
Patch Diffusion: A General Module for Face Manipulation Detection

Baogen Zhang1, Sheng Li1∗, Guorui Feng2, Zhenxing Qian1, Xinpeng Zhang1

1Fudan University
2Shanghai University

{bgzhang19, lisheng, zxqian, zhangxinpeng}@fudan.edu.cn, grfeng@shu.edu.cn

Abstract
Detection of manipulated face images has attracted a lot of in-
terest recently. Various schemes have been proposed to tackle
this challenging problem, where the patch-based approaches
are shown to be promising. However, the existing patch-based
approaches tend to treat different patches equally, which do
not fully exploit the patch discrepancy for effective feature
learning. In this paper, we propose a Patch Diffusion (PD)
module which can be integrated into the existing face manip-
ulation detection networks to boost the performance. The PD
consists of Discrepancy Patch Feature Learning (DPFL) and
Attention-Aware Message Passing (AMP). The DPFL effec-
tively learns the patch features by a newly designed Pairwise
Patch Loss (PPLoss), which takes both the patch importance
and correlations into consideration. The AMP diffuses the
patches through attention-aware message passing in a graph
network, where the attentions are explicitly computed based
on the patch features learnt in DPFL. We integrate our PD
module into four recent face manipulation detection network-
s, and carry out the experiments on four popular datasets. The
results demonstrate that our PD module is able to boost the
performance of the existing networks for face manipulation
detection.

Introduction
In recent years, with the tremendous progress made in com-
puter vision and deep learning, it becomes easy to generate
real-look alike fake face images. People can manipulate the
face images by softwares such as ZAO, FaceApp, FakeApp,
etc. Along with the fun offered by these softwares, mali-
cious face manipulations would mislead the public, which
may result in unforeseeable consequences, especially when
relevant techniques are applied on celebrities. Therefore, we
urgently need advanced and effective methods for manipu-
lated face detection.

The schemes for face manipulation detection can be main-
ly divided into two categories, the video-based methods and
the image-based methods. The video-based methods focus
on the differences among different frames to find tempo-
ral manipulation traces for classification. Several interesting
ideas such as eye blinking (Li, Chang, and Lyu 2018), physi-
ological measurement (Fernandes et al. 2019; Ciftci, Demir,
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Figure 1: Our Patch Diffusion module diffuses the patches
such that the manipulated region gradually merges to prompt
the detection. From left to right, a manipulated face image
with the boundary of the fake area marked in white, the in-
termediate prediction results during the patch diffusion. The
masks shown in red refer to the patches predicted as fake.
Better viewed in color.

and Yin 2020) and emotions (Mittal et al. 2020) are pro-
posed to achieve satisfactory performance. However, when
the input is only a single image, the video-based methods
may fail due to the loss of sequential information. This can
be addressed by using the image-based method, whose main
idea is to detect the manipulated traces inside a single im-
age. Researchers have devoted efforts in developing effec-
tive image-based face manipulation techniques. Various ma-
nipulation traces have been investigated to facilitate the de-
tection, including the anomaly in color (Li et al. 2020a), the
blending boundary (Li et al. 2020b; Tarasiou and Zafeiriou
2020; Wang et al. 2020b), the anomaly in frequency (Qian
et al. 2020), and etc. These schemes explore the inconsisten-
cy of the traces from the whole image for face manipulation
detection, which may not work well when the manipulation
traces are subtle.

Some studies (Chai et al. 2020; Mayer and Stamm 2019)
have shown that, the subtle traces located inside small local
patches such as manipulation contours or anomaly in tex-
ture (Zhang, Karaman, and Chang 2019), would be helpful
for differentiating the genuine and fake area. Most recent-
ly, Chen et al. (Chen et al. 2021) and Zhao et al. (Zhao
et al. 2021b) consider the similarity among different patches
to boost the performance. Despite the advantage, these ap-
proaches treat the patches equally, which neglect the diverse
impact of different patches for the task of face manipula-
tion detection. More efforts are required to fully exploit the
discrepancy among different patches in face manipulation
detection.

