the proposed dual de-
coupling training, the teacher-student scheme, and the inter-
data augmentations, we make significant progress from the
current SSOD best performance on VOC datasets (Evering-
ham et al. 2010). On experimental protocols of MS-COCO
(Lin et al. 2014), we achieve state-of-the-art as well.

The main contributions of this paper are as follows:

» Data decoupling: two thresholds are adopted to differ-
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entiate clean and noisy data and devise the noise-bypass
head to learn noisy data while the main head focusing
on clean data. Data decoupling enhances the feature rep-
resentation of shared networks and eliminates negative
impacts of noise on final predictors.

* Task decoupling: the localization score is calculated with
the help of the noise-bypass head, independent of con-
fidence. As we fully utilize localization guidance, better
localization performance is achieved.

* With sufficient experiments on VOC and MS-COCO
datasets, the method proposed has been verified and our
work is a new state-of-the-art in SSOD.

Related Works
Semi-Supervised Learning in Image Classification

SSL in image classification aims at training models on la-
beled data along with a large amount of unlabeled data. Self-
training (Lee et al. 2013; Bachman, Alsharif, and Precup
2014), also called pseudo-labeling, is a popular approach for
SSL, which adopts a pretrained model to annotate pseudo
labels on unlabeled images. Another widely-used approach
is consistency regularization, which encourages consistency
among outputs from different views of one and the same
image. Different views usually result from perturbations,
including model jittering (Bachman, Alsharif, and Precup
2014), data augmentations (Berthelot et al. 2019, 2020; Sohn
et al. 2020a; Xie et al. 2020), feature augmentations (Kuo
et al. 2020), and adversarial disturbance (Miyato et al. 2018;
Yu et al. 2019). Mean teacher (Tarvainen and Valpola 2017)
introduces a teacher-student dual-model framework with the
teacher updating its weights from the EMA weights of the
student and inspires successors (Verma et al. 2019; Liu
et al. 2021a; Tang et al. 2021b). To further improve perfor-
mance, uncertainty-aware methods (Mukherjee and Awadal-
lah 2020; Rizve et al. 2021) are studied, which leverage un-
certainty estimators to select better calibrated pseudo labels.
This paper follows some thoughts of SSL but steps further
to address the localization problem for detection tasks.

Semi-Supervised Learning in Object Detection

Thanks to deep convolutional neural networks, a variety of
approaches have emerged, and facilitated the development
of object detection (Ren et al. 2015; Zhang et al. 2020;
Li et al. 2020; Zhang et al. 2021; Feng et al. 2021) based
on costly man-annotated datasets (Everingham et al. 2010;
Lin et al. 2014). In this paper, we limit the scale of labeled
datasets and combine labeled datasets with unlabeled ones
to train a detector in the SSOD paradigm.

As for SSOD, CSD Jeong et al. follows consistency-based
algorithm and encourages original and flipped views of im-
ages to predict similar results. ISD (Jeong et al. 2021) adds
extra interpolation-regularization on the basis of CSD and
performs better. Another consistency-based method (Tang
et al. 2021a) perturbates features and forces outputs to
be consistent. STAC (Sohn et al. 2020b) is a self-training
method. It uses a pretrained model to generate pseudo boxes
on unlabeled images and train a student model with unla-
beled images strongly augmented. Instant-teaching (Zhou
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Figure 2: The overview of the proposed DDT framework. Firstly, the pretrained teacher generates pseudo boxes on weakly
augmented unlabeled images. Then classification and localization of pseudo boxes are separated into clean and noisy targets
with their scores (clean in green and noisy in orange). When training the student, the main head learns from clean targets, while
the bypass head learns from both clean and noisy targets. The teacher updates weights from the student via EMA after every
iteration. Labeled images with annotations only teach the main head. Best viewed in color.

et al. 2021) generates pseudo boxes instantly in a mini-batch
and designs a dual-model mutual learning algorithm. ISMT
(Yang et al. 2021) takes historical pseudo boxes into ac-
count but the performance is not competitive. All of the self-
training methods mentioned above use one fixed threshold
to generate hard pseudo boxes and train localization sim-
ply, but here we refine the pseudo category label and pseudo
box location with two-level thresholds by implementing a
more elaborate algorithm. Although Humble Teacher (Tang
et al. 2021b) does not use hard pseudo boxes, its usage of
class-dependent regression is not adequately proved. In this
paper, localization quality is evaluated in a more reasonable
way, and the localization score helps our decoupling method
achieve better performance.

