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Abstract

Unsupervised image-to-image (UI2I) translation methods
aim to learn a mapping between different visual domains
with well-preserved content and consistent structure. It has
been proven that the generated images are quite useful for
enhancing the performance of computer vision tasks like ob-
ject detection in a different domain with distribution discrep-
ancies. Current methods require large amounts of images in
both source and target domains for successful translation.
However, data collection and annotations in many scenarios
are infeasible or even impossible. In this paper, we propose
an Object-Aware Few-Shot UI2I Translation (OA-FSUI2IT)
framework to address the few-shot cross domain (FSCD) ob-
ject detection task with limited unlabeled images in the tar-
get domain. To this end, we first introduce a discriminator
augmentation (DA) module into the OA-FSUI2IT framework
for successful few-shot UI2I translation. Then, we present a
patch pyramid contrastive learning (PPCL) strategy to fur-
ther improve the quality of the generated images. Last, we
propose a self-supervised content-consistency (SSCC) loss to
enforce the content-consistency in the translation. We imple-
ment extensive experiments to demonstrate the effectiveness
of our OA-FSUI2IT framework for FSCD object detection
and achieve state-of-the-art performance on the benchmarks
of Normal-to-Foggy, Day-to-Night, and Cross-scene adapta-
tion. The source code of our proposed method is also avail-
able at https://github.com/emdata-ailab/FSCD-Det.

Introduction
Object detection is a fundamental computer vision task. Re-
cent advances of deep learning (Krizhevsky, Sutskever, and
Hinton 2012; Simonyan and Zisserman 2014; He et al. 2016)
and large amounts of the annotated data (Cordts et al. 2016;
Sakaridis, Dai, and Van Gool 2018; Geiger, Lenz, and Ur-
tasun 2012; Yu et al. 2020) propel the fast development of
object detection and reach remarkable achievements. How-
ever, detection models trained on the source domain may
degenerate the performance in a new target domain, due to
the domain shift problem (Gopalan, Li, and Chellappa 2011;
Patel et al. 2015; Tzeng et al. 2017; Ganin et al. 2016; Do-
ersch and Zisserman 2017) caused by the variances of ob-
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Figure 1: Few-shot UI2I translation and FSCD object detec-
tion results with Normal-to-Foggy and Day-to-Night.

ject appearance, viewpoints, backgrounds, illumination, and
weather conditions, etc. In addition, collecting large-scale
and diverse datasets with accurate bounding boxes annota-
tions is difficult or even impossible since the labeling pro-
cess is not only expensive but also time-consuming, and data
collection processes in some scenarios are infeasible (Yu
et al. 2019; Wang et al. 2019; Zhuang et al. 2020). Serv-
ing as an effective solution to bridge the gap of the data
distributions between different domains, unsupervised do-
main adaptation (UDA) (Ganin and Lempitsky 2015; Ganin
et al. 2016; Wilson and Cook 2020) is proposed to learn
invariant representations explicitly. The learned knowledge
is transferred from the train data domain (source domain)
to the test data domain (target domain). Usually, the un-
supervised domain adaptation can be classified into three
main categories: i) statistics matching; ii) adversarial pixel
and feature level adaptation; iii) content-preserving image-
to-image translation based data augmentation. In the first
category, distributional variations across different domains
are mitigated via high-order statistics matching of source
and target features with well-designed distribution diver-
gence metrics, i.e., maximum mean discrepancy (MMD)
(Tzeng et al. 2014; Long et al. 2015), second-order moment
(Sun and Saenko 2016), central moment discrepancy (CMD)
(Zellinger et al. 2017). Methods belonged to the second cat-
egory integrate domain adversarial training into the de facto
detector, e.g. Faster R-CNN (Ren et al. 2015), YOLO (Red-
mon et al. 2016; Redmon and Farhadi 2017, 2018), SSD
(Liu et al. 2016), Mask R-CNN (He et al. 2017). Typically,
they attempt to minimize the domain disparity and reach ap-
pealing transferability via feature-level and pixel-level align-
ment (Chen et al. 2018). Methods of third class are built on
a common sense that recently emerged conditional genera-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

3426



Figure 2: Overview of the FSCD object detection framework.

