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Abstract
Vision transformers (ViTs) have attracted considerable re-
search attention recently, but the huge computational cost is
still a severe issue. A mainstream paradigm for computation
reduction aims to reduce the number of tokens given that
the computation complexity of ViT is quadratic with respect
to the input sequence length. Existing designs include struc-
tured spatial compression that uses a progressive shrinking
pyramid to reduce the computations of large feature maps,
and unstructured token pruning that dynamically drops redun-
dant tokens. However, limitations of existing token pruning
lie in the following aspects: 1) the incomplete spatial struc-
ture caused by pruning is incompatible with structured spatial
compression that is commonly used in modern deep-narrow
transformers; 2) it usually requires a time-consuming pre-
training procedure. To address the limitations and expand the
applicable scenario of token pruning, we present Evo-ViT, a
self-motivated slow-fast token evolution approach for vision
transformers. Specifically, we conduct unstructured instance-
wise token selection by taking advantage of the simple and
effective global class attention that is native to vision trans-
formers. Then, we propose to update the selected informative
tokens and uninformative tokens with different computation
paths, namely, slow-fast updating. Since slow-fast updating
mechanism maintains the spatial structure and information
flow, Evo-ViT can accelerate vanilla transformers of both flat
and deep-narrow structures from the very beginning of the
training process. Experimental results demonstrated that our
method significantly reduces the computational cost of vision
transformers while maintaining comparable performance on
image classification. For example, our method accelerates
DeiT-S by over 60% throughput while only sacrificing 0.4%
top-1 accuracy on ImageNet-1K, outperforming current token
pruning methods on both accuracy and efficiency.

Introduction
Vision transformers (ViTs) have shown strong power on var-
ious computer vision tasks (Xu et al. 2022). The reason of
introducing the transformer into computer vision lies in its
unique properties that convolution neural networks (CNNs)
lack, especially the property of modeling long-range depen-
dencies. However, dense modeling of long-range dependen-
cies among image tokens brings computation inefficiency,
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Figure 1: An illustration of technique pipelines for compu-
tation reduction via tokens. The dash lines denote iterative
training. The first branch: the pipeline of unstructured token
pruning (Rao et al. 2021; Tang et al. 2021) based on pre-
trained models. The second branch: the pipeline of struc-
tured compression (Graham et al. 2021). The third branch:
our proposed pipeline that performs unstructured updating
while suitable for structured compressed models.

because images contain large regions of low-level texture
and uninformative background.

Existing methods follow two processes to address the
inefficiency problem of modeling long-range dependencies
among tokens in ViT as shown in the above two branches of
Fig. 1. The first process, as shown in the second branch, is to
perform structured compression based on local spatial prior,
such as local linear projection (Wang et al. 2021a), convolu-
tional projection (Heo et al. 2021), and shift windows (Liu
et al. 2021). Most modern transformers with deep-narrow
structures are typically within this process. However, the
structured compressed models treat the informative object
tokens and uninformative background tokens with the same
priority. Thus, token pruning, the second process, proposes
to identify and drop the uninformative tokens in an unstruc-
tured way. (Tang et al. 2021) improves the efficiency of a
pre-trained transformer network by developing a top-down
layer-by-layer token slimming approach that can identify
and remove redundant tokens based on the reconstruction
error of the pre-trained network. The trained pruning mask
is fixed for all instances. (Rao et al. 2021) proposes to accel-
erate a pre-trained transformer network by removing redun-
dant tokens hierarchically, and explores an data-dependent
down-sampling strategy via self-distillation. Despite of the
significant acceleration, these unstructured token pruning
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Figure 2: Visualization of class attention in DeiT-T. The in-
terpretability comes from (Chefer, Gur, and Wolf 2021).

methods are restricted in two aspects due to their incomplete
spatial structure and information flow, namely, the inappli-
cability on structured compressed transformers and inability
to train from scratch.