Methodology
Notations
In SSOD, there is a labeled dataset X' = {x!, yf}N ', and

i=
an unlabeled dataset with pseudo boxes U = {z¥, Y}V .
x! and x¥ are the i-th labeled and unlabeled image respec-
tively. IV; and N,, are numbers of images in each dataset.
Vi = {(cj,55,bj, 5?)}3]:1 is the annotation set of the i-th
image, where ¢;, s, b; and s? represent the category la-
bel, the classification score, the box location and the lo-
calization score respectively for the j-th annotation, with
5% s? € [0,1]. For ground truths, we define s§ = s? =1J
is the number of annotations of the i-th image.

DDT Framework Overview

Figure 2 illustrates the whole pipeline of our DDT frame-
work. DDT consists of a student model 6, and a teacher
model 0; sharing the same network structure. First of all, the
student is pretrained on the labeled dataset and then copies
the weights to the teacher. As a result, the teacher is capa-
ble of producing adequate pseudo boxes and the student has
better initialized weights. The total loss for supervised pre-
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training can be formulated as follows,

_ prpn M B
[’PTE - ‘Cpfe + ‘Cpre + ‘Cpre (1)
where L7 is the RPN loss, while £)]_ and L[ are ROI

losses of the main and bypass head during pretraining. We
pretrain both heads with different random initialization.

After warm-up, semi-supervised training starts. In each it-
eration, both labeled images and unlabeled images are sam-
pled as a batch of inputs with a ratio of 1:1. Weakly aug-
mented unlabeled images are fed into the teacher. Then the
resulting boxes from the main head with confidence above
the lower classification threshold 77 are kept as pseudo
boxes. Additionally, each pseudo box will be attached with a
localization score. After generating pseudo boxes, all image-
target pairs in a batch will be strongly augmented and fed to
the student model.

For two-stage detectors, there is an RPN producing K;
proposals for the i-th image. We regard all pseudo boxes as
foreground targets when assigning proposals. Then ROI fea-
tures zj, are extracted by ROIAlign (He et al. 2017) and sent
to the subsequent heads, where k is the index of propos-
als. There are two sets of output predictions. One is from
the main head and the other is from the bypass head. Each
set has classification logits and localization offsets. The ROI
losses for two branches are as follows,

Lot =My P 2)

where,

£ =35 (w) LM @)+ wl L G)) )
i k

Lf=3"% (waL‘B“(éfk, ¢)
[ k

where the uppercase letters M and B represent items about
the main and bypass head respectively. The lowercase letters
c and b refer to the classification and localization task. ¢;, or

+wfP L (B b) @

bjr means the prediction from the k-th proposal which is
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Figure 3: The histogram for pseudo box candidates. The
height of bars indicates the number of boxes with differ-
ent confidence. Red parts are for TPs and orange parts are
for FPs. Every point on the line graph is the TP proportion.
Data are from the unlabeled part of 10% COCO.

assigned to the j-th target. ¢ is the index of images in a mini-
batch. There are four weights in equations above, which play
an important role in our decoupling training. These weights
can be formulated as a matrix like,

b b b
sjﬂ[sj>7’,§] sjﬂ[sj>7'h]

Mec ., Mb i~ Th
w; w; _ S Is§>75] Zbﬂ[s§>7—§] (5)
ijC «ijb s71[s;>7/] s;1[s;>77]

2o I[s5>77] Eﬂ[s?>rlb]

where I is the indicator function, 73, is the higher classifica-
tion threshold, T}IZ is the higher localization threshold, 7 is
the lower classification threshold, and le is the lower local-
ization threshold. These thresholds are used to discriminate
clean and noisy parts of classification and localization tar-
gets. The clean-noisy boundaries of Figure 1 illustrate the
four thresholds intuitively.

