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Abstract

Recently, many approaches tackle the Unsupervised Do-
main Adaptive person re-identification (UDA re-ID) prob-
lem through pseudo-label-based contrastive learning. During
training, a uni-centroid representation is obtained by sim-
ply averaging all the instance features from a cluster with
the same pseudo label. However, a cluster may contain im-
ages with different identities (label noises) due to the im-
perfect clustering results, which makes the uni-centroid rep-
resentation inappropriate. In this paper, we present a novel
Multi-Centroid Memory (MCM) to adaptively capture differ-
ent identity information within the cluster. MCM can effec-
tively alleviate the issue of label noises by selecting proper
positive/negative centroids for the query image. Moreover,
we further propose two strategies to improve the contrastive
learning process. First, we present a Domain-Specific Con-
trastive Learning (DSCL) mechanism to fully explore intra-
domain information by comparing samples only from the
same domain. Second, we propose Second-Order Nearest In-
terpolation (SONI) to obtain abundant and informative neg-
ative samples. We integrate MCM, DSCL, and SONI into
a unified framework named Multi-Centroid Representation
Network (MCRN). Extensive experiments demonstrate the
superiority of MCRN over state-of-the-art approaches on
multiple UDA re-ID tasks and fully unsupervised re-ID tasks.

Introduction
Unsupervised Domain Adaptive person re-identification
(UDA re-ID) is receiving increasing attention with the grow-
ing demand for practical video surveillance. The objective of
UDA re-ID is to transfer knowledge learned from source do-
main with rich annotations to unlabeled target domain. Pre-
vious works usually tackle this problem by clustering (Ge,
Chen, and Li 2020; Ge et al. 2020; Zhai et al. 2020a; Zheng
et al. 2021a,b), which follow a two-step loop paradigm:
(1) generating the pseudo labels of training samples from
the target domain through clustering, (2) optimizing the
model on the target domain with uni-centroid representation
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Figure 1: Comparison of traditional uni-centroid representa-
tion and our multi-centroid representation when the cluster
is mixed with different identities. (a) The uni-centroid rep-
resentation incorporates multiple identity information which
is inappropriate. (b) Our multi-centroid representation pro-
vides multiple discriminative centroids, making it possible
to select a suitable centroid as the positive sample that cap-
tures the same identity information with the query.

(i.e.,average feature or learnable weight of the cluster), un-
der the supervision of the pseudo labels.

However, due to the imperfect results of the clustering
algorithm, the pseudo labels always contain noises which
are harmful to performance on the target domain. For ex-
ample, as shown in Figure 1(a), instances belonging to two
identities are incorrectly merged into a cluster and assigned
the same pseudo label. In this case, traditional uni-centroid
representation inevitably incorporates information from dif-
ferent identities, which would mislead the feature learning
when the uni-centroid representation is used as the query’s
positive sample.

To alleviate the impact of label noises, we propose a
Multi-Centroid Memory (MCM) to provide multiple cen-
troids for each cluster. As Figure 1(b) shows, each centroid
captures identity information within a local region of the
cluster. This suggests that for each input query, we can se-
lect its reliable positive and negative samples from the cen-
troids in the positive cluster and other negative clusters, re-
spectively. However, for a specific query, its positive cen-
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troids may contain some incorrect ones that capture different
identity information with it. Such centroids will hinder the
feature learning when used as the positive samples. To re-
duce the effect of these false-positive centroids, we propose
a matching mechanism between the query and each positive
centroid to select a centroid as the positive sample. In gen-
eral, the least similar positive centroid to the query is most
likely be the false-positive centroid because of the unsatis-
fied inter-class separability and fixed clustering threshold,
while the most similar one is not conducive to learning intra-
class diversity. For striking a balance between the correct-
ness and diversity, we select the moderate similar centroid as
the positive sample. Besides, the inferior clustering may also
lead to some false-negative centroids, damaging the intra-
class compactness. We select the mean negative centroid of
each negative cluster as the negative sample, which is more
reliable than using all negative centroids.