In this paper, as shown in the third branch of Fig. 1, we
propose to handle the inefficiency problem in a dynamic
data-dependent way from the very beginning of the train-
ing process while suitable for structured compression meth-
ods. We denote uninformative tokens that contribute little
to the final prediction but bring computational cost when
bridging redundant long-range dependencies as placeholder
tokens. Different from structured compression that reduces
local spatial redundancy in (Wang et al. 2021a; Graham
et al. 2021), we propose to distinguish the informative to-
kens from the placeholder tokens for each instance in an un-
structured and dynamic way, and update the two types of to-
kens with different computation paths. Instead of searching
for redundancy and pruning in a pre-trained network such
as (Tang et al. 2021; Rao et al. 2021), by preserving place-
holder tokens, the complete spatial structure and informa-
tion flow can be maintained. In this way, our method can be
a generic plug-in for most ViTs of both flat and deep-narrow
structures from the very beginning of training.

Concretely, Evo-ViT1, a self-motivated slow-fast token
evolution approach for dynamic ViTs is proposed in this
work. “Self-motivated” means that transformers can natu-
rally distinguish informative tokens from placeholder tokens
for each instance, since they have insights into global de-
pendencies among image tokens. Without loss of general-
ity, we take DeiT (Touvron et al. 2021) in Fig. 2 as exam-
ple. We find that the class token of DeiT-T estimates im-
portance of each token for dependency modeling and final
classification. Especially in deeper layers (e.g., layer 10),
the class token usually augments informative tokens with
higher attention scores and has a sparse attention response,
which is quite consistent to the visualization result pro-
vided by (Chefer, Gur, and Wolf 2021) for transformer in-
terpretability. In shallow layers (e.g., layer 5), the attention
of the class token is relatively scattered but mainly focused
on informative regions. Thus, taking advantage of class to-
kens, informative tokens and placeholder tokens are deter-
mined. The preserved placeholder tokens ensure complete

1Code is available at https://github.com/YifanXu74/Evo-ViT.

information flow in shallow layers of a transformer for mod-
eling accuracy. After the two kinds of tokens are determined,
they are updated in a slow-fast approach. Specifically, the
placeholder tokens are summarized to a representative token
that is evolved via the full transformer encoder simultane-
ously with the informative tokens in a slow and elaborate
way. Then, the evolved representative token is exploited to
fast update the placeholder tokens for more representative
features.

We evaluate the effectiveness of the proposed Evo-ViT
method on two kinds of baseline models, namely, transform-
ers of flat structures such as DeiT (Touvron et al. 2021) and
transformers of deep-narrow structures such as LeViT (Gra-
ham et al. 2021) on ImageNet (Deng et al. 2009) dataset. Our
self-motivated slow-fast token evolution method allows the
DeiT model to improve inference throughput by 40%-60%
and further accelerates the state-of-the-art efficient trans-
former LeViT while maintaining comparable performance.

Related Work
Vision Transformer. Recently, a series of transformer
models (Han et al. 2020; Xu et al. 2022) are proposed to
solve various computer vision tasks. The transformer has
achieved promising success in image classification (Doso-
vitskiy et al. 2021; Touvron et al. 2021; D’Ascoli et al.
2021), object detection (Carion et al. 2020; Liu et al. 2021;
Zhu et al. 2020) and instance segmentation (Duke et al.
2021; Zheng et al. 2021) due to its significant capability
of modeling long-range dependencies. Vision Transformer
(ViT) (Dosovitskiy et al. 2021) is among the pioneering
works that achieve state-of-the-art performance with large-
scale pre-training. DeiT (Touvron et al. 2021) manages to
tackle the data-inefficiency problem in ViT by simply adjust-
ing training strategies and adding an additional token along
with the class token for knowledge distillation. To achieve
better accuracy-speed trade-offs for general dense predic-
tion, recent works (Yuan et al. 2021; Graham et al. 2021;
Wang et al. 2021a) design transformers of deep-narrow
structures by adopting sub-sampling operation (e.g., strided
down-sampling, local average pooling, convolutional sam-
pling) to reduce the number of tokens in intermediate layers.