At the end of an iteration, the teacher updates weights
from the student in the EMA mechanism with a given EMA
ratio o,

0 + (1 — )b + abs,a € [0,1] (6)

Dual Decoupling Training

To decouple clean and noisy classification targets, we need
a score s to estimate the classification quality of pseudo
boxes, for which confidence is a good choice, as it is from
the prediction distribution of the classifier and naturally has
the capacity to qualify classification. What’s more, Figure 3
shows that with the increasing confidence, the proportion of
TPs is increasing too, indicating that there is a strong pos-
itive correlation between classification accuracy and confi-
dence. If a single threshold is utilized to get pseudo boxes,
a low threshold can recall extra TPs, but there are numer-
ous FPs in pseudo boxes. A high threshold assures that
the pseudo boxes are clean, but some positive instances are
missing, which may be hard samples and worth learning.
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Figure 4: The density heatmap between the localization
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Therefore, we adopt two-level threshold strategy to get clean
pseudo boxes with a high enough threshold and noisy yet
valuable pseudo boxes with a low threshold. The rest boxes
are likely to be a real background and filtered. As a result,
Figure 3 illustrates that the proposed two-level threshold
strategy is reasonable.

Besides, in order to decouple clean and noisy localization
targets like what we do to classification above, we need an-
other score s? to estimate the localization quality. Jiang et al.
explicate that the correlation between confidence and local-
ization quality is low, thus confidence is not a valid score. In
the present paper, the bypass head is capable of categoriz-
ing and locating boxes (see Figure 6), though noisy data are
involved while training. Moreover, one box from the main
head has a counterpart box from the bypass head, since they
share the same ROI features. Consequently, our estimation
method makes use of the bypass head, and calculates the lo-
calization score as follows,

b.:

Sj

85 ToU (b, D)

M bt )
where b and bf are the output boxes from the main and
bypass ﬁead respectively. They are both from the teacher
model and b is the localization guidance b; in ROI losses.
The confidence term indicates objectness, as localization for
a background box makes no sense. The IoU term indicates
certainty of localization. Combining these two terms, we get
the phenomenon in Figure 4, which shows our localization
score can reflect actual localization quality. The independent
localization score decouples localization from classification,
which improves our performance by promoting the localiza-
tion precision. Also, the two-level threshold strategy is also
applied to localization, resulting in three parts of pseudo
boxes with different localization quality. So far, both clas-
sification and localization targets have been split into clean
and noisy parts, which will be exploited by the bypass head.



Method Labeled Unlabeled AP  AP50 AP75
Supervised VOCO07 - 426 726 475
CSDf 427 76.7 -
STAC (Sohn et al. 2020b) 4.6 715 -
ISMT (Yang et al. 2021) 46.2 77.2 -
Instant-teaching (Zhou et al. 2021)  yoco7 VOC12 4877 783 520
Unbiased Teacher (Liu et al. 2021a) 48.7 774 51.1
Humble Teacher (Tang et al. 2021b) 53.0 80.9 -
DDT (ours) 547 824 59.8
CSDf 436 711 -
STAC (Sohn et al. 2020b) 46.0 79.1 -
ISMT (Yang et al. 2021) VOCI12 49.6 778 -
Instant-teaching (Zhou et al. 2021) + 50.8 79.9 55.7
Unbiased Teacher (Liu et al. 2021a) MS-COCO20 50.3 78.8 54.9
Humble Teacher (Tang et al. 2021b) 544 81.3 -
DDT (ours) 559 825 611

Table 1: Results on VOC datasets compared with existing works. AP50 and AP75 are reported for a thorough comparison.
MS-COCO20 represents the subset of MS-COCO train2017 with the same classes as VOC. {: the re-implementation version

of Tang et al.

