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Abstract

As a key characteristic in audio-visual speech recognition
(AVSR), relating linguistic information observed across vi-
sual and audio data has been a challenge, benefiting not
only audio/visual speech recognition (ASR/VSR) but also
for manipulating data within/across modalities. In this pa-
per, we present a feature disentanglement-based framework
for jointly addressing the above tasks. By advancing cross-
modal mutual learning strategies, our model is able to con-
vert visual or audio-based linguistic features into modality-
agnostic representations. Such derived linguistic representa-
tions not only allow one to perform ASR, VSR, and AVSR,
but also to manipulate audio and visual data output based on
the desirable subject identity and linguistic content informa-
tion. We perform extensive experiments on different recog-
nition and synthesis tasks to show that our model performs
favorably against state-of-the-art approaches on each individ-
ual task, while ours is a unified solution that is able to jointly
tackle the aforementioned audio-visual learning tasks.

Introduction
Audio-visual speech recognition (AVSR) is the task to per-
form speech recognition, with the aid of the observed visual
information (e.g., lip motion). On the other hand, audio-
visual speech synthesis can be viewed as an extension of
AVSR, aiming at generating realistic talking face video or
audio outputs. Such manipulated data outputs are condi-
tioned on either audio or visual information observed from
particular inputs (e.g., subjects), and the learning tasks such
as face-to-face, face-to-voice, voice-to-voice, and voice-to-
face conversion (Chen et al. 2018, 2019; van den Oord,
Vinyals, and kavukcuoglu 2017; KR et al. 2019; Prajwal
et al. 2020a,b; Song et al. 2019; Zhou et al. 2019) can be
viewed as the applications of audio-visual speech synthesis.

It can be seen that, for both audio-visual speech recogni-
tion and synthesis, one needs to extract representative fea-
tures from cross-modality (i.e., audio vs. visual) input data.
While extracting linguistic representation would be neces-
sary to realize the task of AVSR, modality-preserving in-
formation such as subject identity needs to be preserved for
data recovery/synthesis purposes. With the above two types
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Figure 1: Illustration of joint audio-visual speech recogntion
and manipulation. With decoupled linguistic and identity
spaces, we aim to perform six different intra/cross-modality
tasks, as noted in Table 1.

of representations derived, one can perform the aforemen-
tioned intra- or cross/inter-modality synthesis tasks such as
multi-speaker speaking synchronization (Zhou et al. 2019),
visual audio lip synchronization(Prajwal et al. 2020b), auto-
matic voice acting (Prajwal et al. 2020a), voice conversion
(Ding and Gutierrez-Osuna 2019), and audio-visual speech
separation (Gao and Grauman 2021). However, most exist-
ing works typically focus on addressing only one or few se-
lected tasks. For such cross-modality learning tasks, it would
be desirable to advance multi-task learning strategies to uti-
lize inputs across modalities for solving the above diverse
yet related learning tasks.

To extract linguistic features from given input data, tech-
niques of adversarial training, vector quantization (VQ),
or instance normalization (IN) (Chou, Yeh, and Lee 2019;
Ding and Gutierrez-Osuna 2019; van den Oord, Vinyals, and
kavukcuoglu 2017; Zhou et al. 2019) have been proposed.
However, previous studies (Ding and Gutierrez-Osuna 2019;
Zhang, Song, and Qi 2018) suggest that such techniques
might suffer from training instability or the degraded synthe-
sis data quality due to the design of the information bottle-
neck. Furthermore, performing audio-visual speech synthe-
sis requires learning from cross-modality data; how to per-
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Methods Face to Face Face to Voice Face to Text Voice to Voice Voice to Face Voice to Text
MSTCN - - X - - X
DSTCN - - X - - X
(Ren et al. 2021) - - X - - X
VAE+AdaIN - - - X - -
Grouped VQ-VAE - - - X - -
Lip2Wav - X - - - -
(Chen et al. 2018) - - - - X -
ATVGNet - - - - X -
LipGAN - - - - X -
Wav2Lip - - - - X -
DAVS X - X - X X
Ours X X X X X X

Table 1: Comparisons with recent audio-visual learning recognition and synthesis models. Note that Face to Text and Voice to
Text denote the tasks of visual and audio-based speech recognition, respectively.

form feature disentanglement across data modalities remains
a challenging task.