Redundancy Reduction. Transformers take high compu-
tational cost because the multi-head self-attention (MSA)
requires quadratic time complexity and the feed forward
network (FFN) increases the dimension of latent features.
The existing acceleration methods for transformers can be
mainly categorized into sparse attention mechanism, knowl-
edge distillation (Sanh et al. 2019), and pruning. The sparse
attention mechanism includes, for example, low rank fac-
torization (Xu et al. 2021; Wang et al. 2020), fixed local
patterns (Liu et al. 2021), and learnable patterns (Tay et al.
2020; Beltagy, Peters, and Cohan 2020). (Yue et al. 2021)
handles the inefficiency problem by sparse input patch sam-
pling. (He et al. 2020) proposes to add an evolved global
attention to the attention matrix in each layer for a better
residual mechanism. Motivated by this work, we propose the
evolved global class attention to guide the token selection
in each layer. The closest paradigm to this work is token
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pruning. (Tang et al. 2021) presents a top-down layer-by-
layer patch slimming algorithm to reduce the computational
cost in pre-trained vision transformers. The patch slimming
scheme is conducted under a careful control of the feature
reconstruction error, so that the pruned transformer network
can maintain the original performance with lower computa-
tional cost. (Rao et al. 2021) devises a lightweight prediction
module to estimate the importance score of each token given
the current features of a pre-trained transformer. The module
is plugged into different layers to prune placeholder tokens
in a unstructured way and is supervised by a distillation loss
based on the predictions of the original pre-trained trans-
former. Different from these pruning works, we proposed
to preserve the placeholder tokens, and update the informa-
tive tokens and placeholder tokens with different computa-
tion paths; thus our method can achieve better performance
and be suitable for various transformers due to the complete
spatial structure. In addition, the complete information flow
allows us to accelerate transformers with scratch training.

Preliminaries
ViT (Dosovitskiy et al. 2021) proposes a simple tokeniza-
tion strategy that handles images by reshaping them into flat-
tened sequential patches and linearly projecting each patch
into latent embedding. An extra class token (CLS) is added
to the sequence and serves as the global image representa-
tion. Moreover, since self-attention in the transformer en-
coder is position-agnostic and vision applications highly re-
quire position information, ViT adds position embedding
into each token, including the CLS token. Afterwards, all
tokens are passed through stacked transformer encoders and
the CLS token is used for final classification.

The transformer is composed of a series of stacked en-
coders where each encoder consists of two modules, namely,
a multi-head self-attention (MSA) module and a feed for-
ward network (FFN) module. The FFN module contains two
linear transformations with an activation function. The resid-
ual connections are employed around both MSA and FFN
modules, followed by layer normalization (LN). Given the
input x0 of ViT, the processing of the k-th encoder can be
mathematically expressed as

x0 = ⌈xcls| xpatch⌉+ xpos,

yk = xk−1 +MSA(LN(xk−1)),

xk = yk + FFN(LN(yk)),

(1)

where xcls ∈ R1×C and xpatch ∈ RN×C are CLS and patch
tokens respectively and xpos ∈ R(1+N)×C denotes the po-
sition embedding. N and C are the number of patch tokens
and the dimension of the embedding.

Specifically, a self-attention (SA) module projects the in-
put sequences into query, key, value vectors (i.e., Q,K, V ∈
R(1+N)×C ) using three learnable linear mapping WQ, WK

and WV . Then, a weighted sum over all values in the se-
quence is computed through:

SA(Q,K, V ) = Softmax(
Q ·KT

√
C

)V. (2)
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Figure 3: The overall diagram of the proposed method.

MSA is an extension of SA. It splits queries, keys, and val-
ues for h times and performs the attention function in paral-
lel, then linearly projects their concatenated outputs.

It is worth noting that one very different design of ViT
from CNNs is the CLS token. The CLS token interacts with
patch tokens at each encoder and summarizes all the patch
tokens for the final representation. We denote the similar-
ity scores between the CLS token and patch tokens as class
attention Acls, formulated as:

Acls = Softmax(
qcls ·KT

√
C

), (3)

where qcls is the query vector of the CLS token.
Computational complexity. In ViT, the computational cost
of the MSA and FFN modules are O(4NC2 + 2N2C) and
O(8NC2), respectively. For pruning methods (Rao et al.
2021; Tang et al. 2021), by pruning η% tokens, at least η%
FLOPS in the FFN and MSA modules can be reduced. Our
method can achieve the same efficiency while suitable for
scratch training and versatile downstream applications.