tive models (van den Oord et al. 2016; Kingma and Welling
2014; Mirza and Osindero 2014) are effective on image style
transfer (Jing et al. 2020) with promising content preserva-
tion for data augmentation. Often, they first use unsuper-
vised image-to-image (UI2I) translation techniques (Pang
et al. 2021; Liu et al. 2019; Saito, Saenko, and Liu 2020;
Chen et al. 2020b; Kim et al. 2019a; Liu, Breuel, and Kautz
2017) to generate images from the source domain (have both
large-scale images and annotated labels) to the target domain
(only have images but no labels). Next, by transferring the
annotations to form the new training dataset in the target do-
main, developed detection models are capable of training,
validation, and testing. For example, Arruda et al. employ
CycleGAN (Zhu et al. 2017) to produce nighttime images
with the transferred annotated labels as the training dataset
in the night domain (Arruda et al. 2019). Then both two-
stage and one-stage detectors, i.e., Faster RCNN and YOLO
are capable of model training. Evidently, the methods in the
third class can also earn benefits from the continuously rais-
ing of the universal object detection performance, compared
to the previous two categories. However, current UDA-based
cross-domain object detection methods can only improve the
detection performance with large amounts of data in the tar-
get domain. Significant performance degradations are ob-
served for the limited data case. Although collecting more
data in the target domain may alleviate the impact of this
data-scarce issue, it is non-trivial as effective data acqui-
sitions in some scenarios are infeasible or even impossi-
ble. For example, the raindrops splattered on the camera
lens may corrupt the images with blurring and scattering
vision effects. Consequently, very few usable rainy images
can be captured in practice. Hence, imbalance data amounts
between the source and target domains may further hinder
learning the valuable features and cause UI2I translation and
domain adversarial training failures.

In this paper, we solve the few-shot cross-domain (FSCD)
object detection task by proposing a novel Object-Aware
Few-Shot UI2I Translation (OA-FSUI2IT) network for
content-preserving few-shot UI2I translation and use the
synthesized images of OA-FSUI2IT network as the training
dataset in the target domain for off-the-shelf universal detec-
tor training to boost the FSCD detection performance. Our
OA-FSUI2IT based FSCD object detection framework con-

sists of two primary components: 1) OA-FSUI2IT network,
and 2) de facto detector. First, in the OA-FSUI2IT network,
we propose discriminator augmentation (DA) in the target
domain to resolve the data imbalance issue and style in-
adequate problem for successful few-shot UI2I translation.
We present the patch pyramid contrastive learning (PPCL)
strategy for coherent associations at each specific location
and propose self-supervised content consistent (SSCC) loss
to further enforce the content preservation performance.
Later, for a detector, by transferring the annotations from
the source images to the corresponding generated images in
the target domain, we can formulate the synthesized labeled
training dataset and directly benefit FSCD object detection.
To the best of our knowledge, the proposed OA-FSUI2IT
based FSCD object detection framework is the first work
to successfully resolve the cross-domain detection task in
the scenario that only limited unlabeled image data (e.g.,
only 10 available images) are available in the target do-
main. We implement extensive experiments to demonstrate
the effectiveness of OA-FSUI2IT and achieve state-of-the-
art performance on multiple FSCD object detection bench-
marks. For example, we reach 43.5 mAP on Normal-to-
Foggy (Cityscapes→ FoggyCityscapes), 30.5 mAP on Day-
to-Night (BDD100k Daytime Clear → BDD100k Night-
time Clear), 26.3 mAP on Cross scene adaption (Kitti →
Cityscapes). In a nutshell, the main contributions of this pa-
per are summarized as follows:

1. We propose a novel OA-FSUI2IT framework to address
the FSCD object detection task. Up to our best knowledge,
this is the first work to address the cross domain detection
task successfully with limited unlabeled images in the target
domain (e.g., only with 1 or 10 available images).

2. We propose a series of new modules include DA,
PPCL, and SSCC into the OA-FSUI2IT framework. These
modules work together to alleviate the data imbalance issue
and preserve content well for improving FSCD object detec-
tion in the target domain.

3. We implement extensive experiments and achieve state-
of-the-art performance on multiple FSCD object detection
benchmarks (Cityscapes → FoggyCityscapes, BDD100k
Daytime Clear→ Nighttime Clear, Kitti → Cityscapes),
demonstrating the effectiveness of OA-FSUI2IT framework.
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Methods
Problem Formulation
We address the FSCD object detection task with the sup-
position that we have sufficient source labeled data DS =

{(x(i)s , y
(i)
s )}Ns

i=1, but inadequate unlabeled data DT =

{x(i)t }
Nt
i=1 in the target domain, i.e., Ns � Nt. x

(i)
s and

x
(i)
t denote the i-th image in the source domain and target

domain, respectively. y(i)s = (b
(i)
s , c

(i)
s ) represents the anno-

tations for the i-th source image, x(i)s , where b(i)s and c(i)s are
the coordinates of bounding box b and its associated cate-
gory c, respectively. With only a few images but unknown la-
bels in the target domain, our aim is to generate well content
preserved images in the target domain with the learned OA-
FSUI2IT network and train the detector with the synthesized
image dataset after bounding box annotations transference
to achieve promising performance on the test image data in
the target domain. Fig. 2 presents the processing overview
of our OA-FSUI2IT framework for FSCD object detection.

It is comprised of two main parts: OA-FSUI2IT network
and detector. The OA-FSUI2IT network is trained to map a
“content” image, x(i)s , from the source domain to generate
an analogous image, x(i)s→t = Gs→t(x

(i)
s ), in the target do-

main, with the input “style” image, x(i)t . Note that our OA-
FSUI2IT is operated in an unsupervised setting without pair-
ing constraints between the source and target domains. Our
goal is to learn the style from the target input image, x(i)t ,
but preserve the content for the source input image, x(i)s .