For example, one of the challenges in AVSR or synthesis
tasks would be the need to handle homophenes, which de-
scribe the fact that multiple sounds (phonemes) are audito-
rily distinguished from each other, but with correspondence
to some identical lip shapes (viseme); this is due to diverse
styles of speaking intonation, emotion, and stress. In other
words, modeling the lip-and-voice correspondence is con-
sidered among the obstacles, which requires one to handle
the ambiguity between audio and visual clues. Most existing
works learn a one-way mapping between visual and audio
data. For example, (Prajwal et al. 2020a) applies sequence-
to-sequence learning to map talking face video to voice data
for each speaker. (Zhou et al. 2019) applies the contrastive
loss to align visual and audio speech representation. Exten-
sions by (Chen et al. 2018; KR et al. 2019; Prajwal et al.
2020b) are realized by applying an extra discriminator to
improve the synchronization of generated talking face and
input voice. Although the promising voice-to-face result has
been achieved, these methods only deal with uni-direction
cross-modality synthesis, which cannot handle synthesis or
manipulation across visual-audio modality or across multi-
ple speaker identities.

In this paper, we propose a unified learning framework,
which can be applied to jointly address the tasks of audio-
visual speech recognition and manipulation (i.e., intra- and
cross-modality synthesis), as depicted in Figure 1. We ad-
vance feature disentanglement learning strategies, followed
by a linguistic module that extracts and transfers knowledge
across modalities via cross-modal mutual learning. This al-
lows us to extract linguistic and identity information from
cross-modality input data, while the linguistic representa-
tion would be modality agnostic realizing the task of AVSR.
Since we do not require adversarial learning techniques dur-
ing training, our model does not suffer from learning insta-
bility problems. With the ability to perform both recognition
and manipulation tasks within and across data modalities,
we summarize and compare with recent audio-visual learn-
ing models in Table 1.

The contributions of this paper are highlighted below:

• We present a unified framework for joint audio-visual
speech recognition and synthesis. The former takes in-
puts from either modality for speech recognition, while
the latter allows one to manipulate intra-/cross-modality
outputs with desirable information.

• To transfer linguistic knowledge between visual and au-
dio modalities, we advance cross-modal mutual learning
and learn a codebook which aligns cross-modality data,
producing modality-agnostic linguistic representation for
AVSR.

• Our framework allows manipulation of visual and/or au-
dio speech data, conditioned on the desirable linguistic or
subject identity information of the inputs observed from
the same or distinct modalities.

Related Works
Synthesis of Talking Faces: A number of approaches have
been proposed to perform talking face video generation,
conditioned on particular facial or audio inputs. For exam-
ple, (Zhou et al. 2019) adopts disentangle strategy to encode
lip movements and the appearance of the speaker with word
and identity labels as the guidance. To ensure each feature
without impurity, a strong information bottleneck, which
obstructs certain information from the other feature space,
is employed by adversarial training. Nevertheless, for lip
movement extraction, other unrelated features such as head
movement and facial expression are usually drawn with only
word labels as adversarial training targets. This leads to in-
accurate speech knowledge transfer since the speech feature
does not actually focus on lips dynamics only. On the other
hand, (KR et al. 2019; Prajwal et al. 2020b) directly com-
bine audio and visual identity features to generate videos,
with an additional discriminator deployed to ensure the syn-
chronization between audio and video data. As for (Chen
et al. 2019), it chooses to generate facial landmarks for syn-
thesizing talking face videos, based on the input audio as the
prior knowledge and guidance.
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Figure 2: Our proposed framework for audio-visual speech recognition and manipulation. Note that A/VSR is performed on the
cross-modal linguistic space formulated by linguistic encoders and the modality-sharing linguistic codebook and speech recog-
nizer. Together with modality-specific modules in identity space, desirable intra/cross-modality manipulation can be achieved.

