Nested Hierarchical Transformer: Towards Accurate, Data-Efficient and Interpretable Visual Understanding

Zizhao Zhang1, Han Zhang2, Long Zhao2, Ting Chen2, Sercan \"O. Ar\text{"}ık1, Tomas Pfister1

1Google Cloud AI
2Google Research
{zizhaoz.zhanghan,longzh.iamtingchen.soarik,tpfister}@google.com

Abstract
Hierarchical structures are popular in recent vision transformers, however, they require sophisticated designs and massive datasets to work well. In this paper, we explore the idea of nesting basic local transformers on non-overlapping image blocks and aggregating them in a hierarchical way. We find that the block aggregation function plays a critical role in enabling cross-block non-local information communication. This observation leads us to design a simplified architecture that requires minor code changes upon the original vision transformer. The benefits of the proposed judiciously-selected design are threefold: (1) NesT converges faster and requires much less training data to achieve good generalization on both ImageNet and small datasets like CIFAR; (2) when extending our key ideas to image generation, NesT leads to a stronger decoder that is 8 times faster than previous transformer-based generators; and (3) we show that decoupling the feature learning and abstraction processes via this nested hierarchy in our design enables constructing a novel method (named GradCAT) for visually interpreting the learned model. Source code is available https://github.com/google-research/nested-transformer.

Introduction
Vision Transformer (ViT) (Dosovitskiy et al. 2021) model and its variants have received significant interests recently due to their superior performance on many core visual applications (Cordonnier, Loukas, and Jaggi 2020; Liu et al. 2021). ViT first splits an input image into patches, and then patches are treated in the same way as tokens in NLP applications. Following, several self-attention layers are used to conduct global information communication to extract features for classification. Recent work (Dosovitskiy et al. 2021; Cordonnier, Loukas, and Jaggi 2020) shows that ViT models can achieve better accuracy than state-of-the-art convnets (Tan and Le 2019; He et al. 2016) when trained on datasets with tens or hundreds of millions of labeled samples. However, when trained on smaller datasets, ViT usually underperforms its counterparts based on convolutional layers. Addressing this data inefficiency is important to make ViT applicable to other application scenarios, e.g. semi-supervised learning (Sohn et al. 2020) and generative modeling (Goodfellow et al. 2014; Zhang et al. 2019).

Lack of inductive bias such as locality and translation equivariance, is one explanation for the data inefficiency of ViT models. Cordonnier, Loukas, and Jaggi (2020) discovered that transformer models learn locality behaviors in a deformable convolution manner (Dai et al. 2017): bottom layers attend locally to the surrounding pixels and top layers favor long-range dependency. On the other hand, global self-attention between pixel pairs in high-resolution images is computationally expensive. Reducing the self-attention range is one way to make the model training more computationally efficient (Beltagy, Peters, and Cohan 2020). These type of insights align with the recent structures with local self-attention and hierarchical transformer (Han et al. 2021; Vaswani et al. 2021; Liu et al. 2021). Instead of holistic global self-attention, these perform attention on local image patches. To promote information communication across patches, they propose specialized designs such as the “haloing operation” (Vaswani et al. 2021) and “shifted window” (Liu et al. 2021). These are based on modifying the self-attention mechanism and often yields in complex architectures. Our design goal on the other hand keeping the attention as is, and introducing the design of the aggregation function, to improve the accuracy and data efficiency, while bringing interpretability benefits.

The proposed NesT model stacks canonical transformer blocks to process non-overlapping image blocks individually. Cross-block self-attention is achieved by nesting these transformers hierarchically and connecting them with a proposed aggregation function. Fig. 1 illustrates the overall architecture and the simple pseudo code to generate it. Our contributions can be summarized as:

1. We demonstrate integrating hierarchically nested transformers with the proposed block aggregation function can outperform previous sophisticated (local) self-attention variants, leading to a substantially-simplified architecture and improved data efficiency. This provides a novel perspective for achieving effective cross-block communication.

2. NesT achieves impressive ImageNet classification accuracy with a significantly simplified architectural design. E.g., training a NesT with 38M/68M parameters obtains 83.3%/83.8% ImageNet accuracy. The favorable data efficiency of NesT is embodied by its fast
convergence, such as achieving 75.9%/82.3% training with 30/100 epochs. Moreover, NesT achieves matched accuracy on small datasets compared with popular convolutional architectures. E.g., training a NesT with 6M parameters using a single GPU results in 96% accuracy on CIFAR10.