In this paper, we propose a module named Patch Diffu-
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sion (PD) for face manipulation detection. Unlike the exist-
ing patch-based schemes which either process the patches
independently or simply compute the similarity among dif-
ferent patches, we propose to diffuse the patches using graph
networks such that the manipulated region can be gradually
merged to prompt the detection, as shown in Fig. 1. In par-
ticular, our PD module is composed of two parts: Discrep-
ancy Patch Feature Learning (DPFL) and Attention-Aware
Message Passing (AMP). The DPFL focuses on learning
effective patch feature representations by taking both the
patch importance and correlations into consideration, where
a Pairwise Patch Loss (PPLoss) is newly designed for patch
feature learning. The AMP constructs a graph from the
patches and gradually diffuses the patches through message
passing. We propose an attention-aware adjacent matrix for
message passing in AMP, which is explicitly computed from
the patch features learnt in DPFL.

To demonstrate the generalization ability of our PD mod-
ule, we integrate it into four recent face manipulation detec-
tion networks including CNNDetect (Wang et al. 2020a), X-
ception (Rossler et al. 2019a), DSP-FWA (Li and Lyu 2019),
and WM-Wsdan-Effb (Zhao, Cui, and Zhou 2020) to see
how the performance could be boosted. We conduct experi-
ments on four popular datasets. The results demonstrate that,
by integrating our PD module into the existing networks, the
performance of face manipulation detection can be further
boosted in both the intra and inter-database scenarios. The
main contributions of this paper are summarized as follows.

• We propose a patch diffusion module for the task of face
manipulation detection, which can be integrated into the
existing networks for performance boosting.
• We propose a novel patch feature learning scheme by in-

corporating the patch importance and correlation, which
is achieved by a PPLoss newly designed.
• We propose an attention-aware adjacent matrix for patch

diffusion, which is computed explicitly from the patch
features.

Related Works
Face Manipulation Detection. Existing face manipulation
detection schemes can be mainly categorized into the video-
based methods and the image-based methods.

The video-based methods perform face manipulation de-
tection based on the inconsistencies between frames. Work-
s on heart rate estimation (Fernandes et al. 2019; Ciftci,
Demir, and Yin 2020; Hernandez-Ortega et al. 2020; Qi
et al. 2020) detect the manipulation through biological sig-
nals collected from videos. Li et al. (Li, Chang, and Lyu
2018) and Mittal et al.(Mittal et al. 2020) determine whether
the frame has been altered based on the facial action and ex-
pression. Li et al. (Li et al. 2020c) introduces partial face
attack in deepfake videos and propose a multiple instance
learning framework for face manipulation detection. Several
other works (Sabir et al. 2019; Masi et al. 2020; Chen et al.
2020) create new model structures based on the recurrent
network.

The image-based methods detect inconsistencies between
fake and genuine regions from a single image. Liu et al. (Li-

u, Qi, and Torr 2020) discover the texture differences be-
tween real and fake face images. They propose a Gram-Net
which focuses on the extraction of global image textures.
Works in (Li et al. 2020b; Wang et al. 2020b) focus on in-
trinsic image discrepancies across the blending boundaries
caused by manipulation. The blending regions can be ac-
curately predicted to distinguish the manipulated face im-
ages. Dang et al. (Dang et al. 2020) propose an attention
mechanism to process the face feature maps, which high-
lights the informative regions for the improvement of detec-
tion ability. Similarly, Zhao et al. (Zhao et al. 2021a) formu-
late the face manipulation detection as a fine-grained clas-
sification problem, where a multi-attention network is pro-
posed to explore discriminative regions in the face images.
Wang et al. (Wang et al. 2020a) discuss the impact of data
augmentation and indicate that using common image pro-
cessing operations would be able to improve the generality.
Identity-driven method (Dong et al. 2020) takes the idea of
face recognition to determine whether the tampered identity
is consistent with the original identity.

Recently, several works have been proposed by exploring
the subtle manipulated traces located in the image patches,
which are shown to be promising for face manipulation de-
tection. Chai et al. (Chai et al. 2020) take advantage of a
patch-based classifier with limited receptive fields in the im-
age. This work demonstrates that the patch-based classifi-
er is better than the classifiers trained from the whole face
images for detecting the subtle manipulated traces. Chen et
al. (Chen et al. 2021) and Zhao et al. (Zhao et al. 2021b) fur-
ther consider the patch similarity in the spatial and frequen-
cy domain to improve the performance, where each patch is
equally treated and processed during the patch feature learn-
ing.