Methodology
Overview
In this paper, we aim to handle the inefficiency modeling
issue in each input instance from the very beginning of
the training process of a versatile transformer. As shown in
Fig 3, the pipeline of Evo-ViT mainly contains two parts: the
structure preserving token selection module and the slow-
fast token updating module. In the structure preserving to-
ken selection module, the informative tokens and the place-
holder tokens are determined by the evolved global class
attention, so that they can be updated in different manners
in the following slow-fast token updating module. Specif-
ically, the placeholder tokens are summarized and updated
by a representative token. The long-term dependencies and
feature richness of the representative token and the informa-
tive tokens are evolved via the MSA and FFN modules.

We first elaborate on the proposed structure preserving
token selection module. Then, we introduce how to update
the informative tokens and the placeholder tokens in a slow-
fast approach. Finally, the training details, such as the loss
and other training strategies, are introduced.
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Figure 4: Two folds that illustrate the difficulty of pruning
the shallow layers. (a) The CKA similarity between the final
CLS token and token features in each layer. (b) The Pearson
correlation coefficient of the token features in each layer.

Structure Preserving Token Selection
In this work, we propose to preserve all the tokens and dy-
namically distinguish informative tokens and placeholder to-
kens for complete information flow. The reason is that it
is not trivial to prune tokens in shallow and middle layers
of a vision transformer, especially in the beginning of the
training process. We explain this problem in both inter-layer
and intra-layer ways. First, shallow and middle layers usu-
ally present fast growing capability of feature representation.
Pruning tokens brings severe information loss. Following
Refiner (Zhou et al. 2021), we use centered kernel alignment
(CKA) similarity (Kornblith et al. 2019) to measure similar-
ity of the intermediate token features in each layer and the fi-
nal CLS token, assuming that the final CLS token is strongly
correlated with classification. As shown in Fig. 4(a), the to-
ken features of DeiT-T keep evolving fast when the model
goes deeper and the final CLS token feature is quite differ-
ent from token features in shallow layers. It indicates that
the representations in shallow or middle layers are insuffi-
ciently encoded, which makes token pruning quite difficult.
Second, tokens have low correlation with each other in the
shallow layers. We evaluate the Pearson correlation coeffi-
cient (PCC) among different patch token queries with re-
spect to the network depth in the DeiT-S model to show re-
dundancy. As shown in Fig. 4(b), the lower correlation with
larger variance in the shallow layers also proves the diffi-
culty to distinguish redundancy in shallow features.

The attention weight is the easiest and most popular ap-
proach (Abnar and Zuidema 2020; Wang et al. 2021b) to
interpret a model’s decisions and to gain insights about the
propagation of information among tokens. The class atten-
tion weight described in Eqn. 3 reflects the information col-
lection and broadcast processes of the CLS token. We find
that our proposed evolved global class attention is able to
be a simple measure to help dynamically distinguish in-
formative tokens and placeholder tokens in a vision trans-
former. In Fig. 4(a), the distinguished informative tokens
have high CKA correlation with the final CLS token, while
the placeholder tokens have low CKA correlation. As shown
in Fig. 2, the global class attention is able to focus on the
object tokens, which is consistent to the visualization results
of (Chefer, Gur, and Wolf 2021). In the following part of this
section, detailed introduction of our structure preserving to-
ken selection method is provided.

As discussed in Preliminaries Section, the class attention
Acls is calculated by Eqn. 3. We select k tokens whose
scores in the class attention are among the top k as the infor-
mative tokens. The remaining N − k tokens are recognized
as placeholder tokens that contain less information. Differ-
ent from token pruning, the placeholder tokens are kept and
fast-updated rather than dropped.

For better capability of capturing the underlying informa-
tion among tokens in different layers, we propose a global
class attention that augments the class attention by evolving
it across layers as shown in Fig. 3. Specifically, a residual
connection between class attention of different layers is de-
signed to facilitate the attention information flow with some
regularization effects. Mathematically,

Ak
cls,g = α ·Ak−1

cls,g + (1− α) ·Ak
cls, (4)

where Ak
cls,g is the global class attention in the k-th layer,

and Ak
cls is the class attention in the k-th layer. We use

Ak
cls,g for the token selection in the (k+1)-th layer for stabil-

ity and efficiency. For each layer with token selection, only
the global class attention scores of the selected informative
tokens are updated.

