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Abstract

In this paper, we propose a vision-language pre-training
model, Clinical-BERT, for the medical domain, and de-
vise three domain-specific tasks: Clinical Diagnosis (CD),
Masked MeSH Modeling (MMM), Image-MeSH Matching
(IMM), together with one general pre-training task: Masked
Language Modeling (MLM), to pre-train the model. The CD
task helps the model to learn medical domain knowledge by
predicting disease from radiographs. Medical Subject Head-
ings (MeSH) words are important semantic components in
radiograph reports, and the MMM task helps the model fo-
cus on the prediction of MeSH words. The IMM task helps
the model learn the alignment of MeSH words with radio-
graphs by matching scores obtained by a two-level sparse at-
tention: region sparse attention and word sparse attention. Re-
gion sparse attention generates corresponding visual features
for each word, and word sparse attention enhances the con-
tribution of images-MeSH matching to the matching scores.
To the best of our knowledge, this is the first attempt to learn
domain knowledge during pre-training for the medical do-
main. We evaluate the pre-training model on Radiograph Di-
agnosis and Reports Generation tasks across four challenging
datasets: MIMIC-CXR, IU X-Ray, COV-CTR, and NIH, and
achieve state-of-the-art results for all the tasks, which demon-
strates the effectiveness of our pre-training model.

Introduction
Vision-Language (VL) pre-training aims to learn general
representations between images and text, that can help to im-
prove the performance of downstream tasks such as Visual
Question Answering, Visual Grounding, and Image Cap-
tioning. Many BERT (Devlin et al. 2018) based pre-training
methods (Zhou et al. 2020; Huang et al. 2021; Zhuge et al.
2021) are proposed recently, and achieve promising perfor-
mance under the context of general domain.

However, there are only few researches about VL pre-
training for medical domain, in which there are also many
vision-language tasks such as radiograph diagnosis (Ra-
jpurkar et al. 2017) and reports generation (Jing, Xie, and
Xing 2018; Chen et al. 2020b). Directly applying the model
pre-trained in general domain to medical domain will cause
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The young man are playing a game of soccer in the field.
Two teams are playing soccer on the grass.
Soccer teams compete to keep the ball on their side.
A couple of guys kicking a soccer ball around.
A group of young men playing a game of soccer.

Frontal and lateral views of the chest. the lungs are 
clear. There is no pleural effusion or pneumothorax or 
focal consolidation. The cardiomediastinal and hilar 
contours are unremarkable.

MeSH: Lungs | Pleural Effusion | Pneumothorax | …

Figure 1: Comparison of sentences in different domains. Ra-
diograph reports are less diverse compared to natural lan-
guage captions. In the upper part, words highlighted in same
color indicate same semantic. In the bottom part, words
highlighted are full matches (green) or sub-matches (yellow)
for MeSH.

performance degradation since the two domains have differ-
ent characteristics.

For example, radiograph report generation is similar to
image captioning, but the radiograph report needs to be more
exact than natural captions. As shown in Figure 1, in the five
captions of the first image, the people are stated as ”men”,
”teams” or ”guys”; their actions are expressed as ”play”,
”keep” or ”kick”; the soccer is expressed as ”soccer” or
”ball”. Such expressions with synonyms do not change the
semantic information of sentences. However, radiograph re-
ports requires the use of Medical Subject Headings (MeSH)
words, such as ”Lungs” and ”Pleural Effusion”, which are
unique in expression and are important semantic compo-
nents in the reports. It is logical that the MeSH words require
more focus than other words.

As mentioned above, currently, there are only few re-
searches about VL pre-training for medical domain. In cur-
rent researches, models are usually pre-trained by gen-
eral pre-training tasks such as Masked Language Modeling
(MLM) and Image Report Matching (IRM). In these tasks,
MeSH words and other words are treated equally, which ig-
nores the important domain knowledge. The MeSH words
should receive more attention in pre-training tasks, which
can enable the pre-trained model to learn domain knowledge
and obtain better performance in the downstream tasks.
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Therefore, we propose a VL pre-training model Clinical-
BERT, which can learn the knowledge of medical domain
through three domain-specific pre-training tasks. The three
tasks are Clinical Diagnosis (CD), Masked MeSH Model-
ing (MMM), and Image-MeSH Matching (IMM). In the CD
task, we treat it as a multi-label classification problem, that
is, to predict diseases from radiographs, that learns medi-
cal domain knowledge. The MMM task and IMM task fo-
cus on the MeSH words. In the MMM task, we randomly
mask MeSH words instead of arbitrary words to help the
model focus on MESH words. In the IMM task, we de-
sign a two-level sparse attention: region sparse attention and
word sparse attention, to help the model learn the alignment
of MeSH words with radiographs. The region sparse atten-
tion obtains region features that match each word, and word
sparse attention assigns higher weights to the MeSH words.
We also pre-train our model by Masked Language Model-
ing (MLM) task, in which both sequence to sequence and
bidirectional prediction are employed as objectives.