Voice Synthesis: Recent approaches have demonstrated
promising results on voice-to-voice style transfer and text-
to-voice generation. For the task of voice-to-voice style
transfer, existing works (Chou, Yeh, and Lee 2019; Ding
and Gutierrez-Osuna 2019; van den Oord, Vinyals, and
kavukcuoglu 2017) utilize techniques of vector quantization
(VQ) and instance normalization (IN) as the speaker style
information bottleneck, which decouples linguistic informa-
tion from the audio signal while the speaker style informa-
tion is additionally embedded. However, such designs do not
consider the speaking style which might undermine the qual-
ity of the signal thus requiring additional modules for re-
finement. For the text-to-voice generation task, sequence-to-
sequence learning with attention mechanisms is applied to
synthesize mel-spectrograms in an auto-regressive manner
(Li et al. 2019; Shen et al. 2018). Despite impressive voice-
and-text results that have been shown, tasks of talking face to
voice are still under investigation due to the barrier posed by
homophenes. Recently, (Prajwal et al. 2020a) builds a model
for each individual speaker with similar architecture as the
text-to-voice model but conditions on the face sequence in-
stead of text. Nevertheless, this framework design requires
a large amount of training data for each individual speaker,
and thus the models cannot be easily extended to perform
voice synthesis for multiple speakers.

Audio/Visual Speech Recognition: Previous studies
have shown remarkable performance on audio speech recog-
nition (ASR) while visual speech recognition (VSR) is a
more challenging task due to the variety and ambiguity of lip
movements across speakers. For word-level speech recogni-
tion, (Feng et al. 2020; Stafylakis, Khan, and Tzimiropoulos
2018) adopt recurrent module for input sequence. However,

one typically needs to tackle the convergence issue of the
associated recurrent networks. Recent studies like (Ma et al.
2021; Martinez et al. 2020) adopt temporal convolution net-
works as an alternative to improve learning efficiency. As for
sentence-level speech recognition, previous works (Afouras
et al. 2018; Chan et al. 2016; Garcia et al. 2019; Zhang,
Cheng, and Wang 2019) aim at recognizing the character or
word sequence in a full sentence by sequence-to-sequence
learning. Regarding the difficulty of learning discriminative
linguistic features from long videos, a pretraining feature
extractor with word-level methods is adopted. Additionally,
due to improved performance of ASR over VSR, previous
works like (Ren et al. 2021; Zhao et al. 2020) distill knowl-
edge from models learned from audio or audio-visual data
to guide the VSR ones. However, existing methods typically
do not consider leveraging information from VSR to ASR
models.

Approach
Notations and Problem Formulation
We first define the notations to be used in this paper. Given
a visual-speech dataset of N videos D = {(xv

i , x
a
i , yi)}Ni=1,

we have xv
i , xa

i denote the talking face video and voice data
pair, and yi as the corresponding word label. Our goal is
to learn linguistic representation from cross-modality data
(i.e., xv

i and xa
i ), while modality-preserving information can

be extracted in visual and audio domains. The former can
be applied for visual-speech recognition by observing either
visual or audio inputs, while the latter allows one to recover
or manipulate desirable visual and/or audio data outputs.

Figure 2 depicts our proposed framework. As shown in
this figure, we have encoders Emf deployed for each modality
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and feature type (i.e., m ∈ {video, audio} and f ∈ {identity,
linguistic}) and modality-specific decoders Dm to produce
outputs for each modality. Note that the feature sm describes
the modality-preserving linguistic representation from ei-
ther modality, while pm indicates the modality-preserving
identity feature. To extract linguistic knowledge from visual
and audio data, we introduce a specialized cross-modal lin-
guistic module, which consists of a modality-invariant lin-
guistic codebook B and an audio-visual speech recognizer
SR. The former produces modality-agnostic linguistic rep-
resentation um, while the latter is applied for audio/visual
speech recognition. It is worth noting that um would not
contain any modality-specific information; the superscript
m simply indicates the origin modality where u is derived.

With the above-learned model, intra-modality and cross-
modality data synthesis can be performed. Take voice-to-
face synthesis for example. To manipulate the linguistic
knowledge conveyed in the form of lip movement in the talk-
ing face video, we extract the modality-specific identity fea-
ture pv from EvID and the modality-agnostic linguistic repre-
sentation ua from B, followed by visual decoderDv for pro-
ducing the desirable video output. As for audiovisual speech
recognition, we have SR take either uv or ua for predicting
the associated word-level labels.

Linguistic Knowledge Extraction via Cross-Modal
Mutual Learning
As depicted in Figure 2, we have a unique cross-modal
linguistic module in our framework, which aims at ex-
tracting linguistic features from either data modality for
audio-visual speech recognition. Together with the identity
features encoded by EvID or EaID, intra-/cross-modality data
recovery and manipulation can also be achieved. In order to
relate the visual and audio inputs during the extraction of the
above linguistic features, we particularly learn a linguistic
codebook B in this module. This codebook is shared by
cross-modality data while allowing a unified linguistic rep-
resentation derived from either modality for recognition and
synthesis purposes. We now detail the design of this module.