3. We show that when extending this idea beyond classification to image generation, NesT can be repurposed into a strong decoder that achieves better performance than convolutional architectures meanwhile has comparable speed, demonstrated by 64 × 64 ImageNet generation, which is an important fact to be able to adopt transformers for efficient generative modeling.

4. Our proposed architectural design leads to decoupled feature learning and abstraction, which has significant interpretability benefits. To this end, we propose a novel method called GradCAT to interpret NesT reasoning process by traversing its tree-like structure. This providing a new type of visual interpretability that explains how aggregated local transformers selectively process local visual cues from semantic image patches.

Related Work

Vision transformer-based models (Cordonnier, Loukas, and Jaggi 2020; Dosovitskiy et al. 2021) and self-attention mechanisms (Vaswani et al. 2021; Ramachandran et al. 2019) have recently attracted significant interest in the research community, with explorations of more suitable architectural designs that can learn visual representation effectively, such as injecting convolutional layers (Li et al. 2021; Srinivas et al. 2021; Yuan et al. 2021) and building local or hierarchical structures (Zhang et al. 2021; Wang et al. 2021b). Existing methods focus on designing a variety of self-attention modifications. Hierarchical ViT structures becomes popular both in vision (Liu et al. 2021; Vaswani et al. 2021) and NLP (Zhang, Wei, and Zhou 2019; Santra, Anusha, and Goyal 2021; Liu and Lapata 2019; Pappagari et al. 2019). However, many methods often add significant architectural complexity in order to optimize accuracy.

One challenge for vision transformer-based models is data efficiency. Although the original ViT (Dosovitskiy et al. 2021) can perform better than convolutional networks with hundreds of millions images for pre-training, such a data requirement is not always practical. Data-efficient ViT (DeiT) (Touvron et al. 2021a,b) attempts to address this problem by introducing teacher distillation from a convolutional network. Although promising, this increases the supervised training complexity, and existing reported performance on data efficient benchmarks (Hassani et al. 2021; Chen et al. 2021) still significantly underperforms convolutional networks. Since ViT has shown to improve vision tasks beyond image classification, with prior work studying its applicability to generative modeling (Parmar et al. 2018; Child et al. 2019; Jiang, Chang, and Wang 2021; Hudson and Zitnick 2021), video understanding (Neirmark et al. 2021; Akbari et al. 2021), segmentation and detection (Wang et al. 2021a; Liang et al. 2020; Kim et al. 2021), interpretability (Chefer, Gur, and Wolf 2021; Abnar and Zuidema 2020), a deeper understanding of the data efficiency and training difficulties from the architectural perspective is of significant impact.

Proposed Method

Main Architecture

According to Fig. 1, our overall design stacks canonical transformer layers to conduct local self-attention on every image block independently, and then nests them hierarchically. Coupling of processed information between spatially adjacent blocks is achieved through a proposed block aggregation between every two hierarchies. The overall hierarchical structure can be determined by two key hyper-parameters: patch size $S \times S$ and number of block hierarchies T_H. All blocks inside each hierarchy share one set of parameters.

Given an input of image with shape $H \times W \times 3$, each image patch with size $S \times S$ is linearly projected to an

Figure 1: (Left) Illustration of NesT with nested transformer hierarchy; (right) the simple pseudo code to generate the architecture. Each node T_i processes an image block. The block aggregation is performed between hierarchies (num_hierarchy= 3 here) to achieve cross-block communication on the image (feature map) plane.

Pseudo code: NesT

```python
# embed and block image to (#block,seqlen,d)
x = Block(PatchEmbed(input_image))

for i in range(num_hierarchy):
    # apply transformer layers $T_i$ within each block
    y = Stack([T_i(x[0] + PE_i[0]), ...])
    if i < num_hierarchy - 1:
        # aggregate blocks and reduce #block by 4
        x = Aggregate(y, i)
    h = GlobalAvgPool(x) # (1,seqlen,d) to (1,1,d)
logits = Linear(h[0,0]) # (num_classes,)

def Aggregate(x, i):
    z = UnBlock(x) # unblock seqs to (h,w,d)
    z = ConvNormMaxPool_i(z) # (h/2,w/2,d)
    return Block(z) # block to seqs
```
embedding in \mathbb{R}^d. Then, all embeddings are partitioned to blocks and flattened to generate input $X \in \mathbb{R}^{b \times T_n \times n \times d}$, where b is the batch size, T_n is the total number of blocks at bottom of the NesT hierarchy, and n is the sequence length (the number of embeddings) at each block. Note that $T_n \times n = H \times W/S^2$.