Our model is pre-trained on MIMIC-CXR (Johnson et al.
2019), which contains large mounts of image-report pairs.
We evaluate the pre-trained model on two downstream tasks:
radiograph report generation and radiograph diagnosis. The
radiograph report generation task is conducted on MIMIC-
CXR, COV-CTR (Li et al. 2020b) and IU X-Ray (Demner-
Fushman et al. 2016), and the radiograph diagnosis task is
conducted on NIH ChestX-ray14 (Wang et al. 2017) dataset.
The proposed pre-training model achieves promising per-
formance on both tasks, which demonstrates that the pre-
trained model can benefit greatly from the learning of med-
ical domain knowledge. The contributions of this paper can
be summarized as follows:

• We propose a VL pre-training model, which can learn
medical domain knowledge to improve the performance
of downstream tasks in medical domain. To the best of
our knowledge, this is the first attempt to learn domain
knowledge during pre-training for the medical domain.

• We design three domain-specific pre-training tasks to
learn domain knowledge: the CD task learns a multi-label
classification for diagnosis, the MMM task focuses on
the predication of MeSH words and the IMM task aligns
images and reports through region and word sparse atten-
tion.

• We conduct extensive experiments on downstream tasks
of radiograph diagnosis and report generation, and
achieve state-of-the-art performance on both tasks.

Related Works
Vision-Language Pre-training
Pre-training models, such as BERT (Devlin et al. 2018),
have recently achieved revolutionary progress in language
tasks, and many BERT-based cross-modal pre-training mod-
els are proposed for VL understanding or generation tasks.
These models can be categorized into two types: single-
stream models (Su et al. 2020; Zhou et al. 2020; Li et al.
2020c; Hu et al. 2021) and two-stream models (Lu et al.
2019; Murahari et al. 2020; Li et al. 2020a). Generally,

single-stream models feed different modalities in a uni-
fied Transformer (Vaswani et al. 2017) encoder, while two-
stream models adopt different Transformer encoders to pro-
cess different modalities. Li et al. (Li et al. 2019b) proposed
a single-stream model that reuses the self-attention to im-
plicitly align the elements of input text and regions. Zhou et
al. (Zhou et al. 2020) proposed a unified pre-training model
with sequence to sequence and bidirectional prediction as
objectives, and adapted the model to both understanding and
generation tasks. Zhuge et al. (Zhuge et al. 2021) proposed
to pay more attention to image-text coherence for the fash-
ion domain.

For medical domain, some pre-training models (Lee et al.
2020; Zhang et al. 2020a) were proposed for single modal-
ity, and achieved promising results. Recently, Moon et al.
(Moon et al. 2021) employed multi-modal pre-training for
the medical domain, and proposed the Medical Vision Lan-
guage Learner (MedViLL). However, they not fully utilized
the domain knowledge. Different from current researches,
we focus on pre-training the model with the medical domain
knowledge.

Radiograph Reports Generation
Radiograph report generation receives more and more atten-
tion recently. The existing methods are divided into hierar-
chical models (Jing, Xie, and Xing 2018; Li et al. 2019a;
Zhang et al. 2020b; Jing, Wang, and Xing 2019; Liu et al.
2019; Ni et al. 2020; Yang et al. 2021; Liu, Ge, and Wu
2021) and Transformer-based models (Chen et al. 2020b;
Liu et al. 2021) .

In hierarchical models, reports are learned and gener-
ated hierarchically. Jing et al. (Jing, Xie, and Xing 2018)
proposed the CoAtt, a co-attention model to generate ra-
diograph reports hierarchically. Zhang et al. (Zhang et al.
2020b) extracted disease relationships from reports as prior
knowledge and represented them as knowledge graphs,
which improved the accuracy of generated reports.