Slow-Fast Token Updating
Once the informative tokens and the placeholder tokens are
determined by the global class attention, we propose to up-
date tokens in a slow-fast way instead of harshly dropping
placeholder tokens as (Tang et al. 2021; Rao et al. 2021).
As shown in Fig. 3, informative tokens are carefully evolved
via MSA and FFN modules, while placeholder tokens are
coarsely summarized and updated via a representative token.
We introduce our slow-fast token updating strategy mathe-
matically as follows.

For N patch tokens xpatch, we first split them into k infor-
mative tokens xinf ∈ Rk×C and N − k placeholder tokens
xph ∈ R(N−k)×C by the above-mentioned token selection
strategy. Then, the placeholder tokens xph are aggregated
into a representative token xrep ∈ R1×C , as follows:

xrep = ϕagg(xph), (5)

where ϕagg : R(N−k)×C → R1×C denotes an aggregat-
ing function, such as weighted sum or transposed linear pro-
jection (Tolstikhin et al. 2021). Here we use weighted sum
based on the corresponding global attention score in Eqn. 4.

Then, both the informative tokens xinf and the represen-
tative token xrep are fed into MSA and FFN modules, and
their residuals are recorded as x

(∗)
inf and x

(∗)
rep for skip con-

nections, which can be denoted by:

x
(1)
inf , x

(1)
rep = MSA(xinf , xrep),

xinf ←xinf + x
(1)
inf , xrep ← xrep + x(1)

rep,

x
(2)
inf , x

(2)
rep = FFN(xinf , xrep),

xinf ← xinf + x
(2)
inf .

(6)

Thus, the informative tokens xinf and the representative to-
ken xrep are updated in a slow and elaborate way.
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Finally, the placeholder tokens xph are updated in a fast
way by the residuals of xrep:

xph ← xph + ϕexp(x
(1)
rep) + ϕexp(x

(2)
rep), (7)

where ϕexp : R1×C → R(N−k)×C denotes an expanding
function, such as simple copy in our method.

It is worth noting that the placeholder tokens are fast up-
dated by the residuals of xrep rather than the output features.
In fact, the fast updating serves as a skip connection for the
placeholder tokens. By utilizing residuals, we can ensure the
output features of the slow updating and fast updating mod-
ules within the same order of magnitude.

Training Strategies
Layer-to-stage training schedule. Our proposed token se-
lection mechanism becomes increasingly stable and consis-
tent as the training process. Fig. 5 shows that the token selec-
tion results of a well-trained transformer turn to be consis-
tent across different layers; thereby indicating that the trans-
former tends to augment informative tokens with computing
resource as much as possible, namely the full transformer
networks. Thus, we propose a layer-to-stage training strat-
egy for further efficiency. Specifically, we conduct the token
selection and slow-fast token updating layer by layer at the
first 200 training epochs. During the remaining 100 epochs,
we only conduct token selection at the beginning of each
stage, and then slow-fast updating is normally performed in
each layer. For transformers with flat structure such as DeiT,
we manually arrange four layers as one stage.
Assisted CLS token loss. Although many state-of-the-art
vision transformers (Wang et al. 2021a; Graham et al. 2021)
remove the CLS token and use the final average pooled fea-
tures for classification, it is not difficult to add a CLS token
in their models for our token selection strategy. We empiri-
cally find that the ability of distinguishing two types of to-
kens of the CLS token as illustrated in Fig. 2 is kept in these
models even without supervision on the CLS token. For bet-
ter stability, we calculate classification losses based on the
CLS token together with the final average pooled features
during training. Mathematically,

ŷcls, ŷ = m(xcls, xpatch),

L = ϕ(ŷcls, y) + ϕ(Avg(ŷ), y),
(8)

where y is the ground-truth of xcls and xpatch; m denotes the
transformer model; ϕ is the classification metric function,
usually realized by the cross-entropy loss. During inference,
the final average pooled features are used for classification
and the CLS token is only used for token selection.

