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Abstract

Spatio-temporal representation learning is critical for video
self-supervised representation. Recent approaches mainly use
contrastive learning and pretext tasks. However, these ap-
proaches learn representation by discriminating sampled in-
stances via feature similarity in the latent space while ig-
noring the intermediate state of the learned representations,
which limits the overall performance. In this work, taking in-
to account the degree of similarity of sampled instances as the
intermediate state, we propose a novel pretext task - spatio-
temporal overlap rate (STOR) prediction. It stems from the
observation that humans are capable of discriminating the
overlap rates of videos in space and time. This task encour-
ages the model to discriminate the STOR of two generated
samples to learn the representations. Moreover, we employ
a joint optimization combining pretext tasks with contrastive
learning to further enhance the spatio-temporal representa-
tion learning. We also study the mutual influence of each
component in the proposed scheme. Extensive experiments
demonstrate that our proposed STOR task can favor both
contrastive learning and pretext tasks. The joint optimization
scheme can significantly improve the spatio-temporal repre-
sentation in video understanding. The code is available at
https://github.com/Katou2/CSTP.

Introduction

Convolutional Neural Networks (CNNs) have been proven
to be successful in supervised video representation learn-
ing with numerous human-annotated labels (Carreira and
Zisserman 2017; Feichtenhofer et al. 2019). Videos contain
more complex spatio-temporal contents and a larger data
volume. Billions of unlabeled videos emerge on the Inter-
net every day, making supervised video analysis expensive
and time-consuming. Thus, how to effectively learn video
representations without annotations is an important yet chal-
lenging task. Among effective unsupervised learning meth-
ods, self-supervised learning has proven to be a promising
methodology (Chen et al. 2020; He et al. 2020; Feichten-
hofer et al. 2021).

Early video self-supervised learning approaches proposed
proper tasks with automatically generated labels, thereby
encouraging CNNs to learn the transferable features for
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downstream tasks without human-annotated labels (Fernan-
do et al. 2017; Benaim et al. 2020; Behrmann, Gall, and
Noroozi 2021). Recently, with the success of contrastive
learning in self-supervised image classification, this method
has been widely expended in video self-supervised learn-
ing (Chen et al. 2021; Alwassel et al. 2019; Sermanet et al.
2018).

However, there are obvious limitations in these works.
Firstly, previous works only explored discriminating simi-
lar features from dissimilar ones while ignoring the inter-
mediate state of learned representations such as the similar-
ity degree, which limits the overall performance. Secondly,
less effort has been put on the mutual influence of multiple
pretext tasks and various contrastive learning schemes for
spatio-temporal representation learning.

To address these problems, we propose a novel pretex-
t task, i.e., Spatio-Temporal Overlap Rate (STOR) predic-
tion to percept the similarity degree as the intermediate state
to favor contrastive learning and propose a joint optimiza-
tion framework of contrastive learning and multiple pretext
tasks to further enhance the spatio-temporal representation
learning. It is observed that given a set of two clips at a spe-
cific overlap rate, humans can discriminate the overlap rate
when providing candidates (see Figure 1). We assume that
humans can make it due to their favorable spatio-temporal
representation ability. Built upon the observation, we be-
lieve that CNNs can learn video representations better by
discriminating such overlap rates. The assumption is that C-
NN can only succeed in such a spatio-temporal overlap rate
reasoning task when it learns representative spatio-temporal
features. To the best of our knowledge, this is the first work
that attempts to capture the spatio-temporal degree of simi-
larity between generated samples for self-supervised learn-
ing. Moreover, we propose a new and effective data aug-
mentation method for the pretext task. This data augmenta-
tion method can generate samples with random overlapped
spatio-temporal regions, while keeping the randomness of
samples.

In order to study the mutual influence of contrastive learn-
ing and pretext tasks for better spatio-temporal representa-
tion learning, we comprehensively study the joint optimiza-
tion scheme. Specifically, we study four popular contrastive
learning frameworks, i.e., SimCLR (Chen et al. 2020), Mo-
Co (He et al. 2020), BYOL (Grill et al. 2020) and SimSi-



Question: Which of the following spatial overlap area is?
Please choose from [0.3, 0.6, 0.9]

Question: Which of the following temporal overlap rate is?
Please choose from [0.2, 0.6, 1.0]

9°0 1aMsuy

Figure 1: [llustration of the proposed overlap rate prediction
in space and time. Given a video sample, the first clip v;
(Yellow) is randomly cropped in space and time, the second
clip v’; (Blue) is randomly cropped according to the size of
bounding boxes and time duration of v; at a random spatial
and temporal overlap rate.

am (Chen and He 2021) in our joint optimization scheme.
In terms of pretext tasks, playback rate prediction has been
proven to be successful in video self-supervised learning
(Wang, Jiao, and Liu 2020; Jenni, Meishvili, and Favaro
2020), but it tends to focus on motion pattern thus may not
learn spatial pattern well (Chen et al. 2021). To overcome
this problem, we combine rotation prediction task to further
strengthen spatial appearance features. Finally, a joint op-
timization framework of STOR, contrastive learning, play-
back rate prediction and rotation prediction is proposed in
this work, namely contrastive spatio-temporal pretext learn-
ing (CSTP).