Though only one word different from “Few-Shot Object
Detection (FSD)”, FSD focuses on detecting novel-class in-
stances, which is completely unrelated to FSCD.

Preliminary Knowledge
CUT Baseline For Few-Shot UI2I Translation. CUT (Park
et al. 2020) is built upon the noise contrastive estimation
framework (Oord, Li, and Vinyals 2018), uses InfoNCE
loss (Gutmann and Hyvärinen 2010) for mutual information
maximization for conditional image synthesis, and there-
fore is capable of associating the input and output data. To
simplify the training procedures, reduce the training time
and release the cycle-consistency loss constraint, the gen-
erator Gs→t in CUT is intentionally designed as two se-
quential components, an encoderGenc

s→t and a decoderGdec
s→t.

As for the i-th input image from the source domain, x(i)s ,
CUT can produce the output image in the target domain as
x
(i)
s→t = Gs→t(x

(i)
s ) = Gdec

s→t(G
enc
s→t(xs)). Then, a multi-

layer patch-based learning objective is used for content and
feature matching in the specific location of the correspond-
ing input-output patch.
Limitations of CUT. The translation results of CUT suffer
from unseen objects in the datasets (Park et al. 2020). This
degradation may be further exaggerated when using CUT for
few-shot UI2I translation tasks with multiple different scale
objects in the scene, as more varieties of the features need
to be extracted. Limited data in the target domain would
lead to inadequate encoder training and inappropriate feature

(a) (b) (c) (d)

Figure 3: Limitations of CUT for few-shot UI2I translation.

extraction of the contrastive loss. It further deteriorates the
content-preserving capability, and brings about unexpected
blurring effects in the translated images, as shown in Fig.
3(a) and 3(b). Usually, blurring issues may cause detection
performance degradation. In addition, the translation results
of CUT present a serious inadequate style transfer problem.
For example, the CUT attempts to generate erroneous light-
ing effects in many improper places. As shown in Fig. 3(c)
and 3(d), windows and corners of the buildings are falsely
lightened, which are very different from the realistic images
in the target domain. Such deviations come from the insuf-
ficient training images (e.g., 10 images in this working) in
the target domain. We propose OA-FSUI2IT network, with
the inspiration of StyleGAN2-Ada (Karras et al. 2020), Dif-
fAugment (Zhao et al. 2020), and self-supervised learning
(SSL), to alleviate such limitations that appears in the CUT.

OA-FSUI2IT Network
Fig. 4 presents the overall architecture of the OA-FSUI2IT.
Discriminator Augmentation (DA). GAN relies on the dis-
criminator to produce realistic images in UI2I translation
task. Therefore, without sufficient data in both the source
and target domain, the discriminator may suffer serious
overfitting problem and consequently devastate the gener-
ator. We design a discriminator augmentation module in our
OA-FSUI2IT network to resolve the data imbalance and
discriminator overfitting issues, as shown in Fig. 4. Dur-
ing the training process, we apply augment operations, i.e.,
T , including pixel blitting (horizontal flip, rotation, integer
translation), geometric transformation (isotropic scale, ar-
bitrary rotation, anisotropic scaling, fractional translation),
and color transforms (brightness, contrast, luma flip, hue,
saturation), on the real input target image, i.e., xt, and the
synthesized image in the target domain, i.e., Gs→t(xs), for
the discriminator Dt.1 Because the style cannot be altered
in the augmentation implementing, the augmented images,
i.e., T (xt), and T (Gs→t(xs)), should own the same styles
as their original images, i.e., xt, and Gs→t(xs). The adver-
sarial loss in our OA-FSUI2IT network with discriminator
augmentation module can be expressed as:

LDda =Ext∼Y [fDt(−Dt(T (xt)))]
+ Exs∼X [fDt(Dt(T (Gs→t(xs))))],

(1)

LGda = Exs∼X [fGs→t(−Dt(T (Gs→t(xs))))], (2)

where generatorGs→t tries to produce images that have sim-
ilar appearance to the images belonged to the target domain
YT and preserve the primary contents with input images

1For abbreviation, we use xs, xt instead of x(i)s , x(i)t to denote
the image later in this working.
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Figure 4: Architecture of the OA-FSUI2IT network. (1) For an input source image xs, we apply an revertible augmentation
transform and get TG(xs). Also we acquire a set of pyramid patchesPm(xs) of different sizes and aspect ratios on this image. (2)
Then passing them through the encoder Genc

s→t and decoder Gdec
s→t of our generator outputs corresponding x̂s→t and TG(x̂s→t).