Linguistic Encoder Eling: For each data modality m ∈
{video, audio}, we have the encoder Emling to disentangle
linguistic information from the input data. For visual
modality, we focus on the lip region of the talking face
video xv and feed it to convolutional neural networks
to extract visual-based linguistic representation sv , as a
visual-modality preserving linguistic feature. As for audio
modality, we adopt a fully 1D convolution network to
process audio signals with arbitrary lengths, resulting in
the audio-based linguistic representation sa (as an audio-
modality preserving linguistic feature).

Modality-Invariant Linguistic Codebook B: To perform
AVSR with input data from either modality, one needs to
extract modality-agnostic representation from the aforemen-
tioned sv and sa, so that only word-level information would
be observed. Inspired by (Ding and Gutierrez-Osuna 2019),
we propose to learn a linguistic codebook B shared by the
visual-audio modality pair, with the goal to associate and

describe the linguistic information across features sv and
sa. Once this codebook is obtained, one would be able to
suppress the modality information presented in sv and sa,
with the resulting linguistic representation to be viewed as
modality agnostic.

We now detail the learning of this modality-invariant
codebook B and the derivation of modality-agnostic linguis-
tic representation u. For m ∈ {video, audio}, we have the
aforementioned linguistic feature sm described as a linear
combination of each modality-invariant codeword/basis in
B. To be more precise, we learn the linguistic codebook
B = {bj}nj=1, where bj ∈ Rd and n is the total number of
bases. To represent sm, the weight wm ∈ Rn×1 is calculated
by the pairwise similarity between sm and each basis bj of
B. And, the above similarity is measured by the Euclidean
distance with an extra softmax layer for normalization. This
then produces the soft-quantized modality-agnostic linguis-
tic representation um:

um = Bwm. (1)

It is worth noting that, in order to encourage B to encode
linguistic knowledge shared by both modalities, we calcu-
late and suppress the Kullback-Leibler Divergence (KLD)
between the basis weights derived by visual and audio
modalities. This is to enforce that cross-modality inputs
would have a shared linguistic representation, allowing the
subsequent speech recognition or visual/audio data synthe-
sis. In other words, we introduce the cross-modality linguis-
tics alignment loss by calculating:

Lling align = KL(wa||wv) +KL(wv||wa), (2)

where wa and wv denote the similarity weights derived for
audio and visual modalities, respectively.

Audio-Visual Speech Recognizer SR: We deploy an au-
dio visual speech recognizer SR to perform either visual
or audio-based speech recognition on uv or ua. Using the
classification loss Lcls as the objective, the learning of SR
also guides the learning of encoders Emling and the modality-
invariant linguistic codebook B.

Since modality-agnostic linguistic representations from
visual and audio data are expected to realize the same task
of speech recognition, we further align the associated pre-
diction distributions across these two modalities. Inspired by
the work of (Zhang et al. 2018), we choose to calculate the
following prediction alignment loss:

Lpred align = KL(da||dv) +KL(dv||da), (3)

where da and dv are the word prediction distributions of
audio and visual modality. It can be seen that, this pre-
diction alignment term also serves as a guidance for sync-
ing and relating visual and audio data. Together with the
cross-modality linguistics alignment loss, the learned code-
book B and modality-agnostic linguistic representation um

would better align the visual and audio features, which not
only benefit audio visual speech recognition but also cross-
modality data synthesis. Thus, we have Lmml sum up Lcls,
Lling align, and Lpred align as the objective for cross-modal
linguistic mutual learning.
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Intra/Inter-Modality Visual-Speech Synthesis
In addition to learning linguistic features for audio visual
speech recognition, our learning model also performs intra-
/inter-modality visual-speech synthesis with the deployed
modality-specific identity encoders and decoders. We now
discuss the design and learning of these modules.