Extensive experimental evaluations on two downstream
video understanding tasks demonstrate the effectiveness of
the proposed approach. Specifically, several architectures in-
cluding C3D (Tran et al. 2015), R(2+1)D (Tran et al. 2018)
and S3D (Xie et al. 2018) are presented and different weight-
s of the joint learning are explored in this work. The experi-
mental results verifies that the proposed STOR can well co-
operate with different contrastive learning frameworks and
other pretext tasks. The proposed joint learning framework
CSTP outperforms state-of-the-art approaches in the two
downstream video understanding tasks.

The main contributions of this work can be summarized
as follows:

e Taking the degree of similarity of training samples
into account, we propose a novel pretext task, i.e.,
spatio-temporal overlap rate prediction for video self-
supervised learning. The pretext task can enhance spatio-
temporal representation learning via discriminating the
overlap regions of the training samples.

e We propose a joint optimization framework which com-
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bines contrastive learning with spatio-temporal pretex-
t tasks. And we conduct comprehensive experiments to
study the mutual influence of each component of the
framework.

e Our method achieves state-of-the-art performance on two
downstream tasks, action recognition and video retrieval,
across two datasets, UCF-101 and HMDB-51. Ablation
studies demonstrate the efficacy of the proposed STOR
and the mutual influence of contrastive learning and pre-
text tasks.

Related Works
Self-supervised Learning in Images

Current image self-supervised methods can be briefly
grouped into two types of paradigms, i.e., contrastive learn-
ing and pretext tasks. Early work (Dosovitskiy et al. 2015) s-
tudied self-supervised learning by setting each sample in the
dataset as a category to train a classification model. Howev-
er, the approach will be infeasible when the size of dataset
is huge. To settle this problem, Wu et al. (Wu et al. 2018)
employed a memory bank of previous features of samples
to replace the classifier. He et al. (He et al. 2020) proposed
a dynamic dictionary with a queue for memory bank and a
momentum encoder to maintain the consistency of samples.
Chen et al. (Chen et al. 2020) used a larger batch size to ful-
ly replace the memory bank. Grill et al. (Grill et al. 2020)
proposed to use a MLP as feature predictor to replace the
memory bank. Recently, Chen and He (Chen and He 2021)
showed that using stop-gradient method, a Siamese archi-
tecture without memory bank and a MLP feature predic-
tor can achieve state-of-the-art results. Also, self-supervised
learning approaches based on pretext tasks have been exten-
sively studied. Examples include recovering the input with
appearance transformations, e.g., image colorization (Zhao
et al. 2020; Su, Chu, and Huang 2020), denoising (Vincen-
t et al. 2008). Besides, Pseudo label-based approaches in-
clude patch ordering (Doersch, Gupta, and Efros 2015), rota-
tion angle prediction (Gidaris, Singh, and Komodakis 2018),
frame tracking (Wang and Gupta 2015), solving the jigsaw
puzzle (Noroozi and Favaro 2016).

Self-supervised Video Representation Learning

Researches in video self-supervised learning follow a sim-
ilar trajectory as image self-supervised learning, which al-
so have two groups of approaches, i.e., pretext tasks and
contrastive learning. Video pretext tasks explored natural
video properties or statistics as supervision signal on un-
labeled data, e.g., frame prediction (Vondrick, Pirsiavash,
and Torralba 2016; Behrmann, Gall, and Noroozi 2021; Luo
et al. 2017), spatio-temporal puzzling (Kim, Cho, and K-
weon 2019), video statistics (Wang et al. 2021b), temporal
ordering (Misra, Zitnick, and Hebert 2016; Yao et al. 2021),
video playback rate prediction (Benaim et al. 2020; Jenni,
Meishvili, and Favaro 2020), temporal consistency (Wang,
Jabri, and Efros 2019; Jabri, Owens, and Efros 2020). Re-
cently, inspired by the success of contrastive learning on
static images, contrastive learning was expanded in video



self-supervised learning (Chen et al. 2021; Alwassel et al
2019; Sermanet et al. 2018; Liu et al. 2021).

Despite the success of contrastive learning and playback
rate prediction, contrastive learning approaches just focus or
discriminating instances by the similarity of features but ig-
nore the intermediate state of learned representation suct
as the similarity degree of features, which limits the over-
all performance. Besides, although pretext tasks and con-
trastive learning were proven to be successful in video self-
supervised learning, few efforts have been placed on the mu-
tual influence of multiple contrastive learning schemes anc
pretext tasks. Also, there is no guidance for a joint optimiza-
tion. To settle the first problem, we proposed a novel pretex
task, i.e., spatio-temporal overlap rate prediction, to encour-
age a model to learn the degree of similarity so as to en-
hance spatio-temporal feature leanring. For the second prob-
lem, based on the contrastive learning, we proposed a joint
learning with rotation angle prediction to further enhance
the spatial representations. Besides, we explore the mutual
influence of contrastive learning and provide guidance for
the joint optimization.