Noise-Bypass Head

The name, noise-bypass head, is inspired by the bypass ca-
pacitor in Electronics, which shorts high-frequency noise to
ground and keeps the voltage constant.

In this paper, more noise is deliberately absorbed into
pseudo boxes because we want to extract more knowledge
from it. A naive way is to train a single-head model with a
mix of clean and noisy data. It may be good for backbone
networks to extract more diverse information, but predictors
will suffer from the noisy targets, leading to inaccurate re-
sults. We specially design a bypass head, which is parallel
with the original main head in the network structure. The
main head only learns clean targets, while the bypass head
focuses on noise, so uncertain pseudo annotations will not
interfere with the main head training. The extra noisy anno-
tations provide approximate location of objects, and train-
ing them on a separate branch introduces regularization into
the underlying backbone to some extent, improving the net-
work’s generalization capability.

The bypass head is a training assistant and can be removed
when training is done. Therefore, the resulting model is the
teacher model with the main head only (exactly the same
as regular Faster RCNN in this paper). Figure 6 shows the
performance between different models with different heads.

Augmentations

Weak augmentation here is the random horizontal flip.
Strong augmentation includes intra- and inter-data augmen-
tations. Intra-data augmentations only deal with one im-
age, such as random horizontal flip, photometric distortion,
random gaussian blur and Cutout. Inter-data augmentations
fuse two or more images to augment one image, e.g. Mixup
and Mosaic.

Our implementation follows Zhou et al. for Mixup and
Yolov4 (Bochkovskiy, Wang, and Liao 2020) for Mosaic.
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(a) Mixup

(b) Mosaic

Figure 5: Visualization for inter-data augmentations. Intra-
data augmentations like photometric distortion and Cutout
can also be found in the visualized pictures.

Figure 5 visualizes these two augmentations. Inter-data aug-
mentations in our method only mix labeled images with un-
labeled ones. We believe they can enrich the context of input
images and alleviate the overfitting problem.

Experiments and Analysis
Datasets

Our method DDT is benchmarked on two popular detection
datasets. One is PASCAL VOC, which includes VOCO07 and
VOCI12 datasets. In VOCO7, we treat the trainval set as la-
beled data (5,011 images) and evaluate performance on the
test set. Data from VOCI12 trainval(11,540 images) and the
subset of MS-COCO with the same classes as VOC (about
95k images) are used as extra unlabeled data. For MS-
COCO, we randomly sample 1%/2%/5%/10% data from
MS-COCO train2017 as the labeled data with the rest data
as the unlabeled data. Additionally, the entire MS-COCO
train2017 (about 118k images) and MS-COCO unlabeled
(about 123k images) are used for the SSOD experiment,
which validates our approach on large-scale datasets. The



Method 1% COCO 2% COCO 5% COCO 10% COCO COCO-full
Supervised 9.05£0.16  12.70£0.15 18.47+0.22 23.86+0.81 37.63
CSDf 11.124+0.15  14.15+0.13  18.79£0.13  22.76+0.09 38.52
STAC (Sohn et al. 2020b) 13.974+0.35 18.25+0.25 24.38£0.12 28.64+0.21 39.21
ISMT (Yang et al. 2021) 18.88+0.74 22.43+0.56 26.37£0.24 30.53+0.52 39.64
Instant-teaching (Zhou et al. 2021) 18.05+0.20 22.45+0.15 26.75+£0.05 30.40+0.05 40.20
Unbiased Teacher (Liu et al. 2021a)  20.754+0.12 24.30+0.07 28.27£0.11 31.50+£0.10 41.30
Humble Teacher (Tang et al. 2021b)  16.96+0.38  21.72+0.24 27.70£0.15 31.61+0.28 42.37
DDT (ours) 18.62+0.42 24.524+0.20 29.24+0.16 32.80+0.22 41.90
DDT (ours)} 19.44+0.32 25.20£0.16 29.924+0.12 33.46+0.18 42.40