Different from hierarchical models, the Transformer-
based models learn the reports in one forward process. Chen
et al. (Chen et al. 2020b) proposed a memory-driven Trans-
former, which can record key information of the generation
process to assist the reports generation.

Radiograph Diagnosis
Radiograph diagnosis is a hot research topic, and lots of
researches (Wang et al. 2018; Rajpurkar et al. 2017; Li
et al. 2018; Luo et al. 2020; Yan et al. 2018; Chen et al.
2020a) have been proposed and achieved promising results.
CheXNet (Rajpurkar et al. 2017) is a benchmark model pre-
trained on ChestX-ray dataset. Luo et al. (Luo et al. 2020)
introduced external data to assist the diagnosis and achieved
excellent results.

Clinical-BERT
VL pre-training has achieved impressive results on cross-
modal tasks under the context of general domain. However,
applying these models directly to the medical domain would
achieve poor results because of the domain gap. Therefore,
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Clinical-BERT

Masked Language Modeling (MLM)

Masked MeSH Modeling (MMM)

The lungs are low in volume.

The lungs are [MASK] in volume.

The [MASK] are low in volume.
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Encoded Features
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Figure 2: The architecture of Clinical-BERT. The BERT encoder is adopted to learn vision and language representation jointly.
The CD, MMM, and IMM are devised domain-specific tasks. Words highlighted are MeSH words.

we propose the Clinical-BERT to learn the knowledge of the
medical domain for medical tasks.

The overall architecture of the proposed Clinical-BERT
is shown in Figure 2. There are three domain-specific pre-
training tasks: Clinical Diagnosis (CD), Masked MeSH
Modeling (MMM), and Image-MeSH Matching (IMM), and
one general pre-training task: Masked Language Modeling
(MLM). The single-stream BERT-base (Devlin et al. 2018)
is adopted as the backbone to model both vision and lan-
guage representations in a unified semantic space.

Input Representations
Given a radiograph and the corresponding report, we first
extract visual features f ∈ RC×H×W from the radiograph
by employing a convolutional neural network, where C is
the number of feature channels,H andW are the height and
width of features, respectively. We collapse the spatial di-
mensions of f and obtain H ×W feature vectors fi ∈ RC

where fi denotes the i-th feature vector. Then, the words
in the report are embedded as word embeddings, and visual
features and word embeddings are concatenated to obtain
token embeddings, including the embeddings of special to-
kens [CLS], [SEP], [PAD], [UNK], and [MASK]. [CLS] in-
dicates the start of the visual input. [SEP] is used to split the
visual and linguistic input, and is also used as the end of the
input. [PAD] is a language token used to pad the word se-
quence to a specified length. [UNK] denotes the filtered out
words which occur less than three times. [MASK] is used
to replace language tokens, and the replaced tokens will be
predicted during the pre-training.

Then, input embeddings I are obtained by adding token
embeddings with positional embeddings and segment em-
beddings. In particular, the position sequence of visual input
is marked as 1 for positional embeddings, and segment em-
beddings contain vision (Img) and language (Text) tags. The
input embeddings are fed into the BERT encoder to obtain
encoded features E, and the encoded features are fed into
the followed task-specific networks.

Pre-training Tasks
Clinical Diagnosis (CD). We use the CheXpert (Irvin
et al. 2019) labels as the disease annotation, which contains
14 categories of diseases. For each disease, there are four
tags: positive, negative, uncertain, and absent. Specifically,
we adopt the ”U-Zeros” strategy to handle the source an-
notations, that is, all positive tags are marked as 1, and the
others are marked as 0. Then, the CD task turns to be a multi-
label classification problem.

In this task, diseases are predicted according to both vi-
sion and language modalities. We take the encoder output
E[CLS] on the special token [CLS] as holistic visual rep-
resentations and the E[SEP ] on the first [SEP] as holistic
linguistic features. These features are learned with bidirec-
tional objective, that is, tokens are encoded based on their
surrounding tokens. Then, the Hadamard product of E[CLS]

and E[SEP ] is obtained as the joint representation, which is
fed into a neural network for disease prediction. The neural
network consists of two fully connected (FC) layers and one
ReLU activation layer, and the Sigmoid function is applied
to predict scores between 0 and 1. The binary cross-entropy
loss is employed for optimization:

LCD = − 1

N

N∑
i=1

ED [di log pi + (1− di) log (1− pi)] , (1)

where N = 14 is the number of diseases, di ∈ {0, 1}
indicates the presence or absence of the i-th disease, pi is
the predicted scores, and D denotes the dataset.