Inside each block, we stack a number of canonical transformer layers, where each is composed of a multi-head self-attention (MSA) layer followed by a feed-forward fully-connected network (FFN) with skip-connection (He et al. 2016) and Layer normalization (LN) (Ba, Kiros, and Hinton 2016). Trainable positional embedding vectors (Touvron et al. 2021a) are added to all sequence vectors in \mathbb{R}^d to encode spatial information before feeding into the block function T:

$$T = \text{multiple} \times \begin{cases} y = x + \text{MSA}_{\text{NesT}}(x', x'), & x' = \text{LN}(x) \\ x = y + \text{FFN}(\text{LN}(y)) \end{cases}$$

(1)

The FFN is composed of two layers: max$(0, xW_1 + b)W_2 + b$. Given input $X \in \mathbb{R}^{b \times T_n \times n \times d}$, since all blocks at one NesT hierarchy share the same parameters, MSA_{NesT}, basically MSA is applied (Vaswani et al. 2017) to all blocks in parallel:

$$\text{MSA}_{\text{NesT}}(Q, K, V) = \text{Stack}(\text{block}_1, \ldots, \text{block}_{T_n}),$$

where block$_i = \text{MSA}(Q, K, V)W^O$.

(2)

block, has shape $b \times n \times d$. Lastly, we build a nested hierarchy with block aggregation – every four spatially connected blocks are merged into one. The overall design makes NesT easy to implement, requiring minor code changes to the original ViT.

Block Aggregation

From a high-level view, NesT leads to hierarchical representations, which share similarity with several pyramid designs (Zhang et al. 2021; Wang et al. 2021b). However, most of these works use global self-attention throughout the layers, interleaved with (spatial) down-sampling. In contrast, we show that NesT, which leverages local attention, can lead to significantly improved data efficiency. In local self-attention, non-local communication is important to maintain translational equivariance (Vaswani et al. 2021). To this end, Halonet (Vaswani et al. 2021) allows the query to attend to slightly larger regions than the assigned block. Swin Transformer (Liu et al. 2021) achieves this by shifting the block partition windows between consecutive self-attention layers to connect adjacent blocks; applying special masked self-attention to guarantee spatial continuity. However, both add complexity to the self-attention layers and such sophisticated architectures are not desired from implementation perspective.

On the other hand, every block in NesT processes information independently via standard transformer layers, and only communicate and mix global information during the block aggregation step via simple spatial operations (e.g. convolution and pooling). One key ingredient of block aggregation is to perform it in the image plane so that information can be exchanged between nearby blocks. This procedure is summarized in Fig. 1. The output X_l at hierarchy l is unblocked to the full image plane $A_l \in \mathbb{R}^{b \times H' \times W' \times d}$. A number of spatial operations are applied to down-sample feature maps $A'_l \in \mathbb{R}^{b \times H'/2 \times W'/2 \times d}$. Finally, the feature maps are blocked back to $X_{l+1} \in \mathbb{R}^{b \times \#\text{block} \times 4 \times n \times d'}$ for hierarchy $l+1$. The sequence length n always remains the same and the total number of blocks is reduced by a factor of 4, until reduced to 1 at the top (i.e. $\#\text{block}/4(T_n-1) = 1$). Therefore, this process naturally creates hierarchically nested structure where the “receptive field” expands gradually. $d' \geq d$ depends on the specific model configuration.

Our block aggregation is specially instantiated as a 3×3 convolution followed by LN and a 3×3 max pooling. Figure A2 in Appendix explains the core design and the importance of applying it on the image plane (i.e. full image feature maps) versus the block plane (i.e. partial feature maps corresponding to 2×2 blocks that will be merged). The small information exchange through the small convolution and max. pooling kernels across block boundaries are particularly important. We conduct comprehensive ablation

![Example results of the proposed GradCAT. Given the left input image (containing four objects), the figure visualizes the top-4 class traversal results (4 colors) using an ImageNet-trained NesT (with three tree hierarchies). Each tree node denotes the averaged activation value (\hat{h}_t defined in Algorithm 1). The traversals can correctly find the model decision path along the tree to locate an image patch belonging to the objects of given target classes.](image-url)
studies to demonstrate the importance of each of the design components.

Note that the resulting design shares some similarities with recent works that combine transformer and convolutional networks (Wu et al. 2021; Yuan et al. 2021; Bello 2021) as specialized hybrid structures. However, unlike these, our proposed method aims to solve cross-block communications in local self-attention, and the resulting architecture is simple as a stacking of basic transformer layers.