Table 2: The mAP at IoU=0.5:0.95 on MS-COCO val2017. Different percentages of labeled MS-COCO train2017 are used to
train models. We report margins of error for metrics, which come from multiple experiments with different random seeds. 1:

the final confidence threshold is 0.001 as Zhou et al. do.

mean average precision (AP) at [oU=0.5:0.95 is the metrics.
For VOC datasets, AP50 and AP75 are also reported for bet-
ter comparison.

Implementation Details

Our DDT framework is based on the two-stage detector
Faster RCNN (Ren et al. 2015) with feature pyramid net-
works (Lin et al. 2017). The backbone network is ResNet-
50 (He et al. 2016) initialized by the ImageNet-pretrained
model. The classification loss is cross entropy loss for the
RPN and focal loss for the ROI heads. DDT introduces four
hyper-parameters to decouple the clean and noisy data. We
set 7 = 0.4, 7¢ = 0.6, 77 = 0.6 and 7} = 0.8 unless other-
wise specified. The optimizer we use is SGD with a momen-
tum of 0.9. The size of a mini-batch is 32 with 16 labeled
and 16 unlabeled images. We do not stop training until the
model converges and the learning rate keeps constant during
semi-supervised training, with 0.04 for VOC and 0.02 for
MS-COCO. EMA ratio is set as a« = le — 4. We adopt 8
NVIDIA Tesla V100 GPUs for all experiments.

Results on PASCAL VOC

On PASCAL VOC datasets, we compare the proposed DDT
framework with the state-of-the-art methods in SSOD. As
summarized in Table 1, our DDT outperforms state-of-the-
art approaches by a large margin under both experimen-
tal settings. Compared with the latest proposed Humble
Teacher, we improve AP from 53.0 to 54.7 when VOC12 is
the only unlabeled dataset. Given additional unlabeled MS-
COCO data (images of VOC classes), we improve AP from
54.4 to 55.9. Instant-teaching calculates regression loss for
all pseudo boxes, while Unbiased Teacher does not learn
location of pseudo boxes at all. Hence, we also report the
AP75 metric and compare DDT with these two typical algo-
rithms. The improvement of AP75 is more than that of AP,
which demonstrates that our performance benefits from the
higher localization precision.

Results on MS-COCO

Experiments on different settings of MS-COCO are shown
in Table 2. Compared with the supervised baseline, we im-
prove about 10 mAP after semi-supervised training, even
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Main Bypass Loc

Cls. Loc. Cls. Loc. Score AP AP75
o o o o Conf. 31.7 322
° ° ° (] Conf. 29.5 31.0
o o ° o Conf. 322 326
o o ° o Eq.7 32,6 344
° o ° ° Eq.7 302 326
o ) ) . Eq.7 322 34.1

o o . ° Eq.7 327 350

Table 3: Ablation study for different clean and noisy data
training combination on 10% COCO. o: train with clean
data. e: train with both clean and noisy data.

when the labeled data are rare (1% COCO has 1100 labeled
data for 80 classes). For the 2%, 5%, 10% protocol, we out-
perform the best of existing works, improving 1.85 absolute
AP when 10% labeled data are used. If a lower final thresh-
old is set (from 0.05 to 0.001), we achieve a higher AP for
each protocol. To sum up, the state-of-the-art performance
validates that our method is effective and outstanding.

Ablation Study

For every ablation study below, we use the 10% COCO pro-
tocol with the single data fold for fast experiments.

Dual-Decoupling with the bypass head Firstly, we vali-
date effectiveness of our dual decoupling training. Thanks
to the flexible framework, we can switch between differ-
ent combinations of decoupling for ablation experiments, as
shown in Table 3.