Graph Network (GN). Using graphs to process data
with structural information attracts a lot of research in-
terest. With the development of neural networks, combin-
ing the graphs and networks together (Sperduti and Starita
1997; Gori, Monfardini, and Scarselli 2005; Scarselli et al.
2009) becomes an effective approach for various learning
based applications. Several models such as message-passing
neural network (Gilmer et al. 2017), non-local neural net-
work (Wang et al. 2018), relation network (Santoro et al.
2017) and deep set (Zaheer et al. 2017) are proposed for
message-passing in the graph neural networks.

In the field of computer vision , the GNs are increasingly
used to tackle tasks such as image classification, object de-
tection, semantic segmentation, etc. Chen et al. (Chen et al.
2019) propose a graph-based global reasoning network to
globally aggregate the features located in different region-
s, which works well on image classification tasks. Zhang et
al. (Zhang et al. 2020) propose a dynamic graph message
passing network to adaptively sample nodes in the graph,
which performs well in semantic segmentation tasks. Mon-
ti et al. (Monti et al. 2017) propose a spatial-domain model
to generalize CNN architectures to graphs such that it can
learn task-specific features. Qi et al. (Qi et al. 2018) propose
a graph parsing neural network for inferring a parse graph in
an end-to-end manner. Such a graph can be integrated into
the existing object detection frameworks for better perfor-
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Figure 2: Patch diffusion for face manipulation detection.

mance.

The Proposed Method

The architecture of our proposed patch diffusion (PD) mod-
ule is given in Fig. 2. The input of the PD module is the
feature map of a convolutional layer of an existing network.
Its output is a feature map with the same dimension as the
input. Each spatial location in the feature map represents
a local patch. Our PD model processes the input feature
map by, 1) discrepancy patch feature learning (DPFL) and
2) attention-aware message passing (AMP). We propose a
Pairwise Patch Loss (PPLoss) to learn effective patch fea-
ture representations in DPFL. These are used to compute an
attention-aware adjacent matrix which explicitly serves as
an attention mechanism for patch diffusion in AMP. In what
follows, we explain the DPFL and AMP in detail, as well as
the module integration and training.

Discrepancy Patch Feature Learning (DPFL)

Let’s denote input feature map as F ∈ RH×W×C , where
H , W , C are the height, width and number of channels, re-
spectively. Each spatial location in F corresponds to a local
patch represented as a C dimensional vector, with a total of
Np = H ×W patches.

Given a feature map F, we first transform it into X =

ψ(F) ∈ RH×W×C′
, where ψ(·) is a 1×1 convolution layer

with C ′ kernels. This is to make the feature dimension of
each local patch invariant among different networks. For the
ith patch, let’s denote xi as the corresponding feature vector
in X. Therefore, we have X = {xi}

Np

i=1 in terms of the Np

patches in the image.
We annotate the face image into three regions including

the fake region, real region and the background region, as
shown in Fig. 3. For the ith patch xi, let’s denote I f

i and I r
i

as the ratios of the fake and real region that occupy the patch,
respectively. The ground truth of the ith patch is computed
as

yi =


0, I f

i > δ,

1, I r
i > δ and I f

i < δ,

2, otherwise
, (1)

where δ is a threshold for the tolerance of annotation errors.
yi = 0, 1 or 2 refer to the case that the patch is annotated
as fake, real or background, respectively. We set a relatively
small δ with δ = 0.1 for robust patch annotation.

As indicated in (Li et al. 2020b), the traces around the
edges of the fake area are more distinct than that in the oth-
er areas, which plays an important role for manipulated face
detection. This is to say, the importance of each patch should
be different for such a detection task. More attentions should
be paid on the patches which contain edges of different re-
gions. We evaluate the importance of the ith patch by a score
si which is formulated below.

si =


2− I f

i if yi = 0

2− I r
i if yi = 1

2− Ib
i if yi = 2

, (2)

where Ib
i is the ratio of the background region in the patch

and si ∈ [1, 2). The larger the si, the more important the
patch will be.