(3) Then we pairwise pass {xs, Pm(xs)} and corresponding {x̂s→t, Gs→t(Pm(xs))} through the encoder again to get feature
maps and calculate Lpp between them. (4) What’s more, Lcc is obtained via the L1 Loss between x̂s→t and its reverted
transformed image T−1G (TG(x̂s→t)). (5) On the discriminator side, we augment the target image xt and the generated image
x̂s→t with the augment operator T controlled by the possibility p , feed them to the discriminator and get GAN loss LDda

.

from the source domain XS , while discriminator Dt aims
to distinguish the translated samples Gs→t(xs) and the real
samples xt; fDt

and fGs→t
are the given loss functions for

the discriminator Dt and generator Gs→t.

Patch Pyramid Contrastive Learning (PPCL). CUT em-
ploys a multilayer, patch-based contrastive learning objec-
tive for content sharing on both image and patch levels.
However, it fails to ensure the coherent associations for the
extracted nearby patches. In addition, CUT only uses a sin-
gle patch size in the training process. Even the objects be-
long to the same class usually present multiple different
scales. Hence, vallina CUT is not suitable to generate im-
ages with multiscale objects and may significantly degrade
the performance of the object detector. We propose patch
pyramid contrastive learning to resolve this issue. Similar to
the anchor boxes used in Faster R-CNN (Ren et al. 2015)
and default boxes used in SSD (Liu et al. 2016), we asso-
ciate a set of pyramid patches of different sizes and aspect
ratios at a specific location, illustrated in Fig. 4. We employ
PatchPyramidNCE loss to match the corresponding input-
output patch pair for each single patch, and the summation
of pyramid patches formulate our patch pyramid contrastive
loss(Lpp), expressed as:

Lpp = Exs∼XS

M∑
m=1

L∑
l=1

Sml∑
s=1

ρ(zsml
, ẑsml

, zS\sml
), (3)

whereM is the number of patch scales in the pyramid set; L
is the number of selected layers of interest; s ∈ {1, ..., Sml

},
Sml

is the number of selected spatial locations for the l-th
layer of interest in the m-th patch scale; {zsml

}mL
ml=m1 is a

stack of features in the m-th patch scale, which is produced
as: zsml

= H(l)(Gencs→t
(l)(Pm(xs))); Pm(xs) is the m-th patch

for the input source image xs; H(l) is a two-layer MLP net-
work with 256 hidden neurons; Genc

s→t
(l) is the output fea-

ture map of the l-th layer of interest; ρ(zsml
, ẑsml

, z
S\s
ml ) rep-

resents the probability of selecting the corresponding “posi-
tive” patch, zsml

, over the non-matching “negative” patches,
z
S\s
ml , for the query, zsml

, given by 2:

ρ(zsml
, ẑsml

, zS\sml
)

= − log

 exp(
zs
ml
·ẑs

ml
τ

)

exp(
zs
ml
·ẑs

ml
τ

) +
∑Sml
n=1,n 6=s exp(

zs
ml
·zS\s

ml

τ
)

 (4)

2Here, the cross-entropy loss is employed to associate the input
and output patch pyramid. We set temperature τ = 0.07.
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Method Detector Backbone Person Rider Car Truck Bus Train Motor Bicycle mAP gain

Source Only Faster RCNN VGG16 24.1 33.1 34.3 4.1 22.3 3.0 15.3 26.5 20.3 -
Source Only YOLOv3 DarkNet-53 29.5 38.3 41.4 18.0 28.9 5.0 22.9 33.8 27.2 -
Source Only FCOS ResNet50-FPN 21.9 17.0 29.9 2.8 11.5 5.0 6.1 25.1 14.9 -
Source Only Faster RCNN ResNet50-FPN 38.6 45.1 44.9 18.8 24.6 2.8 23.5 42.0 30.0 -

Ten-Shot Target

DDMRL Faster RCNN VGG16 27.6 38.1 42.9 17.1 27.6 14.3 14.6 32.8 26.9 +6.6
SWDA Faster RCNN VGG16 25.5 30.8 40.4 21.1 26.1 34.5 6.1 13.4 24.7 +4.4
CycleGAN Faster RCNN ResNet50-FPN 30.7 38.5 57.6 17.9 31.4 4.6 9.4 34.9 28.1 -1.9
DCLGAN Faster RCNN ResNet50-FPN 39.7 50.3 56.7 18.9 34.1 13.9 22.7 45.4 35.2 +5.2
CUT YOLOv3 DarkNet-53 33.9 43.2 51.9 23.2 40.3 17.8 27.2 36.4 34.3 +7.1
CUT FCOS ResNet50-FPN 33.1 30.6 48.3 7.6 23.6 1.7 6.4 34.9 23.3 +8.4
CUT Faster RCNN ResNet50-FPN 44.5 53.4 58.3 22.8 36.6 14.9 34.4 51.3 39.5 +9.5
OA-FSUI2IT YOLOv3 DarkNet-53 34.9 42.7 56.6 21.2 48.1 32.9 20.9 37.1 36.8 +9.6
OA-FSUI2IT FCOS ResNet50-FPN 36.7 35.4 56.2 11.3 25.3 1.7 12.8 35.0 26.8 +11.9
OA-FSUI2IT Faster RCNN ResNet50-FPN 47.5 53.8 64.1 27.8 45.9 11.5 35.9 52.3 42.3 +12.3