Transposed NesT for Image Generation

The data efficiency and straightforward implementation of NesT makes it desirable for more complex learning tasks. With transpose the key ideas from NesT to propose a decoder for generative modeling, and show that it has better performance than convolutional decoders with comparable speed. Remarkably, it is nearly a magnitude faster than the transformer-based decoder TransGAN (Jiang, Chang, and Wang 2021).

Creating such a generator is straightforward by transposing NesT (see Table A6 of Appendix for architecture details). The input of the model becomes a noise vector and the output is a full-sized image. To support the gradually increased number of blocks, the only modification to NesT is replacing the block aggregation with appropriate block de-aggregation, i.e. up-sampling feature maps (we use pixel shuffle (Shi et al. 2016)). The feature dimensions in all hierarchies are \((b, nd) \rightarrow (b, 1, nd) \rightarrow (b, 4, nd), \ldots \rightarrow (b, \#blocks, n, 3)\). The number of blocks increases by a factor of 4. Lastly, we can unblock the output sequence tensor to an image with shape \(H \times W \times 3\). The remaining adversarial training techniques are based on (Goodfellow et al. 2014; Zhang et al. 2019) as explained in experiments. Analogous to our results for image classification, we show the importance of careful block de-aggregation design, in making the model significantly faster while achieving better generation quality.

GradCAT: Interpretability via Tree Traversal

Different from previous work, the nested hierarchy with the independent block process in NesT resembles a decision tree in which each block is encouraged to learn non-overlapping features and be selected by the block aggregation. This unique behavior motivates us to explore a new method to explain the model reasoning, which is an important topic with significant real world impact in convnets (Selvaraju et al. 2017; Sundararajan, Taly, and Yan 2017).

We present a gradient-based class-aware tree-traversal (GradCAT) method (Algorithm 1). The main idea is to find the most valuable traversal from a child node to the root node that contributes to the classification logits the most. Intuitively, at the top hierarchy, each of four child nodes processes one of \(2 \times 2\) non-overlapping partitions of feature maps \(A_{T_2}\). We can use corresponding activation and class-specific gradient features to trace the high-value information flow recursively from the root to a leaf node. The negative gradient \(- \frac{\partial Y}{\partial \alpha_i}\) provides the gradient ascent direction to maximize the class \(c\) logit, i.e., a higher positive value means higher importance. Fig. 2 illustrates a sample result.

Algorithm 1: GradGAT

Define: \(A_t\) denotes the feature maps at hierarchy \(l\). \(Y_c\) is the logit of predicted class \(c\). \([1]_{2 \times 2}\) indexes one of \(2 \times 2\) partitions of input maps.

Input: \(\{A_{l=2}, \ldots, T_2\}\), \(\alpha_{T_2} = A_{T_2}\), \(P = []\)

Output: The traversal path \(P\) from top to bottom

for \(l = [T_2, \ldots, 2]\) do

\[h_l = \alpha_l \cdot (- \frac{\partial Y}{\partial \alpha_l})\] # obtain target activation maps

\[\hat{h}_l = \text{AvgPool}_{2 \times 2}(h_l) \in \mathbb{R}^{2 \times 2}\]

\[n^*_l = \arg\max_{n^*} \hat{h}_l, \quad P = P + [n^*_l]\] # pick the maximum index

\[\alpha_l = A_l[n^*_l]_{2 \times 2}\] # obtain the partition for the index

end for

Table 1: Test accuracy on CIFAR with input size \(32 \times 32\). The compared convolutional architectures are optimized models for CIFAR. All transformer-based architectures are trained from random initialization with the same data augmentation. DeiT uses \(S = 2\). Swin and our NesT uses \(S = 1\). * means model tends to diverge.