Masked MeSH Modeling (MMM). MeSH words are im-
portant for describing radiographs, hence the MMM task is
proposed to focus on the prediction of MeSH words, which
can help the model to learn the domain knowledge. Denote
radiograph and the corresponding report as X and Y , re-
spectively, where Y = {y0, ..., yl, ..., yL−1}, yl is the l-th
word in the report, and L is the length of the report. We
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Figure 3: The details of the two-level sparse attention.
Firstly, region features vl are generated by the RSA. Then,
matching scores for image-words pairs are generated by the
WSA. The dotted line indicates the word encoding process.

label MeSH words in the report according to the MeSH ta-
ble (Lipscomb 2000), and get tags T = {t0, ..., tl, ..., tL−1},
where tl ∈ {0, 1}. tl = 1 denotes that the l-th word is a full
match or sub-match of the MeSH words, and tl = 0 denotes
that the l-th word does not match the MeSH words. All the
MeSH words in reports have an 80% chance of being re-
placed with [MASK] tokens, 10% chance of being replaced
with random MeSH words, and 10% change of remaining
unchanged.

The MMM task is to predict masked MeSH words based
on the tokens on their left and the visual features f . The en-
coded features E[MASK] on the l-th [MASK] token, which
is learned based on {y0, ..., yl−1} and f with sequence to
sequence objective, is projected to words likelihood to pre-
dict words. The prediction network consists of two FC lay-
ers, one normalization layer, and one ReLU layer. The cross-
entropy loss is used for optimization:

LMMM = −E(f,y)∼D [tl log p (yl | y0, ..., yl−1, f)] , (2)
Masked Language Modeling (MLM). In the MLM task,
15% of the language tokens are replaced by [MASK], ran-
dom tokens, and original tokens with 80%, 10%, and 10%
chance, respectively. Specifically, MeSH words are not con-
cerned in this task. The tokens behind the current token are
invisible in the generation task, so for better adaptation to
the generation task, we follow VLP (Zhou et al. 2020) to set
two objectives: bidirectional (bi) prediction and sequence to
sequence (s2s) prediction.

The goal is to predict the masked words, and the predic-
tion process is similar to the MMM task. The MLM task
shares the prediction network with MMM task, and adopts
cross-entropy loss LMLM = Ls2s + Lbi for optimization:

Ls2s = −E(f,y)∼D [log p (yl | y0, ..., yl−1, f)] , (3)

Lbi = −E(f,y)∼D
[
log p

(
yl | y\l, f

)]
, (4)

where y\l is the surrounding tokens of the l-th word.

Image-MeSH Matching (IMM). In the IMM task, we
align the images and MeSH words in a certain latent space
by learning a cross-modal matching score. Inspired by
Zhang et al. (Zhang et al. 2021), we propose a two-level
sparse attention to learn the alignment: region sparse atten-
tion (RSA) and word sparse attention (WSA), as illustrated
in Figure 3.

The RSA generates aligned region features for each word.
This process mimics the focus of radiologists’ interest when
writing reports according to different observations. In par-
ticular, we regard each visual feature vector fi as a region
feature according to their perception field. Then, the re-
gion feature aligned to the l-th word can be formulated as
vl =

∑C
i=1 αl,ifi, where C is the number of regions, αl,i is

the corresponding weight. The αl,i is formulated as:

αl,i =
exp (ρ1 cos (el, fi))∑C

h=1 exp (ρ1 cos (el, fh))
, (5)

where el is the encoded feature of the l-th word, cos (·) is co-
sine similarity function. ρ1 is a sharpening hyper-parameter,
that approximates formula (5) to the argmax function when
ρ1 →∞.