In addition to considering the reliability of the positive
and negative samples, we further considered their quality
for feature learning. Some methods (Bai et al. 2021; Ge
et al. 2020; Zheng et al. 2021a) use valuable source do-
main data for training. Here, we follow these methods and
extend our MCM to the source domain. However, the cross-
domain negative samples are quite easy for the query due
to the huge domain gap between the source and target do-
mains. These easy cross-domain negative samples contribute
little to the optimization, and simply pushing them away
from the query enlarges the domain gap. Given that, we pro-
pose Domain-Specific Contrastive Learning (DSCL) to fully
mine intra-domain knowledge by only selecting the posi-
tive and negative samples from the query’s domain for con-
trastive learning. Furthermore, inspired by the recent neg-
ative mining methods (Kalantidis et al. 2020; Zhong et al.
2021) that use interpolation in the latent space to synthe-
size more negative samples, we propose Second-Order Near-
est Interpolation (SONI) to obtain additional hard negative
samples for the query from the target domain. To ensure
the synthetic negative samples are reliable and informative,
SONI selects a set of nearest negative centroids and then
uses each centroid as an anchor to interpolate with another
nearest negative centroid that is nearest to it but has a differ-
ent pseudo label. We integrate MCM, DSCL and SONI into
a unified framework, Multi-Centroid Representation Net-
work (MCRN), which provides each query with the positive
and negative samples that are reliable and effective for con-
trastive learning.

Our contributions can be summarized as follows:

• We propose a Multi-Centroid Memory (MCM) to allevi-
ate the label noise problem in previous UDA re-ID meth-
ods. By selecting reliable positive and negative centroids
from MCM for each input query, the impact of label
noises can be reduced.

• We further propose Domain-Specific Contrastive Learn-
ing (DSCL) and Second-Order Nearest Interpolation
(SONI) to obtain negative samples that are not only re-
liable but also effective for contrastive learning, which
significantly improve the learning process.

• Our integrated framework MCRN significantly outper-

forms state-of-the-art methods by a large margin on mul-
tiple UDA re-ID tasks. Besides, extensive experiments on
fully unsupervised re-ID tasks consistently demonstrate
the superiority of our approach over previous methods.

Related Work
Unsupervised Domain Adaptive Person Re-ID
The existing methods can be categorized into two branches,
i.e.,domain translation-based methods (Deng et al. 2018;
Wei et al. 2018; Zou et al. 2020) and clustering-based meth-
ods (Ge, Chen, and Li 2020; Ge et al. 2020; Zhai et al.
2020a; Zheng et al. 2021a,b). In this section, we mainly
review clustering-based approaches since they are more re-
lated to our framework.

Clustering-based methods usually leverage the pseudo la-
bels generated by clustering algorithms to optimize the net-
work. However, it is quite challenging to assign correct
pseudo labels to each unlabeled image due to the imper-
fect clustering results. MMT (Ge, Chen, and Li 2020) adopts
a mutual mean-teaching framework to provide more robust
soft labels. NRMT (Zhao et al. 2020) performs collaborative
clustering and mutual instance selection by maintaining two
networks during training. UNRN (Zheng et al. 2021a) intro-
duces uncertainty estimation to explore the reliability of the
pseudo label of each sample. SpCL (Ge et al. 2020) propose
the self-paced learning strategy to obtain more reliable clus-
tering results. GLT (Zheng et al. 2021b) uses a group-aware
label transfer algorithm to online refine the pseudo labels.
However, these works usually use average feature or learn-
able weight to represent a cluster, which is sensitive to label
noises. Recently, a fully unsupervised re-ID method Clus-
terContrast (Dai et al. 2021) updates the cluster represen-
tation with the hardest positive instance feature in a batch,
which is more robust than previous cluster representation.
Different from these methods, we introduce multiple cen-
troids to adaptively detect and represent potential multiple
sub-classes in a cluster.