<table>
<thead>
<tr>
<th>Arch. base</th>
<th>Method</th>
<th>C10 (%)</th>
<th>C100 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convolutional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pyramid-164-48</td>
<td>95.97</td>
<td>80.70</td>
</tr>
<tr>
<td></td>
<td>WRN28-10</td>
<td>95.83</td>
<td>80.75</td>
</tr>
<tr>
<td>Transformer full-attention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DeiT-T</td>
<td>88.39</td>
<td>67.52</td>
</tr>
<tr>
<td></td>
<td>DeiT-S</td>
<td>92.44</td>
<td>69.79</td>
</tr>
<tr>
<td></td>
<td>DeiT-B</td>
<td>92.41</td>
<td>70.49</td>
</tr>
<tr>
<td></td>
<td>PVT-T</td>
<td>90.51</td>
<td>69.62</td>
</tr>
<tr>
<td></td>
<td>PVT-S</td>
<td>92.34</td>
<td>69.79</td>
</tr>
<tr>
<td></td>
<td>PVT-B</td>
<td>85.05*</td>
<td>43.78*</td>
</tr>
<tr>
<td></td>
<td>CCT-7/8×1</td>
<td>94.72</td>
<td>76.67</td>
</tr>
<tr>
<td>Transformer local-attention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Swin-T</td>
<td>94.46</td>
<td>78.07</td>
</tr>
<tr>
<td></td>
<td>Swin-S</td>
<td>94.17</td>
<td>77.01</td>
</tr>
<tr>
<td></td>
<td>Swin-B</td>
<td>94.55</td>
<td>78.45</td>
</tr>
<tr>
<td></td>
<td>NesT-T</td>
<td>96.04</td>
<td>78.69</td>
</tr>
<tr>
<td></td>
<td>NesT-S</td>
<td>96.97</td>
<td>81.70</td>
</tr>
<tr>
<td></td>
<td>NesT-B</td>
<td>97.20</td>
<td>82.56</td>
</tr>
</tbody>
</table>

We first show the benefit of NesT for data efficient learning and then demonstrate benefits for interpretability and generative modeling. Finally, we present ablation studies to analyze the major constituents of the methods.

Experimental setup. We follow previous work (Dosovitskiy et al. 2021) to generate three architectures that have comparable capacity (in number of parameters and FLOPS), noted as tiny (NesT-T), small (NesT-S), and base (NesT-B). Most recent ViT-based methods follow the training techniques of DeiT (Touvron et al. 2021a). We follow the settings with minor modifications that we find useful for local self-attention (see Appendix for all architecture and training details). We do not explore the specific per-block configurations (e.g. number of heads and hidden dimensions), which we believe can be optimized through architecture search (Tan and Le 2019).
NesT performs compared methods with far better throughput. E.g., Swin-T performs others that are specifically designed for this task. We also include comparisons with convolutional models (Zhou et al. 2016), including GradCAM++ (Chattopadhyay et al. 2018) with ResNet50 (He et al. 2016), DeiT with Rollout attention (Abnar and Zuidema 2020), and our NesT CAM (Zhou et al. 2016). We follow this toolkit\(^3\) to use an improved version of Rollout. NesT with standard CAM, outperforms others that are specifically designed for this task. Fig. 4 shows a qualitative comparison (details in the Appendix), exemplifying that NesT can generate clearer attention maps which converge better on objects.

Visual Interpretability

GradGAT results. Fig. 3 (left) shows the explanations obtained with the proposed GradGAT. For GradGAT, each tree node corresponds to a value that reflects the mean activation strength. Visualizing the tree traversal through image blocks, we can get insights about the decision making process of NesT. The traversal passes through the path with the highest values. As can be seen, the decision path can correctly locate the object corresponding to the model prediction. The Lighter example is particularly interesting because the ground truth class – lighter/matchstick – actually defines the bottom-right matchstick object, while the most salient visual features (with the highest node values) are actually from the upper-left red light, which conceptually shares visual cues with a lighter. Thus, although the visual cue is a mistake, the output prediction is correct. This example reveals the potential of using GradGAT to conduct model diagnosis at different tree hierarchies. Fig. A5 of Appendix shows more examples.

Class attention map (CAM) results. In contrast to ViT (Dosovitskiy et al. 2021) which uses class tokens, NesT uses global average pooling before softmax. This enables conveniently applying CAM-like (Zhou et al. 2016) methods to interpret how well learned representations measure object features, as the activation coefficients can be directly used to locate the object corresponding to the model prediction. NesT reveals the potential of using GradGAT to conduct model diagnosis at different tree hierarchies. Fig. A5 of Appendix shows more examples.

3. https://github.com/jacobgil/vit-explain
Overall, decoupling local self-attention (transformer blocks) and global information selection (block aggregation), which is unique to our work, shows significant potential for making models easier to interpret.