Methodology
Preliminary-Contrastive Learning Frameworks

In this subsection, we briefly review four relative state-of-
the-art contrastive learning frameworks in this paper. Let
X = {xi},7 € [1, N] denotes the video training dataset,
where NV is the total number of videos in the dataset.

SimCLR (Chen et al. 2020) SimCLR consists of four ma-
jor steps:

Data Augmentation. A stochastic spatio-temporal da-
ta augmentation T is performed on each input {x;}, ¢ €
[1, N 5] in a minibatch, N is the minibatch size. Two corre-
lated views v;, v} are generated from x; viaby ¢ ~ T, t/ ~
T. The generated pair (v;,Vv}) is considered as a positive
pair. Generated pairs (v;,v;), (v;, V) are considered as
negative pairs, where i € [1, N 5], j # i.

Feature Encoding. A spatio-temporal CNN model fy
that extracts representation vectors from augmented data ex-
amples {v;,Vv’;}, i € [1, N 5], where 6 is the parameter of
the model.

Latent Space Projection. A multi-layer perception
(MLP) projection head gy that maps the representation h;
to a latent space z; which is used for contrastive loss calcu-
lation.

Contrastive Loss. With the obtained projected features
zi, © € [1,N ], InfoNCE (Oord, Li, and Vinyals 2018) is
adopted as the contrastive objective:

R B %’i log exp (sim (v;,v';) /)
e i=1 ZkE{Vj,v’j},jgéi exp (Slm (Vi7 k) /Oé) ’

ey

T
where sim (x,y) = W that is the cosine similarity cal-
culation of two input vectors.
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Figure 2: An overview of spatio-temporal overlap rate (S-
TOR) prediction.

MoCo (He et al. 2020) The architecture of MoCo is simi-
lar to SimCLR. The difference between MoCo and SimCLR
is that, MoCo builds a queue to store negative samples while
SimCLR regards the embeddings in the mini-batch as neg-
ative samples. Besides, MoCo uses an explicit momentum
encoder which adopts a moving average manner with a mo-
mentum parameter m.

where 6 is the parameter in encoder fy, £ is the parameter in
momentum encoder fe.

BYOL (Grill et al. 2020) BYOL is a typical contrastive
learning method that does not use negative samples in the
contrastive loss. BYOL can be seen as a form of MoCo with-
out negative samples but uses an extra MLP predictor py af-
ter the latent space z; for predicting latent space z’; to learn
the data representation. The objective of BYOL is to mini-
mize the distance between predicted latent features g; from
normal encoder and the projected latent feature z’; of mo-
mentum encoder, which is:

Np
Lope ==Y sim(vi, V'), 3)
i=1
SimSiam (Chen and He 2021) SimSiam can be seen as
a form of BYOL that does not use a momentum encoder.
The difference is that SimSiam uses a Siamese encoder to
replace the momentum encoder, but only backpropagate one
of the two encoders, i.e., stopping the gradients of the second
encoder.

Spatio-temporal Overlap Rate Prediction

Since contrastive learning approaches and existing pretex-
t tasks do not percept the degree of similarity of gener-
ated samples while humans can make it (Figure 1). Fol-
lowing the nature of humans, we propose a novel pretext
task spatio-temporal overlap rate (STOR) prediction to help
models understand the similarity of degree to further en-
hance the spatio-temporal representation. Following the set-
tings of pretext tasks, our proposed approach encourages C-
NN model to discriminate different spatio-temporal overlap
rates of two training video clips to learn the video represen-
tations. The hypothesis is that the network can only succeed
in such a spatio-temporal overlap reasoning task when it un-
derstands the underlying video content and learns represen-
tative spatio-temporal features. The pipeline of STOR can
be seen in Figure 2.



Spatial overlap rate y; = 0, /0 Input video
¥s €[0.2,0.4,0.6,0.8, 1] - <
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Temporal overlap rate y, = 7, /7
y: €[0.2,0.4,0.6,0.8, 1]

(a) Spatial overlap rate prediction  (b) Temporal overlap rate prediction
Figure 3: Conceptual demonstration of spatio-temporal
overlap rate prediction. o denotes the spatial area of bound-
ing box, 0 = ¢’. o, denotes spatial overlap area. T denotes
the temporal overlap duration, 7 = 7’. 7, denotes temporal
overlap duration.

The spatio-temporal overlap rate prediction task consists
of two parts, i.e., spatial overlap rate prediction and tem-
poral overlap rate prediction. The conceptual demonstration
of spatial and temporal overlap rates can be seen in Figure
3 (a) and (b). When generating samples v; and v’;, spatio-
temporal overlap data augmentation will randomly pick a
spatial overlap rate ~, Z2 and a temporal overlap rate
7t = =, where o denotes the spatial area of bounding box,
0, 1s the overlap area, 7 denotes the temporal overlap dura-
tion and 7, is the temporal overlap duration. Then, it gener-
ates two clips with the sampled spatial and temporal overlap
rates.