Contrastive Learning
The contrastive loss (Oord, Li, and Vinyals 2018) is
widely used in unsupervised visual representation learning
task (Chen et al. 2020; He et al. 2020; Tian, Krishnan, and
Isola 2020) to learn discriminative feature representation by
maximizing the similarity of augmented views generated
from an identical instance. Recently, SpCL (Ge et al. 2020)
successfully adapts contrastive loss to UDA re-ID task and
propose a Unified Contrastive Loss (UCL) to distinguish the
query from negative samples from both the source and target
domain. Different from UCL, we propose a novel Domain-
Specific Contrastive Learning (DSCL) mechanism which
only selects informative negative samples from the same do-
main of query.

Hard Negative Mining
Mining hard negative samples plays an important role in
boosting the performance of metric learning. The Embed-
ding Expansion (Ko and Gu 2020) employs uniform inter-
polation between two positive and negative points to gener-
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Figure 2: Illustration of the overall training pipeline of MCRN.

ate many synthetic points and then select the hardest pair as
negative. NCD (Zhong et al. 2021) mixes the query in the
novel classes with the samples in known classes to produce
synthetic features, and then filters the hardest synthetic nega-
tives by the cosine similarity with the query. MoCHi (Kalan-
tidis et al. 2020) synthesizes hard negatives by interpolating
between the query and hard negative samples or any two ran-
domly selected hard negative samples. Unlike these meth-
ods, to ensure the reliability and quality of the synthesized
samples, we synthesize negative samples by interpolation
between two hard negative centroids that are close to each
other but have different pseudo labels.

Proposed Method
Overview
Given a source domain Ds and a target domain Dt,
the goal of UDA re-ID is to improve the model perfor-
mance on Dt by transferring knowledge from Ds to Dt.
Ds =

{(
xi
s, y

i
s

)∣∣Ns

i=1

}
consists of Ns labeled images, where(

xi
s, y

i
s

)
denotes the i-th training sample and its associated

label. And Dt =
{(

xi
t

)∣∣Nt

i=1

}
composes of Nt images with-

out annotations.
In this paper, we propose a Multi-Centroid Representa-

tion Network (MCRN), which consists of an encoder and a
novel Multi-Centroid Memory (MCM). Moreover, we intro-
duce a new Domain-Specific Contrastive Learning (DSCL)
objective and a Second-Order Nearest Interpolation (SONI)
mechanism to jointly improve the feature learning process.
Figure 2 illustrates the overall training pipeline of MCRN,
which alternates between two steps: preparation step in Fig-
ure 2(a) and optimization step in Figure 2(b). In the prepa-
ration step, we group unlabeled images from Dt into clus-
ters using clustering algorithm (e.g., DBSCAN (Ester et al.

1996)), based on the instance features extracted by the en-
coder. Then the Multi-Centroid Memory (MCM) is cre-
ated and initialized, which is detailed later. In the optimiza-
tion step, we carefully select positive/negative samples from
MCM and generate more negative samples through SONI,
followed by optimizing the encoder through DSCL between
input queries and these samples. Note that MCM is dynam-
ically updated during the optimization step.

Multi-Centroid Memory
Memory initialization. Each epoch begins with the prepa-
ration step. We first extract instance features for all the im-
ages from the source domain Ds and the target domain Dt.
Then we group the unlabeled target domain images into nt