One-Shot Target

DAFRCNN Faster RCNN VGG16 30.4 36.3 41.4 18.5 32.8 9.1 20.3 25.9 26.8 +6.5
OSHOT Faster RCNN ResNet50 32.1 46.1 43.1 20.4 39.8 15.9 27.1 32.4 31.9 +1.9
CUT Faster RCNN ResNet50-FPN 39.8 47.2 53.7 24.5 34.7 11.0 22.1 44.0 34.6 +4.6
OA-FSUI2IT Faster RCNN ResNet50-FPN 44.5 52.2 58.8 25.6 44.2 22.3 30.4 48.3 40.8 +10.8

Oracle Faster RCNN VGG16 36.2 47.7 53.0 34.7 51.9 41.0 36.8 37.8 42.4 +22.1
Oracle YOLOv3 DarkNet-53 38.2 47.5 60.6 30.9 47.7 36.8 35.4 40.3 42.2 +15.0
Oracle FCOS ResNet50-FPN 40.5 38.8 61.1 14.9 33.0 11.0 8.4 36.2 30.5 +15.6
Oracle Faster RCNN ResNet50-FPN 53.1 59.9 71.1 31.3 48.5 29.1 39.8 55.8 48.6 +18.6

Table 1: Detection results on Normal-to-Foggy (Cityscapes → FoggyCityscapes). Average precision (%) is reported in the
target domain. Note that we cite the quantitative results of DAFRCNN (Chen et al. 2018), OSHOT (Innocente et al. 2020),
DDMRL (Kim et al. 2019b), and SWDA (Saito et al. 2019) from (Innocente et al. 2020), while Source Only and Oracle (VGG16
backbone) from (Chen et al. 2020a). The best results of Ten-Shot and One-Shot are bolded.

Here, we can refer zsml
∈ RCml as the “query” feature; ẑsml

is the corresponding “positive” patch, in the encoded out-
put image, as ẑsml

= H(l)(Gencs→t
(l)(Pm(Gs→t(xs)))); zS\sml ∈

R(Sml
−1)×Cml is the non-matching “negative” patches; Cml

is the number of channels for the l-th layer in them-th patch.
Self-Supervised Content Consistency (SSCC) Loss. We
propose to derive supervision signals from the image data
itself to further enforce content consistency for our OA-
FSUI2IT network, with the inspiration of recent advances
in SSL regime. We assume that applying an augment trans-
form pair, (TG, T−1G ), on the input end and output end, re-
spectively, should not change the synthesized result, i.e.,
Gs→t(xs) = T−1G (Gs→t(TG(xs)). Here, TG is an reversible
augment operation, i.e., flipping, translation, and linear scal-
ing, and T−1G is its inverse transform. We employ such
provenance information to formulate the proxy task to fur-
ther enforce the content consistency in the translation. We
use L1 norm of the two generated images, one without aug-
mentation and another with augment transform, as shown in
Fig. 4, to formulate self-supervised content consistency loss
(Lcc):

Lcc =
1

NTG

NTG∑
k=0

[Gs→t(xs)− T−1
G

(k)
(Gs→t(T

(k)
G (xs)))] (5)

where T (k)
G and T−1G

(k)
are the k-th augmenting way, and

its inverse transform, respectively; Gs→t is the mapping
function; xs is the input image in the source domain, DS ;
Gs→t(xs) is the generated image in the target domain,
DT ; NTG

is the number of augment transformation; and

T−1G

(k)
(Gs→t(T

(k)
G (xs))) is the generated image in the tar-

Method Detector person rider car train mAP gain

Source Only FCOS 22.8 18.9 38.8 0.6 20.3 -
Source Only Faster RCNN 25.3 18.2 37.5 0.1 20.3 -

CycleGAN Faster RCNN 11.2 3.8 31.3 6.0 13.1 -7.2
DCLGAN Faster RCNN 19.6 7.5 36.0 16.7 20.0 -0.3
CUT FCOS 18.9 12.0 41.3 1.9 18.5 -1.8
CUT Faster RCNN 22.6 12.6 36.1 15.4 21.7 +1.4
OA-FSUI2IT FCOS 24.3 16.4 42.7 4.2 21.9 +1.6
OA-FSUI2IT Faster RCNN 27.5 16.9 42.3 18.7 26.3 +6.0

Oracle FCOS 49.0 52.6 66.7 9.0 44.3 +24.0
Oracle Faster RCNN 57.4 63.4 74.0 24.5 54.8 +34.5

Table 2: Detection performance comparison results on Cross
scene adaptation (Kitti → Cityscapes). Average precision
(%) is reported in the target domain.

get domain, DT , with the k-th augment transform pair.
Full Objective. Finally, we can formulate full objective as:

L = LDda + λppLpp + λccLcc (6)

where λpp and λcc are the trade-off factors for the
patch pyramid contrastive learning and the self-supervised
content-consistent loss, respectively. The generated images
should be realistic, while patches in the input and output im-
ages should share the correspondence.