Modality-Specific Identity Encoder EID: The identity
encoder in Figure 2 is to encode identity information from
the input data of either modality. Take the visual data input
for example. EvID disregards any linguistic information
(e.g., speech information carried by lip movements) while
preserving the visual identity information. To learn this
encoder, we consider two types of visual inputs: the talking
face video with lip region masked as head pose prior, and
the first frame in the video sequence as the lip appearance
prior. By jointly passing the above visual inputs into EvID,
the visual-preserving identity features of visual modality pv

would be extracted. When encoding the identity information
(e.g., speaker style) from audio data, we feed xa into a fully
convolutional network EaID, followed by temporal pooling
to extract the feature. This is to enforce that the resulting
feature pa only contains audio identity information.

Modality-Specific Decoder D: For both visual and audio
modalities, we deploy a decoder for each to generate the
output data with the desirable identity and linguistic infor-
mation. Take visual modality for example. We concatenate
pv with the linguistic representation uv processed by our lin-
guistic module, which jointly serves as the input to the visual
decoder Dv , which is a 2D deconvolutional network. As for
producing audio outputs, we have a 1D deconvolution net-
work as the audio decoder to produce mel-spectrogram.

During the training of audio and video synthesis tasks, we
apply L1 reconstruction loss; moreover, an additional lin-
guistic cycle consistency is calculated for the visual modal-
ity, which is to ensure that the synthesized linguistic rep-
resentation would be consistent with the referenced input
video/audio. Taking face synthesis as an example, we cal-
culated the following loss functions:

Lv
rec = Ex∼D||Dv(uv

i , p
v
i )− xv

i ||1
+Ex∼D||Dv(ua

i , p
v
i )− xv

i ||1,
(4)

Lcyc = ||Evs (Dv(um
j , pvi ))− svj ||1. (5)

As for audio synthesis, the objective function considered is:

La
rec = Ex∼D||Da(ua

i , p
a
i )− xa

i ||1
+Ex∼D||Da(uv

i , p
a
i )− xa

i ||1.
(6)

We have Lsyn sum up the above losses as the final objective
function for visual-speech synthesis. Thus, the full learning
objective for our proposed framework is defined as:

L = Lmml + Lsyn. (7)

Once the learning of our framework is complete, intra-
and cross-modality synthesis can be performed using input
data of the desirable modality.

Experiments
Datasets
LRW (Chung and Zisserman 2016): Known for its variety
of speaking styles and head poses across subjects, LRW
is an English-speaking video dataset collected from BBC
programs with more than 1000 speakers. The vocabulary
size is 500 and each video is 1.16 sec long (29 frames) with
target word and context before and after involved.
LRW-1000 (Yang et al. 2019): LRW-1000 is a Mandarin-
speaking video dataset collected from more than 2,000
subjects with 1,000 vocabulary size. The videos provided
are of various lengths and only focus on the lip region.

Implementation Details
We implement our model using Pytorch. For visual modal-
ity, we adopt a simplified ResNet-18 as the identity encoder
and a modified ResNet-18 as the speech encoder with the
first 2D convolution layer replaced by a 3D convolution
layer to better capture temporal dynamics. The decoder is a
fully deconvolutional network to reconstruct the whole input
video, with skip-connection from the identity encoder to the
decoder deployed to improve the video quality. For the au-
dio modality, the identity encoder is a fully 1D convolution
network, and the speech encoder is similar to the identity
encoder but without temporal pooling. The amount of ba-
sis vectors in the modality-invariant module is 256. For the
speech recognizer, we adopt the same architecture as (Mar-
tinez et al. 2020), a variant of temporal convolution network
which adopts multiple kernel sizes to increase the receptive
field so as to capture different level temporal dependencies,
to learn the linguistic knowledge efficiently. AdamW is used
as the optimizer for training with weight decay 5× 10−4 as
regularization. For the linguistic and synthesis modules, ini-
tial learning rates of 3 × 10−4 and 1 × 10−4 with a sched-
ule of reduction are applied, respectively. We follow the
pre-processing procedures of (Prajwal et al. 2020a; Chen
et al. 2019; Feng et al. 2020) for the input audio and vi-
sual data, while we change the window and hop length to 20
ms and 5 ms for mel-spectrogram extraction for video syn-
chronization. Griffin-Lim algorithm (Griffin and Lim 1984)
is adopted to convert mel-specrogram back to a waveform.