clusters through DBSCAN (Ester et al. 1996). In this pro-
cess, we simply discard all the un-clustered instances. Then
we build Multi-Centroid Memory (MCM) as a tensor in the
shape of M × C, where M denotes the total number of
centroids in MCM and C denotes the dimension of feature
channels. We set M equal to K × (ns + nt), where K rep-
resents the number of centroids for each class. ns and nt de-
note the number of ground-truth classes from Ds and pseudo
classes (i.e.,clusters) from Dt, respectively. We initialize all
the K centroids for a identical class as the mean feature of
all the instance images from this class.
Memory update. In the optimization step, the centroids in
MCM are continuously updated to detect and to represent
potential multiple sub-classes with different identities, by
continuously incorporating recent query features from the
corresponding class. During training, MCM is update at the
end of each iteration. Concretely, each mini-batch is com-
posed of P classes with K queries per class, sampled by the
widely used PK sampling approach. Note that K is simply
set identical to the number of centroids per class in MCM,
which allows all of the centroids from the same class to
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be updated at the same pace. For the K queries from the
same class, we search for a permutation of corresponding K
centroids σ ∈ SK to establish best bipartite matching for
query-centroid pairs with the highest overall similarity:

σ̂ = argmax
σ∈SK

K∑
i

qi · cσ(i) (1)

where qi denotes i-th sampled query of the class and cσ(i)

indicates the i-th centroid in the permutation σ. We use Hun-
garian algorithm (Kuhn 1955) to efficiently compute the op-
timal permutation σ̂. Based on the matched query-centroid
pairs, we update the centroids in an exponential moving av-
erage manner as follows:

cσ̂(i) ← mcσ̂(i) + (1−m) qi (2)

where m is the momentum coefficient. We set m to a rela-
tively small value (e.g., 0.2) so that the centroid can absorb
more identity information from the query feature.

Reliable Centroids for Contrastive Learning
For each query in the mini-batch, MCM provides K positive
candidates and (ns + nt − 1)K negative candidates. How
to obtain reliable and informative positive/negative samples
plays an important role in the following contrastive learning.
Reliable positive samples. For a query, some of the K
positive candidates in MCM may capture different identity
information (i.e., false-positive centroid), due to incorrect
clustering results. To obtain a reliable positive sample, we
rank the K positive candidates in ascending order according
to their cosine similarity with the query. A natural choice
is to select the candidate with the largest similarity as the
positive sample. However, the most similar candidate usu-
ally incorporates the query feature in previous updates and
is thus less informative for learning intra-class diversity. Be-
sides, the least similar candidate is more likely to be an out-
lier. Therefore, we select the candidate ranked in the median
(i.e.,

⌈
K
2

⌉
), which we call the moderate positive centroid, as

the positive sample.
Reliable negative samples. A naive choice is simply tak-
ing all the (ns + nt − 1)K negative candidates as nega-
tive samples. However, images with the same identity may
be incorrectly split into multiple clusters due to unsatisfac-
tory clustering results, resulting in false-negative candidates.
Pushing the query and these false-negative candidates away
would bias the feature learning. However, it is quite difficult
to find and exclude possible false-negative candidates. To al-
leviate this problem, we represent each cluster as the mean
feature of its K centroids and take the mean feature (named
mean negative centroid) as a negative sample. In this way,
we can obtain (nt + ns − 1) in total negative samples from
all the clusters except the one that the query falls in.

Notably, we use the same selection strategy for the query
from Ds to address the issue of possible annotation errors.

Domain-Specific Contrastive Learning
Previous work SpCL (Ge et al. 2020) employs a Unified
Contrastive Learning (UCL) to push samples from different

classes away and pull those within the same class together.
All the negative samples from the source and target domains
are considered, no matter which domain the query comes
from. UCL can be formulated as follows:

LU = − log
exp

(
1
τ q · c

+
)∑ns

i=1 exp
(
1
τ q · cis

)
+

∑nt

j=1 exp
(

1
τ q · c

j
t

)
(3)

where q is the query in the mini-batch. cis and cjt are the se-
lected centroid of the i-th source-domain class and the j-th
target-domain pseudo class, respectively. c+ is the moder-
ate positive centroid of the positive class and τ indicates the
temperature coefficient.