Experiments
Setup
In this section, we demonstrate the superiority of the pro-
posed Evo-ViT approach through extensive experiments on
the ImageNet-1k (Deng et al. 2009) classification dataset.
To demonstrate the generalization of our method, we con-
duct experiments on vision transformers of both flat and
deep-narrow structures, i.e., DeiT (Touvron et al. 2021) and

Method Top-1 Acc. Throughput
(%) (img/s) (%)

DeiT-T

Baseline (Touvron et al. 2021) 72.2 2536 -
PS-ViT (Tang et al. 2021) 72.0 3563 40.5
DynamicViT (Rao et al. 2021) 71.2 3890 53.4
SViTE (Chen et al. 2021) 70.1 2836 11.8
Evo-ViT (ours) 72.0 4027 58.8

DeiT-S

Baseline (Touvron et al. 2021) 79.8 940 -
PS-ViT (Tang et al. 2021) 79.4 1308 43.6
DynamicViT (Rao et al. 2021) 79.3 1479 57.3
SViTE (Chen et al. 2021) 79.2 1215 29.3
IA-RED2 (Pan et al. 2021) 79.1 1360 44.7
Evo-ViT (ours) 79.4 1510 60.6

DeiT-B

Baseline (Touvron et al. 2021) 81.8 299 -
Baseline∗ (Touvron et al. 2021) 82.8 87 -
PS-ViT (Tang et al. 2021) 81.5 445 48.8
DynamicViT (Rao et al. 2021) 80.8 454 51.8
SViTE (Chen et al. 2021) 82.2 421 40.8
IA-RED2 (Pan et al. 2021) 80.9 453 42.9
IA-RED2∗ (Pan et al. 2021) 81.9 129 51.5
Evo-ViT (ours) 81.3 462 54.5
Evo-ViT∗ (ours) 82.0 139 59.8

Table 1: Comparison with existing token pruning methods
on DeiT. The image resolution is 224×224 unless specified.
∗ denotes that the image resolution is 384× 384.

LeViT (Graham et al. 2021). Following (Graham et al.
2021), we train LeViT with distillation and without batch
normalization fusion. We apply the position embedding
in (Wang et al. 2021a) to LeViT for better efficiency. For
overall comparisons with the state-of-the-art methods (Rao
et al. 2021; Tang et al. 2021; Chen et al. 2021; Pan et al.
2021), we conduct the token selection and slow-fast token
updating from the fifth layer of DeiT and the third layer (ex-
cluding the convolution layers) of LeViT, respectively. The
selection ratios of informative tokens in all selected layers
of both DeiT and LeViT are set to 0.5. The global CLS at-
tention trade-off α in Eqn. 4 are set to 0.5 for all layers. For
fair comparisons, all the models are trained for 300 epochs.

Main Results
Comparisons with existing pruning methods. In Table 1,
we compare our method with existing token pruning meth-
ods (Rao et al. 2021; Pan et al. 2021; Tang et al. 2021; Chen
et al. 2021). Since token pruning methods are unable to re-
cover the 2D structure and are usually designed for trans-
formers with flat structures, we comprehensively conduct
the comparisons based on DeiT (Touvron et al. 2021) on Im-
ageNet dataset. We report the top-1 accuracy and throughput
for performance evaluation. The throughput is measured on
a single NVIDIA V100 GPU with batch size fixed to 256,
which is the same as the setting of DeiT. Results indicate
that our method outperforms previous token pruning meth-
ods on both accuracy and efficiency. Our method accelerates
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Model Param Throughput Top-1 Acc.
(M) (img/s) (%)

LeViT-128S 7.8 8755 74.5
LeViT-128 9.2 6109 76.2
LeViT-192 10.9 4705 78.4
PVTv2-B1 14.0 1225 78.7
CoaT-Lite Tiny 5.7 1083 76.6
PiT-Ti 4.9 3030 73.0

Evo-LeViT-128S 7.8 10135 73.0
Evo-LeViT-128 9.2 8323 74.4
Evo-LeViT-192 11.0 6148 76.8