Evaluation Metrics
We take the following metrics to evaluate the intra-/cross-
modality synthesis tasks. As for audio/visual speech recog-
nition tasks, top-1 accuracy is considered.
Peak Signal-to-Noise Ratio: PSNR is an image quality
measurement, computes the ratio between the maximum
possible power of a signal and the power of noise.
Structural Similarity: SSIM reflects the perceived quality
of the reconstructed image by measuring the similarity be-
tween the original and generated image.
(Extended) Short-Time Objective Intelligibility : STOI
is correlated with the intelligibility of the audio signal via
a simple time-frequency-decomposition while ESTOI func-
tions the same as STOI but does not assume mutual indepen-
dence between frequency bands during calculation.
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Method Task PSNR SSIM LSA.
DAVS Intra 26.8 0.88 12.2
Ours 33.4 0.96 22.1
DAVS

Cross

26.7 0.88 10.7
ATVGNet 30.9 0.81 12.3
LipGAN 33.4 0.96 11.3
Wav2Lip 31.2 0.93 23.2
Ours 32.46 0.95 27.7

Table 2: Quantitative evaluation of talking face video gen-
eration. Note that Intra and Cross indicate face-to-face and
voice-to-face generation, respectively.

Method Task STOI ESTOI PESQ
VQ-VAE Intra 0.852 0.720 1.943
Ours 0.866 0.746 2.248
Lip2Wav Cross 0.543 0.344 1.197
Ours 0.571 0.363 1.540

Table 3: Quantitative evaluation of voice generation. Note
that Intra and Cross denote voice-to-voice and face-to-voice
generation, respectively.

Perceptual Evaluation of Speech Quality: PSEQ measures
the perceptual quality of audio via analyzing specific audio
parameters such as variable delays and transcoding.
Lip Sync Accuracy: To evaluate if linguistic knowledge
is well-preserved after voice/face-to-face synthesis, we ran-
domly sample audio/visual-visual pairwise data and perform
synthesis followed by VSR with a pretrained classifier re-
leased by (Martinez et al. 2020). The recognition result is
expected to be the same as the one of the reference audio/vi-
sual input. We denote this metric as LSA in Table 2.

Quantitative Evaluation
With six different tasks (i.e., face-to-face, face-to-audio,
audio-to-audio, audio-to-face, and audio/visual speech
recognition) considered, we only compare our proposed
framework with SOTA methods for each due to page
limitation. We consider the LRW dataset for audio-visual
speech recognition and intra-/cross-modality synthesis,
while the LRW-1000 dataset is only for AVSR since it only
contains videos frames of lip regions.

Intra-Modality Synthesis: Face-to-face conversion can
be achieved via passing the specified visual identity and
modality-agnostic linguistic features into the visual decoder.
To assess the quality of the output visual data, two stan-
dard quality metrics are considered: PSNR and SSIM. Table
2 lists and compares the performances of our method and
DAVS, which disentangles linguistic knowledge from the
identity feature via adversarial learning to achieves the face-
to-face conversion and is the most related work which fo-
cused on the transfer of linguistic knowledge as ours. From
this table, we observe that our model consistently produced
improved visual quality over DAVS, which tends to produce

outputs with diverse quality due to its adversarial learning
design. Furthermore, we see that our video with derived lin-
guistic features achieved satisfactory performances in lip ac-
curacy, outperforming those derived by DAVS.

Voice-to-voice conversion can be achieved following
the same procedure as face-to-face conversion but using
audio data. To evaluate the synthesis quality, three metrics
are considered: STOI, ESTOI, and PESQ. We compare
the linguistic representation extracted by VQ-VAE on the
generated audio quality. From the results shown in Table 3,
we see that our model is able to produce audio data without
deteriorating the auditory information. This is mainly
due to our derivation of soft-quantized modality agnostic
representation in our linguistic module; this also explains
why our model performed favorably against the standard
vector quantization based method VQ-VAE.

Cross-Modality Synthesis: To generate talking face video
condition on particular voice data, we pass the visual iden-
tity feature and modality-agnostic linguistic feature from the
audio modality to the visual decoder. We evaluate the syn-
thesis video on the LRW dataset following the same met-
rics for video quality considered in previous works, and we
present the results in the lower part of Table 2. In addi-
tion, we repeat the evaluation protocol in face-to-face syn-
thesis on the extracted linguistic features; this is to verify
whether the linguistic content of the synthesized video is
consistent with that of the referenced audio input. From this
table, we see that our model produced satisfactory voice-to-
face video outputs. It is worth noting that although recent
approaches were also able to produce realistic output, they
cannot achieve comparable lip accuracy as ours did. This
verifies our learning and transfer of modality-agnostic lin-
guistic knowledge across modalities.