With yi and si available, we propose here a Pairwise
Patch Loss (PPLoss) by considering the discrepancy be-
tween a pair of two patches (say xi and xj). The discrepancy
lies in the following two aspects, 1) the distance between
xi and xj , which is computed by the L2-norm denoted as
dij = ||xi − xj ||, and 2) the difference between the patch
ground truth (i.e., yi and yj), which is indicated by a hyper-
parameter εij given below.

εij =

{
0 if yi = yj
α if yi 6= yj

, (3)

where α is a hyperparameter depending on the ground truth
of the two patches. The PPLoss is formulated by

Lp =
1

Ne

Np∑
i=1

∑
j∈Ni

{f(si, sj)|di,j − εij |} (4)
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(a) (b) (c)

Figure 3: Illustrations of different regions in a face image,
(a) a fake face image with a fake region and a background
region, (b) a fake face image with a fake region, a real region
and a background region, (c) a genuine face image with a
real face region and a background region. The fake region
and real region are shown in red masks and white masks,
with the rest being the background region. Better viewed in
color.

where

f(si, sj) =

{
1, si = 1 and sj = 1

sisjω, otherwise
(5)

is a function evaluating the importance of a pair of two
patches with ω > 1 as a hyperparameter, |z| computes the
absolute value of z, and Ni denotes the indexes of a local
neighborhood (within two hops) of the ith patch, and Ne is
the total patch pairs that are used to compute the loss.

Our PPLoss contains two parts: |di,j − εij | and f(si, sj).
Here, we refer them as Dij and Wij for short. The Dij tries
to maximize the inter-class distance and minimize the intra-
class distance (εij = 0 when i = j). Since we have three
classes of patches, it would be difficult to learn patch fea-
tures that can maximize the inter-class distance for different
pairs of classes. Instead, we regard such distance as hyper-
parameters (i.e., α) whose optimal values can be determined
in validation. Intuitively, α should be large enough for class-
es that are difficult to be differentiated (e.g., real and fake).
This is in accordance with the optimal values of α found in
validation (see Section for details). The Wij additionally
weights Dij by taking the patch importance into considera-
tion. It makes the patches with edges contribute more during
the training, which effectively exploits the distinct traces left
on the edges for learning representative patch features.

Next, we combine our PPLoss with the classification loss
of the network to be integrated (say Lcls) for feature learn-
ing, which is given as

L = λLp + Lcls, (6)

where λ is the weight balancing Lp and Lcls. The PPLoss
helps us to learn representative patch features, where patches
belong to the same region (fake, real or background) tend to
be similar. For the patches belong to different regions, their
difference will be close to α. The PPLoss also makes sure
that the patches containing edges of different regions con-
tribute more during the learning, which effectively exploits
the distinct traces left on the edges of the manipulation area.

Attention-aware Message Passing (AMP)
Initialization: First of all, we transform the feature map F
by V = ρ(F) ∈ RH×W×C , where ρ(·) is a 1×1 convolution
layer with C kernels. We denote each patch in V as a node.
Thus, the feature map V contains Np = H ×W nodes with
V = {vi}

Np

i=1. Then, we construct an undirected graph G =
(V,E) with V as the nodes and E as the edges. Initially, each
node is fully connected to all the other nodes in the graph to
form the edges.

Message Passing: In order to perform the patch diffu-
sion, we gradually updates V through message passing us-
ing a graph convolutional network (GCN) (Kipf and Welling
2017), which is formulated as

V(l+1) = AV(l)W(l) (7)

where V(l) and V(l+1) refer to the nodes at the lth and
(l + 1)th iteration with V(0) = V, W(l) is a layer-specific
trainable weight matrix for intra-node feature fusion and A
is the adjacent matrix for message passing with a dimension
of Np ×Np.

The adjacent matrix defines how two nodes exchange in-
formation, which is important for message passing. Most
of the existing works incorporate a binary adjacent matrix
(Kipf and Welling 2017). In such a case, A(i, j) = 1 means
there is an edge between vi and vj (i.e., vi and vj belong
to the same region), A(i, j) = 0 means vi and vj are not
connected (i.e., vi and vj belong to different regions). Some
works (Chen et al. 2019; Te et al. 2020) implicitly define
the adjacent matrix by a learnable 1× 1 convolutional layer,
which serves as an attention mechanism for message pass-
ing.