However, due to the significant domain gap, it is quite
easy for a model to distinguish the query from those neg-
ative centroids from a different domain. Such negative sam-
ples cannot provide effective information to learn discrimi-
native representations. Besides, simply pushing them away
from the query enlarges the domain gap. Thus, we propose
Domain-Specific Contrastive Learning (DSCL) which push
query away from negative samples in the same domain:

LDs
= − log

exp
(
1
τ qs · c

+
)∑ns

i=1 exp
(
1
τ qs · cis

) (4)

LDt
= − log

exp
(
1
τ qt · c

+
)∑nt

i=1 exp
(
1
τ qt · c

i
t

) (5)

where qs and qt denote the query from source and tar-
get domains, respectively. Focusing on distinguishing the
pairs from the same domain, DSCL can fully mine domain-
specific semantic information and improve the generaliza-
tion capability.

Second-Order Nearest Interpolation
We further propose a novel interpolation mechanism called
Second-Order Nearest Interpolation (SONI) to synthesize
abundant and informative negative samples. For each query
from Dt, SONI interpolates between two hard negative cen-
troids in MCM that are close to each other but belong to
different pseudo classes. As indicated by its name, SONI in-
volves two nearest neighbor searching processes. First, we
collect the top γ = αnt nearest negative centroids into a set
H =

{
hj |γj=1

}
, where α is a hyper-parameter that controls

the number of synthetic negative samples and nt is the num-
ber of pseudo classes. In this process, we use the moderate
positive centroid to select the hard negative centroids since
it is a reliable representation for the query. Then we search
for the nearest negative neighbor h̃i ∈ H for each centroid
hi ∈ H . We interpolate between hi ∈ H and hj ∈ H to
obtain a synthetic negative sample si.

si = βhi + (1− β) h̃i (6)

where β is randomly sampled from a uniform distribution in
the range of [0.2, 0.5] in each iteration.
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We reformulate Equation (5) for DSCL as the follows to
incorporate the negative samples generated by SONI:

L∗
Dt

= − log
exp

(
1
τ qt · c

+
)∑nt

i=1 exp
(
1
τ qt · c

i
t

)
+
∑γ

j=1 exp
(
1
τ qt · sj

)
(7)

where sj is the j-th synthetic negative sample for the query.

Overall Loss
Each mini-batch consists of n encoded source-domain
queries Qs =

{
qis|ni=1

}
and n encoded target-domain

queries Qt =
{
qit|ni=1

}
. The overall optimization goal is as

follows:

Ltotal =
1

n

∑
qs∈Qs

LDs
+

1

n

∑
qt∈Qt

L∗
Dt

(8)

Experiments
Datasets and Evaluation Metrics
We evaluate our method on three person re-ID datasets, in-
cluding Market-1501 (Zheng et al. 2015), DukeMTMC-reID
(Ristani et al. 2016) and MSMT17 (Wei et al. 2018). Rank-
1/5/10 (R1/R5/R10) of Cumulative Matching Characteristic
(CMC) and mean average precision (mAP) are adopted for
evaluation.

Training Details of MCRN
Baseline. We use SpCL (Ge et al. 2020) as our uni-centroid
baseline and follow its most settings. ResNet-50 (He et al.
2016) pretrained on ImageNet is used as the backbone for
our encoder. We adopt domain-specific BNs (Chang et al.
2019) for narrowing the domain gap. DBSCAN (Ester et al.
1996) clustering followed by a self-paced strategy (Ge et al.
2020) is adopt for generating pseudo labels. For a fair com-
parison of uni-centroid and multi-centroid settings, we make
two modifications to the original SpCL. First, we reinitial-
ize the memory bank at the beginning of every epoch, while
SpCL only initializes once at the first epoch. Second, we
simply discard un-clustered instances while SpCL keeps
them.
Training details. Each mini-batch consists of 64 source do-
main images and 64 target domain images, with 4 images
per ground-truth/pseudo class (i.e., K is set to 4). All train-
ing images are resized to 256×128 and various data aug-
mentations are applied, including random cropping, random
flipping and random erasing (Zhong et al. 2020). Adam opti-
mizer is utilized to optimize the encoder with a weight decay
of 0.0005. The initial learning rate is set to 0.00035 and is
decayed by 1/10 every 20 epochs in the total 50 epochs. The
momentum coefficient m in Equation 2 is set to 0.2, and the
temperature coefficient τ in the contrastive losses is set to
0.05. α in SONI is set to 0.03. We implement our approach
using the Pytorch (Paszke et al. 2019) framework and use
four NVIDIA RTX-2080TI GPUs for training.