Like the radiologists usually focusing on multiple while
a small percent of regions in the radiograph, we employ a
sparse attention mechanism to force the model to focus on
a small set of critical regions. The top K weights are main-
tained, with the rest of the weights are set to negative infinity.
Then, the weight αl,j is overwritten by employing Softmax
normalization to the revised weights αK

l,j :

αl,j =
exp

(
αK
l,j

)
∑R

j=1 exp
(
αK
l,j

) . (6)

The WSA forces the model to focus on semantic com-
ponents in the report to increase the contribution of MeSH
words to the matching score. Firstly, the matching score
of the encoded features el of the l-th word and aligned
region features vl is obtained by cosine similarity: sl =
βl cos(el, vl), where β is obtained by employing Softmax
normalization to MeSH tags T : β = Softmax(T ). Then,
the matching score between radiograph and corresponding
report is calculated as formula (7), which is also the loss
function of the IMM:

LIMM = −ED

log( L∑
l=1

exp (ρ2sl)

) 1
ρ2

/τ

 , (7)

where ρ2 and τ are sharpening hyper-parameters. In prac-
tice, we set ρ1 = ρ2 = 4 and τ = 0.01. It should be noted
that the calculation of formula (7) excludes the samples in-
volved in the MMM. The reason is that replacing MeSH
words in such samples by other words will result in image
mismatches.

The overall pre-training loss is:

L = LCD + LMMM + LMLM + LIMM . (8)
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Dataset Model B@1 ↑ B@2 ↑ B@3 ↑ B@4 ↑ R ↑ C ↑

IU X-Ray

R2Gen (Chen et al. 2020b) 0.470 0.304 0.219 0.165 0.371 -
CMN (Chen et al. 2021) 0.475 0.309 0.222 0.170 0.375 -
KERP (Li et al. 2019a) 0.482 0.325 0.226 0.162 0.339 0.280
PPKED (Liu et al. 2021) 0.483 0.315 0.224 0.168 0.376 0.351
Ours 0.495 0.330 0.231 0.170 0.376 0.432

COV-CTR

ST (Vinyals et al. 2015) 0.697 0.621 0.568 0.515 0.723 0.659
COATT (Jing, Xie, and Xing 2018) 0.709 0.645 0.603 0.552 0.748 0.672
ASGK (Li et al. 2020b) 0.712 0.659 0.611 0.570 0.746 0.684
Ours 0.759 0.713 0.675 0.641 0.737 1.218

Table 1: Results on IU X-Ray and COV-CTR. B@n for BLEU-n, R for ROUGE-L, C for CIDEr, and M for METEOR. The
results are quoted from published literature. Numbers in bold are the best result, and numbers in italic are the second best.

Model B@1 ↑ B@2 ↑ B@3 ↑ B@4 ↑ M ↑ R ↑ Precision ↑ Recall ↑ F1 ↑
TOPDOWN (Anderson et al. 2018) 0.317 0.195 0.130 0.092 0.128 0.267 0.322 0.239 0.249
R2Gen (Chen et al. 2020b) 0.353 0.218 0.145 0.103 0.142 0.277 0.333 0.273 0.276
CMN (Chen et al. 2021) 0.353 0.218 0.148 0.106 0.142 0.278 0.334 0.275 0.278
PPKED (Liu et al. 2021) 0.360 0.224 0.149 0.106 0.149 0.284 - - -
Ours 0.383 0.230 0.151 0.106 0.144 0.275 0.397 0.435 0.415

Table 2: Comparison results on the pre-training dataset MIMIC-CXR. NLG and clinical efficacy metrics are reported.

Experiments
Datasets
We pre-train the Clinical-BERT on MIMIC-CXR (Johnson
et al. 2019) dataset, which contains 377,110 chest X-ray im-
ages and 227,835 reports. The CheXpert labels are adopted
as annotations for the CD task, which are extracted from
the reports by the rule-based CheXpert labeler (Irvin et al.
2019). For a fair comparison, we use the official splitting for
training, validation, and testing.

The radiograph reports generation task is conducted on
IU X-Ray (Demner-Fushman et al. 2016) and COV-CTR (Li
et al. 2020b). IU X-Ray consists of 7,470 frontal and lateral-
view chest X-ray images and 3,955 corresponding reports.
The findings and impression sections are concatenated as the
ground-truth reports. COV-CTR is a Chinese medical reports
dataset, which consists of 728 images and the corresponding
reports. We randomly split both datasets into training, vali-
dation, and testing in the ratio of 7:1:2.

The radiograph diagnosis task is conducted on NIH
(Wang et al. 2017). The NIH contains 112,120 images from
32,717 patients, and each image is labeled with 14 disease
labels. The official splitting set is adopted in the experiment.