Formally, we denote the STOR as t, ~ T,. Given a video
x; and the neural network fy, two random transformation-
s to(x;) and #',(x;) are applied to obtain the training clip
v;, v';, respectively. The randomly sampled spatial overlap
rate is s; and the randomly sampled temporal overlap rate is
sf) Then, we conduct feature extraction and obtain the hid-
den feature y; = fo(v;), y'; = fo(v';), where the same
CNN model fy is used. Furthermore, following the design
of multiple tasks for self-supervised learning (Chen et al.
2020), two individual fully-connected (FC) heads ej and eg
are adopted as the classifiers for spatial overlap rate pre-
diction and temporal overlap rate prediction, respectively.
a3 = e(y:) and af, = !

= e! (y’,;) are used to make a prediction
of the sampling label s3 and s, respectively. The prediction
exp a’ t exp ag

=2 epa PO T S expay
N¢ and N! are the number of all the spatial overlap rate and
temporal overlap rate candidates, respectively The parame-
ters of the neural network fy are trained with a joint cross

entropy (CE) loss £,.;s described as:

, Where

probabilities are p?

NS Nf)
Locis = =15 _sylogpy — 15> shlogph,  (4)
o=1 o=1

where [£, [! are the weights for spatial and temporal overlap
tasks.

Spatio-temporal Overlap Data Augmentation

A spatio-temporal overlap data augmentation is proposed
in this work for aforementioned pretext tasks. To imple-
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ment the proposed spatio-temporal overlap rate prediction
task, it is critical to obtain two video clips with overlap rate
while keeping the random distribution of the input video
clip samples. In the spatio-temporal overlap data augmen-
tation, a 2-step sampling strategy is designed for training.
Following previous video self-supervised learning method
(Wang et al. 2021a; Han, Xie, and Zisserman 2020b), we
adopt base data augmentation that includes multi-scale ran-
dom cropping, random color jittering, random temporal jit-
tering, random rotation jittering (randomly rotate 0-10), ran-
dom playback rates and random rotation (random rotate
0°,90°,180°,270°). Given a video x;, we generate the first
video clip sample v; with the base random data augmenta-
tion in a video. Then, we randomly pick a spatial overlap rate
s and a temporal overlap rate s’, respectively. After that, to
keep the same aspect ratio of the first video clip v;, the sec-
ond video clip sample v’; adopts the same spatial size (i.e.
width w and height h) and the same playback rate of the first
video clip sample v;. Then, the second video clip sample v';
randomly crops spatial area with size (w, h) according to the
picked overlap rate s5 and randomly clips temporal duration
according to the temporal overlap rate si. After that, base
data augmentation except from random cropping and tem-
poral jittering is implemented on v’;. In this way, the video
clip samples v; and v'; have a spatio-temporal overlap rate
with each other, meanwhile, follow a random distribution of
data augmentation.

Full Scheme of CSTP

Taking BYOL as the contrastive learning method for exam-
ple, the full framework of our proposed CSTP can be seen
in Figure 4. Given an input video x;, we first randomly gen-
erate two fixed-length clips, i.e., v; and v’;, from different
spatial and temporal locations of x; according to the spatio-
temporal overlap data augmentation. In this way, the two in-
put video clips v; and v’; have different low-level (pixel,
curve, et al.) distribution but are consistent in the semantic
level. Then, the two sampled video clips v; and v’; are fed
into a 3D CNNs fy and f’ ¢ to extract the feature represen-
tation yf and g’ f respectively. Besides, v’; is fed into fy to
extract feature representation g’ ? Afterwards, the extracted
feature y?¢ is fed into playback rate prediction head cy for
playback rate prediction and obtain the loss £,s; The ex-

tracted feature y? is fed into rotation prediction head dp for
rotation prediction and obtain loss the loss £,.;s; The ex-

tracted features yf and 3/ f are concatenated and the concate-

nated features cat(y?,y’ ;9) are fed into e and e}, for spatial
overlap rate prediction and temporal overlap rate prediction,
respectively, and obtain the loss £,.;s as Equation (4); The
three losses Lpcis, Lreiss Locls are all CE loss. The extracted

features y¢ and y’f follow the steps of contrastive learning
scheme and obtain the loss £,-. Lastly, contrastive loss and
three spatio-temporal pretext loss are jointed for optimiza-
tion. The final loss is as:

L= )\ctr'[’ctr + Apclstcls + )\rclercls + )\oclsLocls»
4)
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Figure 4: An overview of contrastive spatio-temporal pretext (CSTP) approach for video self-supervised learning. The approach
consists of contrastive learning and three pretext tasks (playback rate prediction, rotation prediction, spatio-temporal overlap

rate (STOR) prediction).

where Actr, Apeis, Arelss Aocls are hyperparameters that con-
trol the weights of the regularization term.