LeViT-256 18.9 3357 80.1
LeViT-256∗ 19.0 906 81.8
PVTv2-B2 25.4 687 82.0
PiT-S 23.5 1266 80.9
Swin-T 29.4 755 81.3
CoaT-Lite Small 20.0 550 81.9

Evo-LeViT-256 19.0 4277 78.8
Evo-LeViT-256∗ 19.2 1285 81.1

LeViT-384 39.1 1838 81.6
LeViT-384∗ 39.2 523 82.8
PVTv2-B3 45.2 457 83.2
PiT-B 73.8 348 82.0

Evo-LeViT-384 39.3 2412 80.7
Evo-LeViT-384∗ 39.6 712 82.2

Table 2: Comparison with state-of-the-art vision transform-
ers. The input image resolution is 224×224 unless specified.
∗ denotes that the image resolution is 384× 384.

the inference throughput by over 60% with negligible accu-
racy drop (-0.4%) on DeiT-S.
Comparisons with state-of-the-art ViTs. Owing to the pre-
served placeholder tokens, our method guarantees the spatial
structure that is indispensable for most existing modern ViT
networks. Thus, we further apply our method to the state-
of-the-art efficient transformer LeViT (Graham et al. 2021),
which presents a deep-narrow architecture. As shown in Ta-
ble 2, our method can further accelerate the deep-narrow
transformer such as LeViT. We have observed larger accu-
racy degradation of our method on LeViT than on DeiT.
The reason lies that the deeper layers of LeViT have few
tokens and therefore have less redundancy due to the shrink-
ing pyramid structure. With dense input, such as the image
resolution of 384×384, our method accelerates LeViT with
less accuracy degradation and more acceleration ratio, which
indicates the effectiveness of our method on dense input.

Ablation Analysis
Effectiveness of each module. To evaluate the effectiveness
of each sub-method, we add the following improvements
step by step in Tab. 3 on transformers of both flat and deep-
narrow structures, namely DeiT and LeViT: i) Naive selec-
tion. Simply drop the placeholder tokens based on the orig-
inal class attention in each layer; ii) Structure preservation.
Preserve the placeholder tokens but not fast update them; iii)
Global attention. Utilize the proposed global class attention

Strategy
DeiT-T LeViT 128S

Acc. Throughput Acc. Throughput
(%) (img/s) (%) (img/s)

baseline 72.2 2536 74.5 8755
+ naive selection 70.8 3824 - -
+ structure preservation 71.6 3802 72.1 9892
+ global attention 72.0 3730 72.5 9452
+ fast updating 72.0 3610 73.0 9360
+ layer-to-stage 72.0 4027 73.0 10135

Table 3: Method ablation on DeiT and LeViT.

Method Acc. (%) Throughput (img/s)

average pooling 69.5 3703
max pooling 69.8 3698
convolution 70.2 3688

random selection 66.4 3760
last class attention 69.7 1694
attention column mean 71.2 3596
global class attention 72.0 3730

Table 4: Different token selection strategies on DeiT-T. We
conduct all sub-sampling methods at the seventh layer and
conduct token selection strategies from the fifth layer.

instead of vanilla class attention for token selection; iv) Fast
updating. Augment the preserved placeholder tokens with
fast updating; v) Layer-to-stage. Apply the proposed layer-
to-stage training strategy to further accelerate inference.

Results on DeiT indicate that our structure preserving
strategy further improves the selection performance due to
its capacity of preserving complete information flow. The
evolved global class attention enhances the consistency of
token selection across layers and achieves better perfor-
mance. The fast updating strategy has less effect on DeiT
than on LeViT. We claim that the performance of DeiT
turns to be saturated based on structure preservation and
global class attention, while LeViT still has some space for
improvement. LeViT exploits spatial pooling for token re-
duction, which makes unstructured token reduction in each
stage more difficult. By using the fast updating strategy, it is
possible to collect some extra cues from placeholder tokens
for accurate and augmented feature representations. We also
evaluate the layer-to-stage strategy. Results indicate that it
further accelerates inference while maintaining accuracy.
Different Token Selection Strategy. We compare our
global-attention-based token selection strategy with several
common token selection strategies and sub-sampling meth-
ods in Tab. 4 to evaluate the effectiveness of our method. All
token selection strategies are conducted under our structure
preserving strategy without layer-to-stage training sched-
ule. The token selection strategies include: randomly select-
ing the informative tokens (random selection); Utilizing the
class attention of the last layer for selection in all layers
via twice inference (last class attention); taking the column
mean of the attention matrix as the score of each token as
proposed in (Kim et al. 2021) (attention column mean).