Instead of using a convolutional layer to learn the adja-
cent matrix, we propose here an explicit way to compute an
attention-aware adjacent matrix. To be more specific, we ex-
plicitly compute a weight A(i, j) for the message passing
between vi and vj , where

A(i, j) =
xixTj

||xi|| · ||xj ||+ ξ
, (8)

where ξ is a scalar to prevent division by 0. As such, the
correlations between any two nodes (i.e., patches) are con-
sidered for the message passing, which would be helpful to
lead a smooth patch diffusion.

After l iterations, we can get a more representative feature
map V(l). The output feature map is computed as

F′ = BN(V(l)) + F, (9)

where BN is the batch normalization.

Module Integration and Training
As a module, our PD can be integrated into the existing con-
volutional neural networks. In order to achieve satisfactory
performance, the dimension of the input feature map for our
PD should not be too small or too large. Because each s-
patial element in the feature map corresponds a local image
patch. Feature maps with large dimensions refer to small im-
age patches which do not contain sufficient information for
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patch diffusion. On the contrary, feature maps with small di-
mensions indicate that the image patches are large, which are
not good for the detection of the subtle manipulation traces.

In the training phase, both the images and the correspond-
ing patch ground truth will be fed into the integrated net-
work, which will then be trained according to the loss given
in Eq. (6). After the training, the integrated network can be
used to predict whether an input face image is genuine or
fake according to the output of the classification layer.

Experiments
Setup
Training dataset. We select FaceForensics++ (Rossler et al.
2019b) as the training dataset. It is a large-scale face ma-
nipulation dataset containing 1000 real videos, in which
720 videos are used for training, 140 videos are reserved
for validation and 140 videos are for testing. Each real
video has four manipulated versions which are generated
by DeepFakes (DF) (Tora 2018), Face2Face (F2F) (Thies
et al. 2016), FaceSwap (FS) (Kowalski 2018) and Neural-
Textures (NT) (Thies, Zollhöfer, and Nießner 2019). In ad-
dition, each video has three compression levels: RAW, High
Quality (HQ) and Low Quality (LQ), respectively. We even-
ly select 16 frames from each video. For each frame, we
extract 81 facial landmarks 1 to crop the facial area.

For the fake face images generated by DF and F2F, we
obtain the fake and background regions according to the fa-
cial mask given in the database, while the real regions are
automatically annotated according to the facial landmarks.
For those generated by NT and FS, we also annotate dif-
ferent regions according to the facial landmarks. With the
regions annotated, the ground truth of the patches are calcu-
lated based on Eq. (1). Therefore, there is no human labor
involved for the annotations in our experiment.

Test datasets. To have a thorough demonstration for the
generality of our propose scheme, we conduct the testing on
the following databases: (1) FaceForensics++ (Rossler et al.
2019b): all the videos in the test set are used for testing.
(2) DeepfakeDetection 2 (DFD): DFD is a large dataset for
synthetic video detection, we use all the RAW videos for
testing. (3) Celeb-DF (Li et al. 2020d): Celeb-DF is a large-
scale challenging DeepFake video dataset with two version-
s: Celeb-DFv1 (CD1) and Celeb-DFv2 (CD2), and we test
on both of them. (4) DeeperForensics (DFR) (Jiang et al.
2020): DFR is a recently released face swap video dataset
with 60,000 videos, it is a representative dataset for face ma-
nipulation detection, and we test on all the videos.

Implementation details. We choose four recent face ma-
nipulation detection networks, including CNNDetect (Wang
et al. 2020a), Xception (Rossler et al. 2019b), DSP-FWA (Li
and Lyu 2019) and WM-Wsdan-Effb (Zhao, Cui, and Zhou
2020) for the integration of our PD module. The CNNDe-
tect (Wang et al. 2020a) is shown to have good performance
for deepfake detection. The Xception (Rossler et al. 2019b)
is a baseline model in FaceForensics++, which is a popular

1https://github.com/codeniko/shape predictor 81 face landmarks
2https://ai.googleblog.com/2019/09/contributing-data-to-

deepfake-detection.html

method in the area of face manipulation detection. The DSP-
FWA (Li and Lyu 2019) achieves satisfactory performance
on Celeb-DF. The WM-Wsdan-Effb (Zhao, Cui, and Zhou
2020) is the runner up in the facebook Deepfake Detection
Challenge (Dolhansky et al. 2019). Note that the winner of
this challenge 3 drops out part of the image for data augmen-
tation, which is not appropriate for our module.