Experiments
Datasets

Kinetics-400 (Carreira and Zisserman 2017) is one of the
large-scale action recognition benchmarks which contains
around 300K videos over 400 action categories. UCF-101
(Soomro, Zamir, and Shah 2012) is a widely used bench-
mark for action recognition. It has three splits, which con-
sists of 13, 320 videos that cover 101 human action classes.
HMDB-51 (Kuehne et al. 2011) is also a small-scale dataset
for action recognition, which consists of three splits and 6,
770 videos in 51 actions.

Ablations Studies

Understanding of transformation-based pretext tasks.
3D Rot (Jing et al. 2018), RTT (Jenni, Meishvili, and Favaro
2020) has verified that video transformation-based pretex-
t task can benefit video self-supervised learning. It was
claimed that the gain on performance comes from the pseu-
do labels learning, however, we found that the gain in per-
formance of transformation-based pretext task comes from
two aspects, i.e., more diverse data (data augmentation a-
long with pretext task) and the pseudo label prediction.

In this study, we adopt R(2+1)D as the backbone and con-
duct experiments on split 1 of dataset UCF-101. The results
are summarized in Table 1. In the table, “Base” means ba-
sic data augmentation methods which includes multi-scale
random cropping, random gaussian blur, random color jit-
tering, random temporal jittering. Exp. 1 denotes the base-
line performance, which was trained from scratch (random-
ly initializing weights) with the aforementioned data aug-
mentation methods. We can observe that when the mod-
el was trained from scratch with basic data augmentation
methods, the baseline performance is 60.3% (Exp. 1). After
adding playback rate data augmentations, the performance
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increased to 67.5% (+7.2%, Exp. 2). After further combin-
ing playback rate prediction pretext task, the performance
increased to 77.2 (+9.7%, Exp. 5). The same trend can be
seen in the rotation data augmentation and pretext task (Ex-
p. 3&7 vs Exp. 1). Besides, we observe that combining the
playback rate data augmentation and the rotation data aug-
mentation can benefit the performance (Exp. 2&3 vs Exp. 4).
In terms of our proposed STOR prediction task, it should be
noted that unlike playback rates and rotation operation, our
proposed overlap operations will not increase the diversity
of data. When performing STOR with base data augmen-
tation, the performance increased to 69.6% (+9.3%). The
gain in performance is comparable to playback rate predic-
tion and rotation prediction, which verifies the effectiveness
of our proposed STOR. And we also can observe the fur-
ther gain with additional data augmentation methods (Exp.
10&11 vs Exp. 9).

Exploration of CSTP Learning Methods. To verify the
effectiveness of our proposed CSTP and figure out the im-
pact of each contribution, experiments on each part of CSTP
were conducted. We take BYOL as the contrastive learn-
ing framework for exploration. R(2+1)D was adopted as
the backbone in the experiments. The performance of each
part in CSTP is shown in Table 2. Firstly, we can observe
that each part of CSTP can boost the performance of the
baseline. The baseline performance is 71.1% (scratch). The
performance was further increased to 76.2% (+5.1%, Exp.
2), 718.7% (+7.6%, Exp. 3), 78.5% (+7.4%, Exp. 4), 76.6%
(+5.5%, Exp. 5) when the training was conducted from the
pre-trained model of contrastive learning, playback rate pre-
diction, rotation prediction and overlap rate prediction, re-
spectively. Secondly, it can be observed that combining each
pretext task to contrastive learning can boost the perfor-
mance of individually using contrastive learning or the pre-
text task. Thirdly, STOR can boost the performance of each
component in CSTP. When STOR is combined with play-
back rate prediction and rotation prediction, the performance
is improved by +3.3% and +3.1%, respectively. When com-



Data Augmentation Pretext Tasks Dataset
P Base PB Rate Rot. PB Rate Rot. STOR UCF-101 (%)
T v X X X X X 60.3
2 v X X X X 67.5
3 v X vOX X X 66.9
4 v vV X X X 71.1
s v v X vV X X 772
6 v Vv vV v X K 78.7
7 v X vV X v X 77.6
s v vV vV X v X 78.5
9o v X X X X V 69.6
o v v X X X V 74.1
n v v v X X v 76.2

Table 1: Exploration of transformation-based pretext tasks.
Results are evaluated on split 1 of UCF-101. The backbone
is R(2+1)D. “Base” means basic data augmentation methods
which includes multi-scale random cropping, random gaus-
sian blur, random color jittering, random temporal jittering.

bining STOR with contrastive learning, the performance is
improved by 1.1%. The reason why the improvement on
contrastive learning is less than pretext task may be that S-
TOR and contrastive learning both are learning the similarity
of samples, which is independent to playback rate prediction
and rotation prediction. Finally, through comparisons (Exp.
6 vs Exp. 3&4; Exp. 7 vs Exp. 3&35, etc.), it can be observed
that in CSTP, the combination of multiple pretext tasks and
contrastive learning can improve the overall performance,
which verifies the importance of the learned intermediate s-
tate in representation.