Ablation Studies
Superiority of multi-centorid representation. In Table 1,
we compare the performance of uni-centroid (Baseline)
and multi-centroid (MCM) representation method. Notably,
both of them adopt UCL (Equation 3) as the learning ob-
jective and the only difference between them is the repre-
sentation of each class. The result shows that our MCM
significantly surpasses the baseline by considerable mar-
gins. As shown in Table 1, MCM outperforms baseline by
8.4%/4.4%, 8.7%/5.9%, 11.1%/15.8% and 9.9%/14.5% in
terms of mAP/R1 on four UDA tasks, clearly demonstrating
the superiority of multi-centroid representation over tradi-
tional uni-centroid representation.
Effectiveness of DSCL. We further conduct experiments
by replacing UCL with DSCL (MCM v.s. MCM+DSCL).
As Table 1 shows, DSCL brings the model with consis-
tent performance gain on all tasks. Specially, mAP/R1 is
improved by 0.9%/1.2% and 1.6%/2.0% on Duke→MSMT
and Market→MSMT tasks, respectively. Following (Bai
et al. 2021), we compare the domain distance, which is mea-
sured by the cosine distance between the average feature of
two domains. As is shown in Figure 3, DSCL reduces the
distance between source and target domains, indicating the
effectiveness of DSCL in reducing the domain gap.
Effectiveness of SONI. As is shown in Table 1, SONI
yields a general improvement on all the four UDA tasks.
For example, mAP/R1 is increased by 3.5%/4.7% and
4.2%/6.5% on Duke→MSMT and Market→MSMT tasks,
respectively. These results demonstrate the effectiveness of
SONI in providing informative and beneficial negative sam-
ples. Besides, SONI is complementary to DSCL. When
combine them together, our approach achieves superior re-
sults of mAP 83.8%, 71.5%, 35.7% and 32.8% on these
tasks, respectively.

Design Choices
Strategies for selecting positive samples. Besides the
moderate positive centroid, we further present two alterna-
tives for selecting positive samples, i.e., selecting the most
or the least similar centroid. We call these three strategies
Moderate, Most, and Least for short. As is shown in Ta-
ble 2, Moderate consistently outperforms Most/Least by a
large margin, yielding an improvement of mAP 25.2%/1.6%
and 26.2%/1.4% on Duke→Market and Market→Duke
tasks, respectively. It might be surprising that Most leads
to heavily degraded performance. We assume the reason is
that the most similar centroid is likely to absorb the query
feature in previous updates and thus is less informative for
learning intra-class diversity.
Strategies for selecting negative samples. We further com-
pare two strategies for selecting negative samples, including
1) mean negative centorid (Mean for short) and 2) all neg-
ative centroids (All for short). For a query, All simply uses
all centroids from a negative class, while Mean only takes
the mean centroid. As is shown in Table 2, Mean leads to
considerable and general improvements over All, which in-
dicates that Mean can effectively filter bad samples and al-
leviate the issue of false-negative samples.
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Methods Duke→Market Market→Duke Duke→MSMT Market→MSMT
mAP R1 mAP R1 mAP R1 mAP R1

Baseline 73.1 87.8 62.1 77.6 19.1 44.5 18.2 43.0
MCM 81.5 92.2 70.8 83.5 30.2 60.3 28.1 57.5
MCM+DSCL 82.4 92.8 71.4 84.0 31.1 61.5 29.7 59.5
MCM+SONI 82.9 93.2 70.8 83.9 33.7 65.0 32.3 64.0
MCRN 83.8 93.8 71.5 84.5 35.7 67.5 32.8 64.4

Table 1: Ablation studies of our proposed components. Baseline: uni-centroid baseline based on SpCL (Ge et al. 2020).