Generative Modeling with Transposed NesT

We evaluate the generative ability of Transposed NesT on ImageNet (Russakovsky et al. 2015) where all images are resized to 64×64 resolution. We focus on the unconditional image generation setting to test the effectiveness of different decoders. We compare Transposed NesT to TransGAN (Jiang, Chang, and Wang 2021), that uses a full Transformer as the generator, as well as a convolutional baseline following the widely-used architecture from (Zhang et al. 2019) (its computationally expensive self-attention module is removed). Fig. 5 shows the results. Transposed NesT obtains significantly faster convergence and achieves the best FID and Inception score (see Fig. A6 of Appendix for results). Most importantly, it achieves $8 \times$ throughput over TransGAN, showing its potential for significantly improving the efficiency of transformer-based generative modeling. More details are explained in the Appendix.

It is noticeable from Fig. 5 (middle) that appropriate un-sampling (or block de-aggregation) impacts the generation quality. Pixel shuffle (Shi et al. 2016) works the best and the margin is considered surprisingly large compared to other alternatives widely-used in convnets. This aligns with our main findings in classification, suggesting that judiciously injecting spatial operations is important for nested local transformers to perform well.

Ablation Studies

We summarize key ablations below (more in Appendix).

Fast convergence. NesT achieves fast convergence, as shown in Fig. 6 (top) for Imagenet training with \{30, 60, 100, 300\} epochs. NesT-B merely loses 1.5% when reducing the training epoch from 300 to 100. The results suggest that NesT can learn effective visual features faster and more efficiently.

Less sensitivity to data augmentation. NesT uses several

Table:

<table>
<thead>
<tr>
<th>Method</th>
<th>Top-1 loc. err (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeiT RollOut</td>
<td>67.6</td>
</tr>
<tr>
<td>ADL (Choe and Shim 2019)</td>
<td>55.1</td>
</tr>
<tr>
<td>ACoL (Zhang et al. 2018)</td>
<td>54.2</td>
</tr>
<tr>
<td>R50 GradCAM++</td>
<td>53.5</td>
</tr>
<tr>
<td>NesT CAM</td>
<td>51.8</td>
</tr>
</tbody>
</table>

Figure 3: Left: Output visualization of the proposed GradGAT. Tree nodes annotate the averaged responses to the predicted class. We use a NesT-S with three tree hierarchies. Right: CAM-based weakly supervised localization comparison on the ImageNet validation set. § indicates results obtained by us.

Figure 4: Visualization of CAM-based attention results. All models are trained on ImageNet. CAM (vanilla) with NesT achieves accurate attention patterns on object regions, yielding finer attention to objects than DeiT Rollout (Abnar and Zuidema 2020) and less noise than ResNet50 GradCAM++ (Chattopadhay et al. 2018).
The results show that: (1) when performing these spatial operations, it is important to apply it on the holistic image plane versus the block plane although both can reasonably introduce spatial priors; (2) small kernel convolution is sufficient and has to be applied ahead of pooling; (3) max. pooling is far better than other options, such as stride-2 sub-sampling and average pooling; (4) sub-sampling the query sequence length (similar to performing sub-sampling on the block plane as illustrated in Fig. A2), as used by Halonet (Vaswani et al. 2021), performs poorly on data efficient benchmarks. We also experiment PatchMerge from Swin Transformer (Liu et al. 2021) on both CIFAR and ImageNet. Our block aggregation closes the accuracy gap on ImageNet, suggesting that a conceptually negligible difference in aggregating nested transformers can lead to significant differences in model performance.

Conclusion

We have shown that aggregating nested transformers can match the accuracy of previous more complex methods with significantly improved data efficiency and convergence speed. In addition, we have shown that this idea can be extended to image generation, where it provides significant speed gains. Finally, we have shown that the decoupled feature learning and feature information extraction in this nested hierarchy design allows for better feature interpretability through a new gradient-based class-aware tree traversal method. In future work we plan to generalize this idea to non-image domains.
Acknowledgements
We thank Xiaohua Zhai, Jeremy Kubica, Kihyuk Sohn, and Madeleine Udell for their valuable feedback on this paper.

References
Choe, J.; and Shim, H. 2019. Attention-based dropout layer for weakly supervised object localization. In CVPR.
Jiang, Y.; Chang, S.; and Wang, Z. 2021. Transgan: Two transformers can make one strong gan. In NeurIPS.
Santra, B.; Anusha, P.; and Goyal, P. 2021. Hierarchical transformer for task oriented dialog systems. In NAACL.
Sundararajan, M.; Taly, A.; and Yan, Q. 2017. Axiomatic attribution for deep networks. In ICML.
Zhang, X.; Wei, Y.; Feng, J.; Yang, Y.; and Huang, T. S. 2018. Adversarial complementary learning for weakly supervised object localization. In CVPR.