For each image, we adopt the method proposed in
(Rossler et al. 2019b) to automatically and conservative-
ly crop the facial area into a square, which is then resized
to 224 × 224 for training and testing. Our module is in-
tegrated after a convolutional block with a feature map of
14 × 14 × C as the output. In other words, we set H =
W = 14 and Np = 196 fixed during the experiment, while
C various among different models and we set C ′ = C/2.
We set α = 2, 15, 17 for a pair of patches whose ground
truth are real and background, fake and background, re-
al and fake, respectively. Other hyperparameters are set by
λ = 1, ω = 3, l = 1, ξ = 10−8. The code is available at
https://github.com/starxchina/Patch-Diffusion

Intra-database Evaluation for the PD Module
In this section, we evaluate the performance of the four ex-
isting networks on FaceForensics++ before and after the in-
tegration of our PD module. Three indicators are used to
evaluate the network performance including: ACC (correct-
ly classified images/total images), AUC (area under the Re-
ceiver Operating Characteristic curve) and EER (Equal Error
Rate). In the following discussions, all the three indicators
are reported in terms of percentages.

We use all the subsets of the FaceForensics++ (DF, F2F,
FS, NT, Real) to train the models. Each training image has
three different compression levels, and we conduct the train-
ing and testing on the same compression level. Table 1 gives
the performance on FaceForensics++ for different compres-
sion levels, where RAW means no compression, HQ and LQ
indicate high and low compression quality, respectively. It
can be seen that our PD module is able to boost the per-
formance for majority of the cases regardless the networks.
The only two cases that we are not able to achieve better
results (by using the PD module) is the ACC and EER on
RAW for WM-Wsdan-Effb. This is mainly because the per-
formance of WM-Wsdan-Effb is already very high on RAW.
On the other two compression levels (i.e., HQ and LQ), our
PD module is able to improve the performance consistently
on all the four existing networks. For most of the existing
networks, more performance gain can be achieved using our
PD module on LQ, where the performance of the four ex-
isting networks are not satisfactory. After integrating the PD
module for the detection of LQ, the improvement of the AC-
C is 4.73%, 1.96%, 0.46% and 0.88% for the CNNDetec-
t, Xception, DSP-FWA, and WM-Wsdan-Effb, respectively.
Such improvements are reduced to 2.6%, 1.1% and 0.54%
for the CNNDetect, Xception and WM-Wsdan-Effb on HQ.
For the DSP-FWA, however, we are able to gain more im-
provement of the ACC (i.e., 5%) on the HQ than on the LQ.

3https://github.com/selimsef/dfdc deepfake challenge
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Method RAW HQ LQ
ACC AUC EER ACC AUC EER ACC AUC EER

CNNDetect (Wang et al. 2020a) 96.97 99.46 3.61 91.56 96.21 10.70 79.04 82.30 26.91
Xception (Rossler et al. 2019a) 98.60 99.68 1.61 94.33 97.92 7.31 84.41 84.15 24.25
DSP-FWA (Li and Lyu 2019) 98.44 99.57 1.76 86.70 90.26 17.89 81.05 74.45 32.80
WM-Wsdan-Effb (Zhao, Cui, and Zhou 2020) 99.50 99.87 0.52 94.62 98.02 6.41 85.23 87.50 21.03
CNNDetect+PD 98.70 99.78 1.28 94.16 98.06 6.84 83.77 84.86 23.81
Xception+PD 99.30 99.75 0.71 95.43 98.71 5.55 86.37 89.99 18.88
DSP-FWA+PD 99.25 99.66 0.81 91.70 96.25 10.63 81.51 80.37 27.81
WM-Wsdan-Effb+PD 99.43 99.87 0.57 95.16 98.51 5.46 86.11 89.29 18.79

Table 1: The performance on FaceForensics++ on different quality levels before and after the integration of our PD module.