Exploration of Contrastive Learning Methods. To ex-
plore the mutual influence of multiple contrastive learning
schemes and different pretext tasks, we conducted experi-
ments on four popular contrastive learning schemes which
are SImMCLR, MoCo, BYOL and SimSiam. In Table 3, we
compared four contrastive learning schemes in the context
of CSTP. Except from the contrastive learning scheme, the
settings of the experiments in Table 3 are the same as those
in Table 2. Firstly, we observe that four contrastive learn-
ing schemes can work with the pretext tasks in CSTP by
comparing the results of each contrastive learning schemes
in Table 3 with the results of only pretext tasks in Table 2.
For example, when only using SimCLR in CSTP, the perfor-
mance is 75.5%, while the performance increased to 80.7%
(+5.2%), 82.9% (+7.4%) and 84.4% (+8.9%) as gradually
combining playback rate prediction, rotation prediction and
STOR prediction. Secondly, in the four contrastive learn-
ing schemes, we observe that BYOL performed the best
in our proposed CSTP framework. Thirdly, we observe the
four contrastive learning schemes share a similar trend when
combining different pretext tasks. Besides, we observe that
the four contrastive learning schemes share a similar trend

3385

Exp. Contr. Pretext Tasks Dataset (%)
PBRate Rot. STOR UCF-101 HMDB-51
1 X X X X 71.1 383
2 v X X X 76.6 455
3 X v X X 78.7 482
4 X X v X 78.5 47.1
5 X X X v 76.2 454
6 X v v X 84.1 53.5
7 X v X v 82.0 51.7
8 X X v v 81.6 51.4
9 v v X X 81.8 51.4
10 v X v X 81.5 51.1
11 v X X v 77.7 495
12 X v v v 85.3 54.9
13 v v v X 84.4 54.1
14 v v X v 83.1 53.8
15 v X v v 82.6 52.7
16 v v v v 85.6 55.1

Table 2: Exploration of each part of contrastive spatio-
temporal pretext learning methods. Results are evaluated on
split 1 of UCF-101 and HMDB-51.

when combining with pretext tasks. Finally, we can observe
that momentum update is useful for CSTP (comparing per-
formance of BYOL and SiaSiam, BYOL outperforms SiaSi-
am); negative samples are not critical for CSTP when using
momentum update (comparing performance of BYOL and
MoCo, BYOL outperforms MoCo).

Exploration of STOR. From Table 2&3, we observe that
combining STOR benefits the overall results in CSTP. STOR
consists of two pretext tasks, e.g., spatial overlap rate pre-
diction and temporal overlap prediction. To demonstrate the
effectiveness of these two pretext tasks, we separate STOR
apart and conduct experiments on each part. To remove the
influence of the data augmentation methods of other pretext
tasks, "Base” data augmentation is only used in the experi-
ments. The results are summarized in Table 5. When train-
ing from scratch, the result in UCF-101 is 60.3%. While
after employing spatial overlap prediction pretext task, the
performance increased to 67.8% (+7.5%). Similar trend can
be observed in temporal overlap prediction, which increased
the baseline to 66.5% (+6.2%). Besides, combining the spa-
tial overlap prediction and temporal overlap prediction can
further increase the performance to 69.6% (+9.3%).

Exploration of different spatio-temporal rates in S-
TOR. In this experiment, we explore the influence of dif-
ferent candidates to STOR pre-training strategy. R(2+1)D
was adopted as the backbone. We only use STOR as the
pre-training strategy and fine-tune the whole model as
demonstrated in Experimental Settings in Appendix. We
conducted 6 sets of candidates to demonstrate the influ-
ence of the choice of candidates, which are 2 candidates



Contr. Pretext Tasks Dataset (%)
PBRate Rot. STOR UCF-101 HMDB-51
X X X 75.5 443
SimCLR v X X 80.7 50.1
v v X 82.9 52.8
v v v 84.4 54.0
X X X 75.8 448
MoCo v X X 81.3 52.8
v v X 83.5 53.4
v v v 84.9 54.3
X X X 76.6 4555
BYOL v X X 81.8 514
v v X 84.4 54.1
v v v 85.6 55.1
X X X 75.2 442
SimSiam v X X 80.6 50.3
v v X 82.8 526
v v v 83.9 53.6

Table 3: Exploration of contrastive learning methods of
CSTP. Results are evaluated on split 1 of UCF-101 and
HMDB-51.

- [0.5,1], 3 candidates - [0.33,0.66,0.99], 4 candidates -
[0.25,0.5,0.75,1.0], 5 candidates - [0.2,0.4,0.6,0.8,1.0],
6 candidates - [0.166,0.332,0.498,0.664,0.83, 1.0], 7 can-
didates - [0.143,0.286,0.429,0.572,0.715,0.858, 1]. The
comparative results of different candidates of STOR predic-
tion task in UCF-101 and HMDB-51 datasets are shown in
Table 4.

We can observe that the two candidates in STOR per-
formed the worst results. And with the number of candidates
increased, the results tend to improve till the number of can-
didates reaches five. When the number of candidates is big-
ger than five, the performance tends to be saturated. The rea-
son may be that few candidates make perceiving STOR pre-
diction easy, so that the model cannot learn spatial-temporal
representation well. When increasing the number of candi-
dates, the task of STOR prediction is getting harder, which
requires the model stronger representation ability. And when
the number of candidates was over five, the STOR task may
be too hard to obtain better representation ability.