Experiments
We present implementation details of the OA-FSUI2IT
framework for the task of FSCD object detection, and
demonstrate its effectiveness on multiple benchmarks. The
training data for OA-FSUI2IT network consists of: i) the
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Figure 5: Translation results for Normal-to-Foggy task.

Figure 6: Translation results for Day-to-Night task.

Figure 7: Translation results for Cross scene adaptation task.

source training data with sufficient amounts of images and
annotations (bounding boxes and object categories), i.e., Ns

is large enough, and ii) the target training data with limited
number of unlabeled images, i.e., Nt is very small. We set
Nt = 10 throughout the paper. To validate the performance
of our OA-FSUI2IT for all few-shot domain shift scenarios,
we report the final results of our model as well as the results
by combining different modules. To the best of our knowl-
edge, this is the first work to address the cross domain de-
tection with limited unlabeled images in the target domain.

Datasets and Evaluation

Datasets. We evaluate our OA-FSUI2IT framework for
FSCD detection task under three scenarios: i) Normal-to-
Foggy (Cityscapes → FoggyCityscapes), ii) Day-to-Night
(BDD100k Daytime Clear → BDD100k Nighttime Clear),
and iii) Cross scene adaptation (Kitti→ Cityscapes).

Evaluation Metrics. We use Fréchet Inception Distance
(FID) (Heusel et al. 2017), precision & recall (Sajjadi et al.
2018), and density & coverage (Naeem et al. 2020), to quan-
titatively measure the image quality for the synthesized im-
ages. We evaluate the detection performance by reporting
the mean average precisions (mAP) with a threshold of 0.5
for all experiments, as (Chen et al. 2018).

Figure 8: Illustration of the detection results on the target
domain. First row: Normal-to-Foggy. Second row: Day-to-
Night. Third row: Cross scene adaptation.

Implementation Details

To demonstrate the effectiveness of the three proposed mod-
ules, we intentionally match the architecture and hyperpa-
rameter settings with CUT (Park et al. 2020). We use the
generator with 9 residual blocks (Johnson, Alahi, and Fei-
Fei 2016), PatchGAN discriminator (Isola et al. 2017), LS-
GAN loss (Mao et al. 2017), batch size of 1, and Adam op-
timizer (Kingma and Ba 2014) with learning rate of 0.002.
The parameters λpp and λcc are both set to 1.
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Method Detector Backbone Bike Bus Car Motor Person Rider Light Sign Truck mAP gain

Source Only YOLOv3 DarkNet53 20.9 24.7 51.0 8.6 29.9 16.2 19.3 42.2 31.2 24.4 -
Source Only FCOS ResNet50-FPN 9.7 10.4 44.4 1.4 24.9 5.9 13.3 40.3 21.2 17.1 -
Source Only Faster RCNN ResNet50-FPN 22.0 21.7 53.0 9.5 33.9 15.3 12.8 40.6 29.3 26.4 -

CycleGAN Faster RCNN ResNet50-FPN 20.5 25.5 53.2 6.9 36.1 10.6 10.1 39.5 30.9 25.9 -0.5
DCLGAN Faster RCNN ResNet50-FPN 22.4 29.0 47.4 8.1 35.8 12.5 12.8 41.9 26.0 26.2 -0.2
CUT YOLOv3 DarkNet53 10.6 23.9 47.4 5.9 24.1 9.1 8.0 31.1 22.6 18.3 -6.1
CUT FCOS ResNet50-FPN 5.4 9.1 42.7 0.5 21.4 5.5 6.7 34.0 17.2 14.3 -2.8
CUT Faster RCNN ResNet50-FPN 22.6 27.2 52.2 4.5 36.3 12.5 10.0 42.3 29.4 26.3 -0.1
OA-FSUI2IT YOLOv3 DarkNet53 28.6 30.3 53.4 8.3 32.1 20.4 17.9 39.5 33.4 28.6 +4.2
OA-FSUI2IT FCOS ResNet50-FPN 17.4 17.1 49.7 5.0 34.1 10.3 15.6 43.1 26.1 24.3 +7.2
OA-FSUI2IT Faster RCNN ResNet50-FPN 27.5 28.2 53.3 16.2 39.7 20.7 13.0 43.7 32.1 30.5 +4.1

Oracle YOLOv3 DarkNet53 37.0 40.3 67.2 34.7 45.3 30.2 46.0 59.6 49.1 40.9 +16.5
Oracle FCOS ResNet50-FPN 27.6 45.6 73.6 29.2 52.5 20.9 57.9 67.0 51.1 42.5 +25.4
Oracle Faster RCNN ResNet50-FPN 44.3 46.8 73.7 36.0 55.8 26.9 37.8 58.0 52.7 48.0 +21.6

Table 3: Detection results on Day-to-Night (BDD100k daytime clear→ BDD100k nighttime clear). Average precision (%) is
reported in the target domain. Light and Sign stand for Traffic Light and Traffic Sign respectively.