Downstream Tasks
We evaluate our model on the radiograph reports generation
task and the radiograph diagnosis task by end-to-end fine-
tuning the pre-trained model. The flowcharts of these two
downstream tasks are illustrated in Figure 4.

Radiograph Reports Generation (RRG). Given a radio-
graph, the RRG task is to output coherent reports for the ra-
diograph. We fine-tune the pre-trained Clinical-BERT with-
out the bidirectional objective. During the inference stage,
firstly, visual features and special tokens [CLS] and [SEP]
are embedded as input sequences, the [MASK] token is em-
bedded and concatenated for the prediction of the first word.

Pre-trained BERT 
Encoder

Prediction Network

There is no pleural …

R
eport G

eneration
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Encoder

Atelectasis

f[CLS] [SEP] [CLS] f [SEP]  There …
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Figure 4: The flowcharts of downstream tasks.

Then, the [MASK] token is replaced by the predicted word,
and a new [MASK] token is appended to the input sequence.
This step repeats until the [SEP] token is generated.

The performance of the RRG is evaluated by Natural Lan-
guage Generation (NLG) metrics that include BLEU (Pap-
ineni et al. 2002), METEOR (Denkowski and Lavie 2011),
CIDEr (Vedantam, Zitnick, and Parikh 2015) and ROUGE-L
(Lin 2004) scores. In addition, clinical efficacy metrics are
adopted to evaluate whether the generated reports give an
accurate diagnosis. We label the generated reports with the
CheXpert labeler, and the clinical efficacy is reported as the
precision, recall, and F1 scores for the generated reports.

Radiograph Diagnosis (RD). Given a radiograph, the RD
task is to output the disease labels for the radiograph. Sim-
ilarly, visual features and special tokens [CLS] and [SEP ]
are embedded as the input sequences. Then, we employ one
FC layer to the encoded output E[CLS] for the prediction
of labels. The Sigmoid function is used to predict scores be-
tween 0 and 1. When the predicted score is above the thresh-
old (set as 0.5 in our experiment), the corresponding disease
is regarded as positive. The Area Under Curve (AUC) for
pathology is adopted as the evaluation metric.
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Ground TruthImage Baseline Ours

10933609/59243134

Ap portable upright view of the chest. 
Port-a-cath resides over the right chest 
wall with catheter tip in the region of the 
mid svc. Streaky opacities in the lung 
bases likely reflect areas of atelectasis. The 
cardiomediastinal silhouette is normal. 
Imaged osseous structures are intact.

Single portable view of the chest. Right chest 
wall port is again seen. Streaky left basilar and 
right upper lung opacities are seen suggestive 
of atelectasis or scarring. Calcified mediastinal 
nodes are again seen. Cardiomediastinal 
silhouette is within normal limits. No acute 
osseous abnormality detected.

Lung volumes are low. Heart size is normal. 
Mediastinal and hilar contours are unremarkable. 
Streaky opacities in the lung bases likely reflect 
areas of atelectasis. Pulmonary vasculature is not 
engorged. No focal consolidation pleural 
effusion or pneumothorax is seen. There are no 
acute osseous abnormalities.

Figure 5: Examples from MIMIC-CXR. Words highlighted in green are terms that occur in both generated and ground-truth
reports. Terms not generated are highlighted in yellow.

Atelectasis Pleural Effusion Edema Consolidation Pneumothorax

(a)

(b)

Figure 6: Attention maps of MeSH words. Row (a) is the
attention map without sparsity and row (b) is the attention
map with sparsity.

Implementation Details
We employ the pre-trained uncased BERT-base (Devlin et al.
2018) as backbone, and DenseNet121 (Huang, Liu, and
Weinberger 2017) pre-trained on ImageNet (Russakovsky
et al. 2015) as visual feature extractor. The task-specific
modules are initialized randomly.

For the pre-training, we set the data ratio for s2s:bi:MMM
tasks to 0.5:0.25:0.25. Words in the MIMIC-CXR that occur
more than 3 times are tokenized and 7861 tokens are ob-
tained. The maximum length of the report is set to 100. All
images are resized and cropped into 224×224. The AdamW
(Loshchilov and Hutter 2019) optimizer is adopted with a
weight decay of 0.01. Batch size is set as 256 with gradi-
ent accumulation (every 4 steps). The learning rate for the
backbone and the visual extractor are 1e − 4 and 5e − 5,
respectively. We pre-train the model for 50 epochs. All ex-
periments are run on two Nvidia 3090 GPUs. The number of
model parameters is 102M, the memory cost is 36G for each
gradient accumulation step, the training time is 48 hours for
50 epochs, and the inference time is 0.1 seconds per image.