Evaluation on Action Recognition Task

End-to-end fine-tuning stage. Following previous work
(Chen et al. 2021; Jenni, Meishvili, and Favaro 2020), we
compare our proposed method with recent state-of-the-art
self-supervised video representation learning approaches. In
Table 6, for fair comparison, we report the Top-1 accu-
racy of UCF-101 and HMDB-51 datasets with commonly
used network backbones (C3D, R(2+1)D, S3D) and pre-
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Number of candidates UCF-101 (%) HMDB-51 (%)

2 72.5 42.5
3 72.4 433
4 73.9 44.8
5 76.2 454
6 75.4 45.0
7 75.5 44.9

Table 4: Exploration of STOR. Results are evaluated on split
1 of UCF-101. Results without data augmentation methods
of other pretext tasks.

Spatial Overlap rate  Temporal Overlap rate

UCF-101 (%)

Prediction Prediction
X X 60.3 (baseline)
v X 67.8
X v 66.5
v v 69.6

Table 5: Exploration of STOR. Results are evaluated on split
1 of UCF-101. Results without data augmentation methods
of other pretext tasks.

training datasets, where the results are averaged over three
splits of the two datasets. When trained from pre-trained
model on UCF-101, it can be observed that our proposed
method can achieve state-of-the-art performance among all
the approaches with all the backbones. Specifically, our C-
STP achieves 85.7%/55.3% with R(2+1)D backbone, which
outperforms state-of-the-art performance by 4.1%/6.1% in
UCF-101/HMDB-51 datasets. It even outperforms some ap-
proaches trained on Kinetic-400. Similar trend can be ob-
served on C3D and S3D. This demonstrates that our pro-
posed method is generalized to multiple network architec-
tures, which has a robust spatio-temporal modeling abili-
ty. When trained from pre-trained model on Kinetics-400,
we observe that our CSTP could achieve the state-of-the-art
performance in on all the backbones with same input modal-
ity. Notably, CSTP unsupervised pre-training leads the accu-
racy by 0.6%/1.6% against fully-supervised ImageNet pre-
training with only pre-trained on the small dataset UCF-101.

Linear Evaluation. We also follow the settings of pre-
vious work (Jenni, Meishvili, and Favaro 2020) for the lin-
ear evaluation in which we freeze the convolutional layer-
s and only train the final FC layers for classification. The
Freeze column in Table 6 denotes the linear evaluation set-
ting. We can observe that our method obtains state-of-the-
arts performance on UCF-101 and HMDB-51. Specifically,
our approach also outperforms TaCo (Bai et al. 2020) which
combined four existing pretexts tasks with MoCo, demon-
strating the representation ability of our proposed method.



Datasets (%)

Method Backbone Dataset Freeze

UCF HMDB
CCL (Kong et al. 2020) R3D-18 K400 v 54.0 29.5
MemDPC (Han, Xie, and Zisserman 2020a) R3D-34 K400 v 54.1 30.5
TaCo (Bai et al. 2020) R3D-18 K400 v 59.6 26.7
MFO (Qian et al. 2021) R3D-18 K400 v 63.2 334
Ours R3D-18 K400 vV 705 344
Random Initialization (scratch) R(2+1)D - X 60.3 27.6
Supervised ImageNet Pre-training R(2+1)D  ImageNet X 85.1 53.7
VCP (Luo et al. 2020) RQ2+1)D  UCF-101 X 663 322
PRP (Yao et al. 2020) R2+1)D  UCF-101 X 721 350
VCOP (Xu et al. 2019) RQ2+1)D  UCF-101 X 724 309
PacePred (Wang, Jiao, and Liu 2020) R(2+1)D  UCF-101 X 75.9 359
RSPNet (Chen et al. 2021) R(2+1)D K400 X 81.1 44.6
RTT (Jenni, Meishvili, and Favaro 2020) R(2+1)D UCF-101 X 81.6 46.4
VideoMoCo (Pan et al. 2021) R(2+1)D K400 X 78.7 49.2
Ours RQ+DD UCF-101 X 857 553
Ours RQ2+1)D K400 X 816 564
RTT (Jenni, Meishvili, and Favaro 2020) C3D UCF-101 X 68.3 38.4
PRP (Yao et al. 2020) C3D UCF-101 X 69.1 34.5
VCP (Luo et al. 2020) C3D UCF-101 X 68.5 325
VCOP (Xu et al. 2019) C3D UCF-101 X 65.6 28.4
MoCo+BE (Wang et al. 2021a) C3D UCF-101 X 72.4 42.3
RSPNet (Chen et al. 2021) C3D K400 X 76.7 44.6
Ours C3D  UCF-101 X 808 489
Ours C3D K400 X 826 502
MFO (Qian et al. 2021) S3D UCF-101 X 743 37.2
CoCLR* (Han, Xie, and Zisserman 2020b) S3D UCF-101 X 81.4 52.1
CoCLR* (Han, Xie, and Zisserman 2020b) S3D K400 X 87.9 54.6
Ours S3D UCF-101 X 836 533
Ours S3D K400 X 813 557

*CoCLR used optical flow as guidance on training.