Similar to the voice to face cross-modality synthesis,
face-to-voice generation can be achieved via combining
the audio identity feature and modality-agnostic linguistic
representation from visual modality. We evaluate on LRW
with the same metrics introduced in the previous work,
Lip2Wav, and report the results in Table 3. As demon-
strated, the quality of voice generated with our framework
was above those reported by recent works. We refer such
improvements to the learning of our modality-invariant
linguistic codebook, which allows the output data to be
based on the related and representative linguistic features.
Besides, we also found that the linguistics alignment loss
would be a key factor, as we later verify in our ablation
studies.

Audio/Visual Speech Recognition: To evaluate the pro-
posed framework for visual and audio speech recognition,
we adopt top-1 accuracy as the metric and report the results
in Table 4. In this table, we compare our method with previ-
ous works using data from either single modality or multi-
modalities. Note that DAVS is the only multi-task learn-
ing model (as ours is) while the rest focused on individual
task only. Besides, (Ren et al. 2021) is also a distillation-
based method which learns from a master module taking
both audio and visual data as input. From the results listed

3041



Reference 
input audio:

Reference
input video:

(a) 

(b) 

Figure 3: Example of intra/cross-modality synthesis: (a) face-to-voice & face-to-face synthesis, and (b) voice-to-face and voice-
to-voice synthesis. Note that i, j, and k denote the indices of subjects of interest. Taking face-to-voice generation in (a) for
example, (xv

r , yr) denotes the reference video of subject r speaking word yr and (xa
i , yi) as audio with subject i of interest, and

we have (xv→a
i , yr) denote the synthesized audio of the same subject i while speaking word yr.

Methods Rec. Backbone LRW LRW-1000
Visual Audio Visual

DAVS None 67.5 91.8 -
Bi-LSTM LSTM 84.3 - -
MSTCN ResNet 85.3 98.5 41.4
DSTCN SEDenseNet 88.4 - 43.7
Bi-GRU GRU 85.0 - 48.0

(Ren et al. 2021) Transformer 85.7 - -
Ours w/o syn. ResNet 88.4 98.5 50.5

Ours ResNet 88.5 98.4 50.3

Table 4: ASR/VSR comparisons in terms of Top-1 Accuracy.
Note that Rec. Backbone denotes the architecture adopted in
the speech recognizer.

in this table, it can be seen the model-agnostic linguistic rep-
resentation learned by proposed cross-modal mutual learn-
ing achieves promising recognition performances. Addition-
ally, we see that the enforcement of the loss for synthe-
sis can probably degrade the audio recognition performance
slightly. This is expected (as a tradeoff), since adding such a
data recovery loss allows our model to perform intra-/inter-
modality synthesis tasks. We note that ablation studies can
be found in the supplementary material to show the effec-
tiveness of our proposed framework. It is worth repeating
that, from the above experiments, we confirm that our model
not only produces high-quality talking face video and voice

output, but also achieves high ASR/VSR accuracy and per-
forms favorably against most previous works.

Qualitative Evaluation
We now consider the intra/cross-modality synthesis tasks,
including face-to-face, face-to-voice, voice-to-voice, and
voice-to-face conversion. In Fig. 3, we demonstrate the qual-
itative result of our approach, especially for face-to-face and
voice-to-face synthesis in a frame-by-frame manner. From
the face sequence in Fig. 3, we can observe that the duration
and extent of the mouth opening are consistent with the ref-
erence audio/visual input. Please refer to our supplementary
material for a more comprehensive demonstration.

Conclusion
In this paper, we proposed a unified framework for audio-
visual speech recognition and synthesis. We advance cross-
modal mutual learning for aligning linguistic information
across visual and audio data, resulting in modality-agnostic
representation for ASR/VSR. By preserving modality-
specific identity features from either modality, our model
can be applied to manipulate intra-/cross-modality data out-
puts with desirable audio or visual information. Exten-
sive experiments were conducted on the challenging LRW
and LRW-1000 benchmark datasets, which qualitatively and
quantitatively demonstrated the effectiveness of our model
over state-of-the-art audio-visual learning approaches in
recognition and synthesis tasks.
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