Method Training Set Test Set (AUC (%))
DF F2F FS NT

Xception

DF 100.00 66.92 36.78 84.98
F2F 96.75 99.50 62.29 76.51
FS 67.85 75.81 99.96 59.46
NT 98.70 82.82 49.74 99.24

Xception+PD

DF 100.00 82.32 38.78 91.50
F2F 99.58 99.68 77.78 91.98
FS 83.49 93.27 100.00 82.12
NT 99.87 93.13 61.53 99.52

Table 2: Performance of cross-database evaluation on differ-
ent manipulation types in FaceForensics++.

Method Test Set (AUC (%))
DFD CD1 CD2 DFR

CNNDetect 89.70 67.03 75.99 22.11
Xception 93.45 65.90 73.27 60.18
DSP-FWA 90.14 59.93 68.06 58.15
WM-Wsdan-Effb 96.46 75.15 80.80 68.23
CNNDetect+PD 93.99 70.80 77.03 70.32
Xception+PD 95.74 68.23 74.22 65.57
DSP-FWA+PD 93.07 69.45 76.01 67.99
WM-Wsdan-Effb+PD 97.38 75.39 82.25 68.41

Table 3: Performance of the cross-database evaluation a-
mong different databases.

Cross-database Evaluation for the PD Module
On different manipulation types. By following the same
protocol as the work in (Chai et al. 2020; Dang et al. 2020),
we conduct cross-database evaluation between different sub-
sets in the FaceForensics++, where the AUC is served as the
indicator. In particular, we select one subset for training, and
then test the performance on the other three subsets. Both the
training and testing are carried out on the RAW level, and
we choose Xception as a representative network. The results
are given in Table 2. It can be seen that integrating our PD
module significantly improves the performance. For exam-
ple, when trained on FS training and test on the rest three
subsets, the improvements of the AUC are 15.64%, 17.46%
and 22.66% for DF, F2F and NT, respectively. This indicates

DPFL AMP ACC AUC EER

- - 84.41 84.15 24.25
X - 85.10 89.11 19.46
- X 83.42 82.46 25.53
X X 86.37 89.99 18.88

Table 4: Ablation studies on DPFL and AMP.

ACC AUC EER

Xception+DPFL 85.10 89.11 19.46
Xception+PD′ 85.57 88.94 19.46
Xception+PD 86.37 89.99 18.88

Table 5: Ablation studies on the adjacent matrix.

that our PD works well for the detection of unseen manipu-
lation types.

On different databases. Next, we conduct the cross-
database evaluation on different databases. In particular, we
carry out the training on the FaceForensic++ and the test-
ing on DFD, Celeb-df (CD1), Celeb-df (CD2) and DFR, the
results of which are shown in Table 3. We find that our PD
module can consistently improve the AUC for different net-
works. But the improvement here is less when compared
with the cross-database evaluation for different manipula-
tion types.

Ablation Studies
In this section, we conduct ablation studies on different com-
ponents of our PD module. All the ablation studies are car-
ried out on the LQ of FaceForensics++ with Xception as the
basic network.

DPFL and AMP. We gradually switch off the DPFL
and AMP in our PD module to see how the performance
changes. As shown in Table 4, we can see that using both of
them achieves the best performance, with 1.96% of higher
ACC than the original Xception, 1.27% higher ACC than us-
ing DPFL only, and 2.95% higher ACC than using the AMP
only. We observe that using the AMP along will degrade the
performance of the Xception, which indicates the effective-
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Patch importance ACC AUC EER

same score 85.53 88.32 20.36
proposed score 86.37 89.99 18.88

Table 6: Ablation studies on patch importance.

Method ACC AUC ACC AUC
RAW RAW HQ HQ

Face X-ray - 98.80 - 87.40
LRL 99.87 99.92 97.59 99.46
PCL - 99.79 - -
WM-Wsdan-Effb 99.62 100.00 96.59 99.49
WM-Wsdan-Effb+PD 99.62 100.00 98.48 99.92

Table 7: Comparisons of intra-database evaluation with the
state-of-the-art.

ness of our DPFL for representative patch feature learning.
Attention-based adjacent matrix. To demonstrate the

effectiveness of our attention-based adjacent matrix for mes-
sage passing. We replace it with an existing attention-based
adjacent matrix (PD′) which are learnt by a network (Chen
et al. 2019; Te et al. 2020). Table 5 gives the performance of
the Xception+PD by using different adjacent matrixes. It can
be seen that both are able to further improve the performance
compared with using only the DPFL (i.e., Xception+DPFL).
But using our explicitly computed adjacent matrix works
better than using the one learnt from a network.