Table 6: Comparison With State-of-the-arts. Average results of three splits in UCF-101 and HMDB-51 datasets.

Evaluation on Video Retrieval Task

Besides the video action recognition task, we also report
the Top-k (k = 1, 5, 10, 20, 50) video retrieval performance
with two different backbones, e.g., R(2+1)D and C3D.
The quantitative results are shown in Table 7. We observe
that our proposed approach outperforms state-of-the-art ap-
proaches by a large margin under different k£ with the two
network backbones. Specifically, our CSTP outperforms the
state-of-the-art model by 16.6%/6.9% in UCF-101/HMDB-
51 dataset using R(2+1)D as the backbone, and outperforms
the state-of-the-art model by 14.7%/6.7% using C3D as the
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backbone. These imply that our proposed CSTP could help
the model to learn more discriminating spatio-temporal fea-
tures.

Qualitative analysis

We further provide retrieval results as a qualitative study for
the proposed CSTP as shown in Figure 5. We can see that for
the listed five query clips, videos with similar motion char-
acteristics and appearance are successfully retrieved. This
implies that CSTP can learn both meaningful motion and
appearance representations for videos. We also use the class



Figure 5: Qualitative examples of video retrieval. Retrieval
of Top-3 similar samples. The videos are “BandMarching”,
“Drumming”, “HorseRiding”, “PlayingCello”, “SoccerJug-

gling”, respectively from top to bottom.

UCF-101 (%) HMDB-51 (%)

Method Backbone

R@1 R@5R@10R@1 R@5R@10

RSPNet [2021] R3D-18 41.1 594 684 - - -
MFO [2021] R3D-18 39.6 57.6 69.2 18.8 39.2 51.0
VCOP [2019] R(2+1)D 10.7 259 354 5.7 19.5 30.7
VCP [2020] R(2+1)D 199 33.7 42.0 6.7 213 32.7
PRP [2020] R(2+1)D 20.3 34.0 419 82 253 36.2
PacePred [2020] R(2+1)D 25.6 42.7 513 129 31.6 432
IIC [2020] RQ2+1)D 34.7 51.7 60.9 12.7 33.3 4538
Ours RQ2+1)D 51.3 71.1 80.3 21.6 484 624
VCOP [2019] C3D 125 29.0 39.0 74 22,6 344
VCP [2020] C3D 17.3 31.5 42.0 7.8 23.8 353
PRP [2020] C3D 232 38.1 46.0 10.5 272 404
PacePred [2020] C3D 319 49.7 59.2 125 322 454
IIC [2020] C3D 319 482 573 11.5 31.3 439

RSPNet [2021] C3D 36.0 56.7 66.5 - - -
MoCo+BE [2021] C3D - - - 102 27.6 40.5
Ours C3D 50.7 694 779 19.3 46.6 61.0

Table 7: Recall-at-Topk. Comparison with state-of-the-art
methods in video retrieval task on UCF-101 and HMDB-51.

activation map technique (CAM) (Zhou et al. 2016) to vi-
sualize the Region of Interest (Rol) following the previous
works (Qian et al. 2021; Kuang et al. 2021). We visualize the
activations of the output of the last convolutional layers from
R(2+1)D models pretrained by contrastive learning (BYOL)
and the proposed CSTP (BYOL based). As seen in Figure
6, CSTP can focus more on discriminative motion regions,
while contrastive learning cannot perceive important motion
cues well. For example, our approach precisely focuses on
the moving hands in the playing guitar scene, while con-
trastive learning approach regards the body and some back-
ground as the Rol.
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CSTP

Contrastive
learning

Figure 6: Visualization of Rol learn for contrastive learn-
ing and CSTP. Our model focuses more on the regions con-
taining motion and appearance information for two pretext
tasks. The videos are “ApplyEyeMakeUp”, “HorseRiding”,
“PlayingGuitar”, “BrushingTeeth”, respectively from left to

right

Conclusion

Contrastive learning focuses on discriminating the similarity
of features while ignoring the intermediate state of learned
representations. In this paper, considering the degree of sim-
ilarity as the intermediate state, we propose a new pretex-
t task - spatio-temporal overlap rate prediction (STOR) in
a way of inter-feature reference, which enhances spatio-
temporal representation learning by discriminating the S-
TOR of two relative samples. Besides, we propose a joint
optimization framework contrastive spatio-temporal pretext
(CSTP) to further enhance spatio-temporal feature learning.
Furthermore, we study the mutual influence of each compo-
nent in CSTP and provide design guidance. Extensive exper-
iments show that the STOR prediction task can benefit self-
supervised learning. Besides, CSTP framework is flexible
and achieves state-of-the-art performance on action recog-
nition and video retrieval downstream tasks with different
backbones. It is worth noting that the way of intermediate s-
tate perception and inter-feature reference in STOR provides
new perspectives for self-supervised learning community.
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