Pos Neg Duke→Market Market→Duke
mAP R1 mAP R1

Most Mean 56.3 76.0 44.6 58.7
Least Mean 79.9 91.2 69.4 82.8

Moderate All 81.0 91.4 70.0 83.3
Moderate Mean 81.5 92.2 70.8 83.5

Table 2: Comparison of different strategies for selecting pos-
itive/negative samples.

Methods Duke→Market Market→Duke
mAP R1 mAP R1

QNNI 76.5 89.4 66.1 80.9
RNNI 83.4 93.5 70.4 83.6
SONI 83.8 93.8 71.5 84.5

Table 3: Comparison with different strategies for synthesiz-
ing negative samples in MCRN.

MCM on the source data. We ablate the effect of MCM on
the source domain (MCM-S). On Duke→Market, MCM-S
outperforms Baseline (in Table 1) by +1.8%/+1.1% in terms
of mAP/R1. We assume the reason is that MCM can increase
the diversity of learned representation for each class. There-
fore, we use MCM on both source and target domains.
Alternatives of interpolation approach. Besides SONI,
we evaluate another two interpolation methods proposed
in MoCHi (Kalantidis et al. 2020). One is an interpolation
between the query and its nearest negative sample (QNNI
for short). The other is an interpolation between two sam-
ples randomly selected from the top-γ nearest negative
samples (RNNI for short). As is shown in Table 3, SONI
performs best among these three interpolation approaches.
Since samples generated by QNNI incorporates the query
feature, these samples are usually too hard to differentiate by
the model and harmful for optimization. Instead of using two
random negative samples adopted in RNNI, SONI interpo-
lates between two negative samples which are semantically
similar but have different pseudo labels, which is beneficial
to obtain more informative samples.
The number of centroids for each class. We conduct ex-
periments by varying K from 2 to 6 with an interval of 1
to investigate how the number of centroids K for each class
influence the UDA performance. As is shown in Table 4,
the UDA performance is continuously boosted when K is
increased from 2 to 4. With larger K, the UDA performance
reaches a plateau and no obvious gain is observed. Hence,

Value of K Duke→Market
2 3 4 5 6

mAP 75.7 83.2 83.8 83.5 83.5
R1 89.3 93.0 93.8 93.4 93.6

Table 4: Influence of the number of the centroids K for each
class.

0 0.88(-0.19) 0.91(-0.14)

0.88(-0.19) 0 0.90(-0.19)

0.91(-0.14) 0.90(-0.19) 0

0 1.07 1.05

1.07 0 1.09

1.05 1.09 0

w/ UCL w/ DSCL

Figure 3: Pair-wise cosine distances among three domains:
Market, Duke and MSMT.
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Figure 4: Performance of MCRN on Duke→Market task
with different value of α.

we set K = 4 as our default setting.

The number of synthetic negative samples. We generate
γ = αnt synthetic hard negative samples through SONI. To
explore the effect of the number of synthetic negative sam-
ples, we vary α from 0 to 0.07 with an interval of 0.01 and
present the results in Figure 4. As is shown, α in the range of
[0.01, 0.07] consistently outperforms α = 0, indicating the
effectiveness of synthetic negative samples. Besides, with
the increase of α, the UDA performance first increases and
then reaches a plateau, with the best performance achieved
at 0.03. Hence, we set α = 0.03 as our default setting.
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Methods Reference DukeMTMC→Market1501 Market1501→DukeMTMC
mAP R1 R5 R10 mAP R1 R5 R10