Method FID↓ precision↑ recall↑ density↑ coverage↑

Cityscapes→ FoggyCityscapes

Source Only 55.74 0.045 0.764 0.011 0.012
CycleGAN 87.89 0.256 0.459 0.101 0.127
DCLGAN 70.81 0.372 0.194 0.172 0.192
CUT 38.35 0.529 0.235 0.298 0.218
OA-FSUI2IT 33.02 0.684 0.213 0.501 0.436

BDD100k Day→ Night

Source Only 110.29 0.145 0.433 0.040 0.019
CycleGAN 75.17 0.516 0.128 0.312 0.236
DCLGAN 84.99 0.552 0.051 0.315 0.207
CUT 86.18 0.456 0.416 0.306 0.302
OA-FSUI2IT 33.21 0.557 0.322 0.422 0.362

KITTI→ Cityscapes

Source Only 59.08 0.069 0.455 0.017 0.064
CycleGAN 91.10 0.598 0.081 0.530 0.579
DCLGAN 90.49 0.523 0.069 0.371 0.404
CUT 60.45 0.362 0.121 0.188 0.330
OA-FSUI2IT 55.32 0.749 0.016 0.926 0.629

Table 4: Quantitative comparisons for the quality of the gen-
erated images in the target domain.

Experimental Results
We conduct experiments and compare our OA-FSUI2IT
framework with the state-of-the-art cross-domain detection
methods: DAFRCNN (Chen et al. 2018), SWDA (Saito et al.
2019), DDMRL (Kim et al. 2019b), CycleGAN (Zhu et al.
2017), CUT (Park et al. 2020), DCLGAN (Han et al. 2021)
and OSHOT (Innocente et al. 2020). Quantitative results of
OA-FSUI2IT for the translated images in comparison with
CycleGAN, CUT, and DCLGAN are presented in Tab. 4.

Normal-to-Foggy: We achieve the state-of-the-art mAP
of 42.3 in this FSCD detection task, in Tab. 1, with remark-
able performance gains of 41.0% and 7.1% in comparison to
Source Only and CUT baseline. We find OA-FSUI2IT net-
work can guide the distribution of generated samples much
closer to FoggyCityscapes, according to the qualitative and
quantitative (reach lowest FID: 33.02) comparison results of
the generated images presented in Fig. 5, and Tab. 4. Even in
the One-Shot scenario, our OA-FSUI2IT surpass the strong
baselines of OSHOT and CUT, as shown in Tab. 1.

Figure 9: Visualization of domain evidence using Grad-
CAM. First row: Normal-to-Foggy. Second row: Day-to-
Night. Third row: Cross scene adaptation.

Day-to-Night: The Tab. 3 shows the FSCD detection re-
sults for the Day-to-Night task. We achieve an mAP of 30.5,
with 4.1 and 4.2 higher than Source Only (26.4) and CUT
(26.3) baselines. Much lower FID (33.21) than Source Only
(110.29) and CUT (86.18), and qualitative comparisons of
the generated images, presented in Fig. 6, also demonstrate
the superior performance for our OA-FSUI2IT network.

Cross Scene Adaptation: We achieve the mAP of 26.3,
with performance gains of 29.6% and 21.2% in comparison
to the Source Only (20.3) and CUT (21.7) baseline, in Tab.
2. We procure lower FID (55.32) than Source Only (59.08)
and CUT (60.45) indicating the domain disparity caused by
the scenes variation has been narrowed, as shown in Fig. 7.

Further Empirical Analysis
Ablation Study. We implement the ablation study to inves-
tigate the effectiveness of each module in OA-FSUI2IT. We
use the Normal-to-Foggy task as a study case, and the results
are reported in Tab. 5. It shows the fact that when any one
of the proposed modules is removed, the performance will
drop correspondingly, demonstrating all the modules are de-
signed reasonably. It is noteworthy that the degeneration of
using self-supervised cycle-consistency module alone is pre-
dictable, as only implementing augmentation in the genera-
tor is harmful and may cause a performance drop. 3

3Implementing data augmentation in unconditional GAN with-
out involving discriminator lead to degradation (Karras et al. 2020).
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Method DA PPCL SSCC person rider car truck bus train mcycle bicycle mAP gain