The first two rows are clean and noisy baseline experi-
ments, respectively. If we add noisy data to the bypass head
training (row 3), we can find the improvement compared
with the clean baseline. Row 4 experiments our task de-
coupling and uses proposed localization score instead of
confidence. Although AP improvement is marginal, AP75
gains 1.8, which shows our better localization. Row 5 in-
troduces clean localization targets to the noisy baseline, and
improves 0.7 AP. Row 6 introduces noisy localization tar-
gets to the clean baseline, and improves 0.5 AP. If dual de-
coupling training is fully utilized, as shown in row 7, we get
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Intra-Data Inter-Data
Color Blur Cutout Mixup Mosaic AP
v 30.1
Vv v 30.5
v v N4 314
v vV 324
vV v v v 327

Table 4: Ablation study on different augmentations.

the best performance among all experiments in Table 3, thus
demonstrates the effectiveness of our proposed dual decou-
pling training.

The Performance of Four Heads Our DDT framework
has four heads to produce predictions: the main head of the
teacher, the bypass head of the teacher, the main head of the
student and the bypass head of the student. The performance
trends of these heads are displayed in Figure 6. It shows that
the performance of the teacher is consistently higher than the
student, which echoes the conclusion of Liu et al.. As what
we have expected, the performance of the main head is also
consistently higher than the bypass head, which supports our
practice of treating the teacher model with the main head as
the final model.

Augmentations Next, we progressively study different
strong augmentations from intra- to inter-data augmenta-
tions. As shown in Table 4, our method benefits from
stronger augmentations. Among all augmentations, Mixup
improves the performance from 31.4 to 32.4 and Mosaic
gains 0.3 AP further.

Potential and extensibility Soft Teacher (Xu et al. 2021)
achieves high performance in SSOD recently. In its training
config, 0.5~1.5 multi-scale training and 0.5~1.5 multi-scale
jittering for pseudo generation are used. For fair comparison,
we conduct experiments following the same multi-scale con-
figs and show higher AP in 5%/10%/Full COCO than Soft
Teacher in Table 5. Besides, we experiment DDT on stronger
base detectors like Cascade RCNN (Cai and Vasconcelos
2018) and stronger backbones like Swin-Large (Liu et al.
2021b). Results in Table 6 demonstrate our effectiveness.
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Method Protocol AP
Soft Teacher 5% COCO 30.7
Soft Teacher 10% COCO 34.0
Soft Teacher Full COCO 44.5

Ours 5% COCO  31.5(+0.8)
Ours 10% COCO 35.1 (+1.1)
Ours Full COCO 45.1 (+0.6)

Table 5: Experiments under 0.5-1.5 multi-scale training and
pseudo generating following Soft Teacher (Xu et al. 2021).

Base Detector Protocol Supervised  Semi.
R50-CRCNN  10% COCO 26.7 35.1
SwinL-CRCNN  10% COCO 42.7 47.6
SwinL-CRCNN  Full COCO 50.8 533

Table 6: Extensibility experiments for our proposed method.

Above all, our method has potential for higher performance
and extensibility for different networks.

Qualitative visualization Additionally, some qualitative
results are visualized in Figure 7. The man in the first im-
age, the giraffes in the second image and the bus in the third
image illustrate that our method has more precise location
than the baseline (the first row in Table 3).

Conclusion

In this paper, we dive into two essential parts of the self-
training SSOD problem, which are noisy pseudo boxes and
localization quality estimation. In order to address these
two problems, we propose the DDT framework with two-
dimensional decoupling: clean and noisy data decoupling as
well as classification and localization decoupling. The intro-
duced noise-bypass head successfully extracts extra knowl-
edge out of noise while keeping the main predictor precise.
Our method is validated by abundant experiments above and
outperforms existing works on PASCAL VOC by a large
margin and obtains SOTA on the MS-COCO benchmark.

Figure 7: Visualization of localization quality. Red boxes are
predictions and blue boxes are ground-truths. Top and bot-
tom predictions are from the baseline (the first row in Table
4) and our proposed DDT.
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