Results in Tab. 4 indicate that our evolved global class at-
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Figure 5: Token selection results on DeiT-T. The left, middle, and right three columns denote the selection results on a well-
trained Evo-ViT, the fifth layer at different training epochs, and Evo-ViT with the proposed layer-to-stage strategy, respectively.
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Figure 6: Different architecture of the accelerated DeiT-S via
our method. We start our token selection from the fifth layer.

tention outperforms the other selection strategies and com-
mon sub-sampling methods on both accuracy and efficiency.
We have observed obvious performance degradation with
last class attention, although the attention in deeper layers
is more focused on objects in Fig. 2. A possible reason is
that the networks require some background information to
assist classification, while restricting all layers to only focus
on objects during the entire training process leads to under-
fitting on the background features.
Visualization. We visualize the token selection in Fig. 5 to
demonstrate performance of our method during both train-
ing and testing stages. The visualized models in the left
and middle three columns are trained without the layer-to-
stage training strategy. The left three columns demonstrate
results on different layers of a well-trained DeiT-T model.
Results show that our token selection method mainly fo-
cuses on objects instead of backgrounds, thereby indicating
that our method can effectively discriminate the informative
tokens from placeholder tokens. The selection results tend
to be consistent across layers, which proves the feasibility
of our layer-to-stage training strategy. Another interesting
finding is that some missed tokens in the shallow layers are
retrieved in the deep layers owing to our structure preserv-
ing strategy. Take the baseball images as an example, tokens
of the bat are gradually picked up as the layer goes deeper.
This phenomenon is more obvious under our layer-to-stage
training strategy in the right three columns. We also inves-
tigate how the token selection evolves during the training

stage in the middle three columns. Results demonstrate that
some informative tokens, such as the fish tail, are determined
as placeholder tokens at the early epochs. With more training
epochs, our method gradually turns to be stable for discrim-
inative token selection.
Consistent keeping ratio. We set different keeping ratio of
tokens in each layer to investigate the best acceleration ar-
chitecture of Evo-ViT. The keeping ratio determines how
many tokens are kept as informative tokens. Previous token
pruning works (Rao et al. 2021; Tang et al. 2021) present
a gradual shrinking architecture, in which more tokens are
recognized as placeholder tokens in deeper layers. They are
restricted in this type of architecture due to direct pruning.
Our method allows more flexible token selection owing to
the structure preserving slow-fast token evolution. As shown
in Fig. 6, we maintain the sum of the number of placeholder
tokens in all layers and adjust the keeping ratio in each layer.
Results demonstrate that the best performance is reached
with a consistent keeping ratio across all layers. We explain
the reason as follows. In the above visualization, we find that
the token selection results tend to be consistent across lay-
ers, indicating that the transformer tends to augment infor-
mative tokens with computing resource as much as possible.
In Fig. 6, at most 50% tokens are passed through the full
transformer network when the keeping ratios in all layers
are set to 0.5, thereby augmenting the most number of infor-
mative tokens with the best computing resource, namely, the
full transformer network.

Conclusions
In this work, we investigate the efficiency of vision trans-
formers by developing a self-motivated slow-fast token evo-
lution (Evo-ViT) method. We propose the structure preserv-
ing token selection and slow-fast updating strategies to solve
the limitation of token pruning on modern structured com-
pressed transformers and scratch training. Extensive exper-
iments on two popular ViT architectures, i.e., DeiT and
LeViT, indicate that our Evo-ViT approach is able to ac-
celerate various transformers significantly while maintain-
ing comparable classification performance.

As for future work, an interesting and worthwhile direc-
tion is to extend our method to dense prediction tasks, such
as object detection and instance segmentation.
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