For the fine-tuning of the RRG, the data ratio of
s2s:MMM is set to 0.75:0.25. Words that occur more than
3 times are tokenized into 764 tokens for IU X-Ray and the
maximum prediction length is set to 60. Jieba1 is employed
to tokenize words in COV-CTR and yields 333 tokens, and
the maximum prediction length is set to 80. Cross-entropy
is used as a loss function. We adopt the AdamW optimizer
with a batch size of 16 for both datasets and a learning rate
of 1e − 5. During the inference stage, we adopt the beam
search strategy with a beam size of 5.

For the fine-tuning of the RD, the binary cross-entropy

1https://github.com/fxsjy/jieba

Disease CheXNet WS DME Ours
Atelectasis 0.7795 0.7924 0.7891 0.8293
Cardiomegaly 0.8816 0.8814 0.9069 0.9174
Consolidation 0.7542 0.7598 0.7681 0.8061
Edema 0.8496 0.8478 0.8610 0.9007
Effusion 0.8268 0.8415 0.8418 0.8851
Emphysema 0.9249 0.9422 0.9396 0.9249
Fibrosis 0.8219 0.8326 0.8381 0.8385
Hernia 0.9323 0.9341 0.9371 0.9379
Infiltration 0.6894 0.7095 0.7184 0.7156
Mass 0.8307 0.8470 0.8376 0.8524
Nodule 0.7814 0.8105 0.7985 0.7807
Pleural T. 0.7925 0.8083 0.8036 0.7857
Pneumonia 0.7354 0.7397 0.7419 0.7703
Pneumothorax 0.8513 0.8795 0.9063 0.8853
Mean 0.8180 0.8302 0.8349 0.8450

Table 3: Results of radiograph diagnosis on NIH dataset.
”Pleural T.” denotes ”Pleural Thickening”.

is used as a loss function. We adopt the AdamW optimizer
with a batch size of 32 and a learning rate of 1e− 5.

Results on Downstream Tasks
The comparison results of the RRG task are reported in Ta-
ble 1. For IU X-Ray, our model achieves the best results un-
der all NLG metrics. For the clinical efficacy, we achieve
the precision, recall, and F1 scores of 48.52%, 42.79%,
and 45.47%, respectively, with an average 8.6% gain com-
pared with R2Gen (Chen et al. 2020b). For COV-CTR, we
achieve the best results under five of the six NLG metrics.
Furthermore, the AUC for COVID-19 prediction is up to
94.72%, with a large margin with 17.8% gain compared to
ASGK (Li et al. 2020b). The experimental results show that
the designed pre-training tasks can effectively learn domain
knowledge and improve performance.

We also fine-tuned the RRG task on the test set of the
pre-training dataset MIMIC-CXR, and report the results in
Table 2. It can be seen that our model achieves the best re-
sults for BLEU-n and clinical efficacy metrics, and achieves
comparable results for METEOR and ROUGE-L. The re-
sults demonstrate that reports generated by our model are
not only fluent but also more accurate in clinical diagnosis.

We show some generated reports in Figure 5 for quali-
tative analysis. The Baseline is the model pre-trained with
the MLM task. It can be seen that reports generated by our
model pre-trained with medical domain tasks are accurate
in semantic, and most MeSH words are predicted accurately
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Dataset Fine-tune From B@1 ↑ B@2 ↑ B@3 ↑ B@4 ↑ R ↑ C ↑ M ↑ 4(%)

IU X-Ray

Baseline 0.465 0.299 0.213 0.158 0.369 0.328 0.196 -
+CD 0.479 0.312 0.221 0.165 0.377 0.361 0.197 4.7
+CD+MMM 0.489 0.317 0.229 0.173 0.385 0.378 0.203 1.4
+CD+MMM+IMM (w/o sparsity) 0.488 0.321 0.230 0.171 0.371 0.402 0.211 1.5
+CD+MMM+IMM (w/ sparsity) 0.495 0.330 0.231 0.170 0.376 0.432 0.209 1.8

MIMIC-CXR

Baseline 0.345 0.215 0.145 0.104 0.274 0.144 0.135 -
+CD 0.359 0.221 0.148 0.105 0.271 0.146 0.139 2.0
+CD+MMM 0.363 0.224 0.149 0.105 0.271 0.149 0.136 0.3
+CD+MMM+IMM (w/o sparsity) 0.372 0.228 0.151 0.105 0.274 0.144 0.142 1.2
+CD+MMM+IMM (w/ sparsity) 0.383 0.230 0.151 0.106 0.275 0.151 0.144 1.6

Table 4: Ablation study results on IU X-Ray and MIMIC-CXR.
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Figure 7: The length distribution of generated reports from
different pre-training models on MIMIC-CXR.