Patch importance. When learning the patch features in
DPFL, we propose and incorporate a score to measure the
importance of each patch in the PPLoss. In order to see the
impact of the patch score, we conduct experiment by setting
the score of all the patches as 1, the results of which is shown
in Table 6. It can be seen that incorporating the proposed
patch scores is indeed helpful. So more emphasis should be
put on the patches containing edges of different regions.

Comparisons with the State-of-the-art
In this section, we compare the networks integrated with
the PD module against the state-of-the-art work including
the Face X-ray (Li et al. 2020b), LRL (Chen et al. 2021),
PCL (Zhao et al. 2021b) and Patch Forensics (Chai et al.
2020). All these works as well as our PD module require to
annotate the patches for training, and the work in (Li et al.
2020b) and (Zhao et al. 2021b) generate additional data from
the training set for augmentation. For fair comparison, we
follow the same protocols as suggested in these works to e-
valuate our method, where the results of the existing works
are duplicated from the literature.

First of all, we conduct the intra-database comparison on
FaceForensics++ by following the protocol given in (Li et al.
2020b; Chen et al. 2021; Zhao et al. 2021b). In particular, we
use the training sets of RAW and HQ in FaceForensics++ for
training, and the corresponding test set for testing. Table 7
gives the comparisons among different schemes. It can be
seen that, by integrating PD with WM-Wsdan-Effb, we can

Method Test Set (AUC (%))
DFD CD2

Face X-ray 95.40 -
LRL 89.24 78.26
PCL - 81.80
WM-Wsdan-Effb 96.46 80.80
WM-Wsdan-Effb+PD 97.38 82.25

Table 8: Comparisons of cross-database evaluation with the
state-of-the-art.

Method Training Set Test Set (AP (%))
DF NT F2F FS

Patch-Forensics

DF 99.41 74.99 71.74 58.74
F2F 84.39 80.88 97.66 63.21
FS 61.77 53.44 62.00 97.13
NT 70.32 92.23 65.04 52.79

Xception+PD

DF 100.00 89.57 83.18 42.63
F2F 99.62 91.40 99.58 79.04
FS 85.09 82.65 94.48 100.00
NT 99.87 99.14 92.79 61.60

Table 9: Comparisons of cross-database evaluation on dif-
ferent manipulation types in FaceForensics++.

achieve better performance than the existing scheme in most
of the cases.

We then conduct the cross-database comparison on DFD
and CD2 as suggested in (Li et al. 2020b; Chen et al. 2021;
Zhao et al. 2021b), where all the models are trained in
FaceForensics++. As shown in Table 8, our WM-Wsdan-
Effb+PD performs consistently better than the existing
schemes. Our scheme performs significantly better than the
LRL here, with over 8% higher AUC on DFD and around
4% higher AUC on CD2. When compared with (Li et al.
2020b) and (Zhao et al. 2021b), the improvement is not sig-
nificant because both of these schemes use additional data
for data augmentation. It might be a good choice to combine
such strategy with our proposed PD module.

Next, we compare our method with the Patch Forensics
(Chai et al. 2020) in Table 9, where the average precision
(AP) of Patch-Forensics are the best results on different X-
ception blocks reported in (Chai et al. 2020). It can be seen
that our method performs better than the Patch Forensics in
majority of the cases with over 10% higher AP.

Conclusion
In this paper, we propose a face manipulation detection mod-
ule by taking advantage of the graph network. This mod-
ule is termed as the Patch Diffusion (PD) module, which
consists of Discrepancy Patch Feature Learning (DPFL) and
Attention-Aware Message Passing (AMP). The DPFL learn-
s the patch features according to a newly designed Pairwise
Patch Loss. While the AMP performs the message passing
to diffuse the patches according to an adjacent matrix explic-
itly computed from the patch features. Various experiments
demonstrate the effectiveness of our PD module in the exist-
ing networks for face manipulation detection.
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