CUT 7 7 7 44.5 53.4 58.3 22.8 36.6 14.9 34.4 51.3 39.5 -
OA-FSUI2IT 3 7 7 47.2 52.3 61.7 28.7 44.6 15.1 30.5 48.9 41.1 +1.6
OA-FSUI2IT 7 6 7 46.6 52.6 63.7 24.5 40.8 17.7 32.0 49.7 41.0 +1.5
OA-FSUI2IT 7 7 3 47.5 53.8 59.0 21.9 39.4 17.9 27.1 49.0 39.0 -0.5
OA-FSUI2IT 3 6 7 47.0 54.6 64.6 25.9 40.5 15.3 31.6 51.3 41.3 +1.8
OA-FSUI2IT 3 6 3 46.5 51.8 62.6 28.1 40.9 20.9 30.8 49.3 41.4 +1.9

OA-FSUI2IT 7 9 7 44.9 51.3 63.0 27.7 46.1 18.2 34.3 48.2 41.7 +2.2
OA-FSUI2IT 3 9 3 47.5 53.8 64.1 27.8 45.9 11.5 35.9 52.3 42.3 +2.8

Table 5: Ablation study of the OA-FSUI2IT based FSCD object detection framework on Normal-to-Foggy (Cityscapes →
FoggyCityscapes) using Faster RCNN with ResNet50-FPN backbone. Average precision (%) is reported in the target domain.

Source CUT OA-FSUI2IT

Figure 10: Error analysis on Normal-to-Foggy adaptation.

Influence of IOU Threshold. Fig. 11 shows the perfor-
mance of different models with the variation of IOU thresh-
olds. The mAP constantly drops with the increase of IOU
threshold and approaches zero in the end. OA-FSUI2IT
consistently outperforms the CUT baseline within the IOU
range [0.3, 0.95], illustrating that our OA-FSUI2IT provides
more accurate and robust bounding boxes regression.
Detection Error Analysis. We employ TIDE (Bolya et al.
2020) to analyze the errors of Source Only, CUT, and OA-
FSUI2IT. The detection errors are categorized into 6 main
error types in TIDE: 1) Classification (Cls), 2) Localization
(Loc), 3) both Cls and Loc (Both), 4) Duplicate detection
(Dup), 5) Background (Bkg), and 6) Missed GT (Miss); and
two separate error types: 1) False Positive (FP), and 2) False
Negative (FN). The highest confident detections and lowest
Miss detections on the Normal-to-Foggy task further verify
the effectiveness of the proposed OA-FSUI2IT framework
for FSCD object detection. We report the absolute and rel-
ative error contribution for each error type across all cate-
gories in Fig. 10. Comparing to Source Only and CUT, our
OA-FSUI2IT network can generate more realistic fog, from
which the de facto detectors can learn to distinguish the ob-
jects in the fog better. Thus, the OA-FSUI2IT framework
clearly reduces the number of incorrect detections and false
negatives. Meanwhile, as some objects may be occluded by
the generated fog, the number of false positives increases
slightly which could be thought as a reasonable sacrifice.
Qualitative Comparison of the Detection Results. Fig. 8
presents the qualitative comparison of detection results on
transfer tasks, Normal-to-Foggy, Day-to-Night, and Cross
scene adaptation. Our OA-FSUI2IT consistently outper-
forms Source Only and CUT. For example, in the first row
of Fig. 8, both CUT and OA-FSUI2IT can successfully de-

Figure 11: The performance with the variation of IOU
thresholds on Normal-to-Foggy adaptation.

tect the cars occluded by the fog; meanwhile OA-FSUI2IT is
able to locate more cars under the same circumstance. Also,
the second row indicates that OA-FSUI2IT can identify the
car in the dark, on the left side of the image, and the per-
son beside the sliver SUV. The OA-FSUI2IT framework pro-
duces fewer false positives of traffic signs and traffic lights
than CUT. In the last row, our method can detect more peo-
ple on the sidewalk.
Visualization of Domain Evidence. In Fig. 9, we also use
Grad-CAM (Selvaraju et al. 2017) to show the evidence
(e.g., heatmap) to demonstrate the images are successfully
transferred from source domains to target domains, for the
adaptation of Normal-to-Foggy, Day-to-Night, and Cross
Scene. The heatmaps show that our method provides reason-
able focus on category features (i.e., car and person), which
is beneficial to the translation results and the detector.

Conclusion

In this paper, we present a novel OA-FSUI2IT framework
for FSCD object detection. To our knowledge, it is the
first work to successfully address FSCD detection. Our
key contributions include: 1) We propose the OA-FSUI2IT
framework to address the FSCD object detection; 2) We
present a series of new modules, i.e., discriminator aug-
mentation, patch pyramid contrastive learning, and self-
supervised content-consistency, to improve FSCD detec-
tion performance; 3) We perform extensive experiments and
achieve state-of-the-art performance on multiple FSCD ob-
ject detection benchmarks (e.g., Cityscapes → FoggyCi-
tyscapes, BDD100k Daytime Clear→ Nighttime Clear, Kitti
→ Cityscapes) to demonstrate its superiority.
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