(highlighted in green), such as ”Atelectasis”, ”Lung”, ”Os-
seous”, and ”chest”. However, some MeSH words are not
predicted (highlighted in yellow). The reason may be that
there is no ground truth for the IMM task, making the joint
representation of modalities less accurate, which limits the
prediction of MeSH words. We also show the attention maps
of MeSH words in Figure 6. It can be seen that our model can
focus on regions related to MeSH, and the area of attention
maps are significantly reduced by the introduced sparsity.

The results of the RD task on the NIH dataset are reported
in Table 3. We compare our model with state-of-the-art mod-
els CheXNet (Rajpurkar et al. 2017), WS (Yan et al. 2018)
and DME (Luo et al. 2020), and achieve the best results on
nine of the fourteen pathologies and on the average AUC.
The results demonstrate that the domain knowledge learned
by the domain-specific pre-training tasks can improve the
performance of radiograph diagnosis.

Ablation Study
We conduct ablation studies to evaluate the effectiveness of
the domain-specific pre-training tasks. The Baseline denotes
the baseline model pre-trained on MIMIC-CXR without the
domain-specific pre-training tasks, +CD, +CD+MMM, and
+CD+MMM+IMM denote the models pre-trained with dif-
ferent domain-specific pre-training tasks, and the effective-
ness of the sparsity in IMM is also analyzed. The experi-
mental results are shown in Table 4.

The CD task optimizes the joint representation of modal-
ities for a better understanding of radiographs. The MLM
task focuses on predicting randomly chosen words and en-
sures the consistency of sentences. While the MMM task
focuses on the prediction of MeSH words and guarantees
the accuracy of sentences. The IMM task aligns vision and
language in the latent space. Region sparse attention focuses

K 6 8 12 16 20 24
B@1 0.357 0.381 0.383 0.378 0.380 0.382
B@2 0.216 0.227 0.230 0.225 0.227 0.228
M 0.137 0.144 0.144 0.143 0.144 0.144
R 0.271 0.272 0.275 0.270 0.274 0.270

Table 5: Effect of K for the sparsity on the MIMI-CXR.

on the regions related to words. While word sparse attention
focuses on the matching of MeSH words to images. The in-
troduced sparsity reduces the area of interest, and enables
the generation of more accurate reports. The average gains
after adding tasks are listed in Table 4. Figure 7 shows the
length distribution of the reports generated by different mod-
els. The length distribution of the reports generated by the
final model is closer to the real distribution, which further
demonstrates the effectiveness of devised pre-training tasks.

We analyze the effect ofK for the sparsity in IMM, which
reduces the area of interest, and in turn, affects the report
generation. We pre-train our model with different values and
fine-tune it on MIMIC-CXR. The results are shown in Table
5. We can see that our model obtains best performance when
K = 12. It should be noticed that the performance drops
when K increased, which suggests that only a small percent
of regions are contributive to the reports generation.

Conclusion and Future Work
In this paper, we propose a pre-training model Clinical-
BERT for the medical domain. The model is pre-trained
by three domain-specific tasks: Clinical Diagnosis (CD),
Masked MeSH Modeling (MMM), Image-MeSH Matching
(IMM), and one general pre-training task: Masked Language
Modeling (MLM). The domain-specific tasks focus on the
learning of medical knowledge and medical subject head-
ings, which can help the understanding of radiographs and
greatly boost the performance of downstream tasks. The re-
sults on radiograph diagnosis and report generation prove
the effectiveness of the domain-specific pre-training.

In the future, we would employ localization information
of organs for the IMM task to further improve the prediction
accuracy of MeSH words. In addition, more downstream
tasks will be evaluated, such as image-report retrieval and
medical visual question answering.
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