AD-Cluster (Zhai et al. 2020a) CVPR 20 68.3 86.7 94.4 96.5 54.1 72.6 82.5 85.5
MMT (Ge, Chen, and Li 2020) ICLR 20 71.2 87.7 94.9 96.9 65.1 78.0 88.8 92.5
NRMT (Zhao et al. 2020) ECCV 20 71.7 87.8 94.6 96.5 62.2 77.8 86.9 89.5
MEB-Net (Zhai et al. 2020b) ECCV 20 76.0 89.9 96.0 97.5 66.1 79.6 88.3 92.2
DG-Net++ (Zou et al. 2020) ECCV 20 61.7 82.1 90.2 92.7 63.8 78.9 87.8 90.4
SPCL (Ge et al. 2020) NIPS 20 76.7 90.3 96.2 97.7 68.8 82.9 90.1 92.5
HGA (Zhang et al. 2021a) AAAI 21 70.3 89.5 93.6 95.5 67.1 80.4 88.7 90.3
UNRN (Zheng et al. 2021a) AAAI 21 78.1 91.9 96.1 97.8 69.1 82.0 90.7 93.5
GCL (Chen et al. 2021) CVPR 21 75.4 90.5 96.2 97.1 67.6 81.9 88.9 90.6
GLT (Zheng et al. 2021b) CVPR 21 79.5 92.2 96.5 97.8 69.2 82.0 90.2 92.8
RDSBN+MDIF (Bai et al. 2021) CVPR 21 81.5 92.9 97.6 98.4 66.6 80.3 89.1 92.6
MCRN This paper 83.8 93.8 97.5 98.5 71.5 84.5 91.7 93.8

Methods Reference DukeMTMC→MSMT17 Market1501→MSMT17
mAP R1 R5 R10 mAP R1 R5 R10

MMT (Ge, Chen, and Li 2020) ICLR 20 23.3 50.1 63.9 69.8 22.9 49.2 63.1 68.8
DG-Net++ (Zou et al. 2020) ECCV 20 22.1 48.8 60.9 65.9 22.1 48.4 60.9 66.1
SpCL (Ge et al. 2020) NIPS 20 26.5 53.1 65.8 70.5 26.8 53.7 65.0 69.8
UNRN (Zheng et al. 2021a) AAAI 21 26.2 54.9 67.3 70.6 25.3 52.4 64.7 69.7
HGA (Zhang et al. 2021a) AAAI 21 26.8 58.6 64.7 69.2 25.5 55.1 61.2 65.5
GLT (Zheng et al. 2021b) CVPR 21 27.7 59.5 70.1 74.2 26.5 56.6 67.5 72.0
GCL (Chen et al. 2021) CVPR 21 29.7 54.4 68.2 74.2 27.0 51.1 63.9 69.9
RDSBN+MDIF (Bai et al. 2021) CVPR 21 33.6 64.0 75.6 79.6 30.9 61.2 73.1 77.4
MCRN This paper 35.7 67.5 77.9 81.6 32.8 64.4 75.1 79.2

Table 5: Comparison with state-of-the-art UDA person re-ID methods on common UDA benchmarks.

Methods Reference Market1501 DukeMTMC MSMT17
mAP R1 mAP R1 mAP R1

SpCL (Ge et al. 2020) NIPS 20 73.1 88.1 65.3 81.2 19.1 42.3
GCL (Chen et al. 2021) CVPR 21 66.8 87.3 62.8 82.9 21.3 45.7
RLCC (Zhang et al. 2021b) CVPR 21 77.7 90.8 69.2 83.2 27.9 56.5
MCRN This paper 80.8 92.5 69.9 83.5 31.2 63.6

Table 6: Comparison with state-of-the-art fully unsupervised person re-ID methods on person re-ID datasets.

Comparison with the State-of-the-Arts

Performance under the UDA re-ID setting. We compare
our proposed MCRN with the state-of-the-art UDA re-ID
methods on four domain adaptation tasks in Table 5. Our
method significantly outperforms the second best UDA re-
ID methods by 2.3%, 2.3%, 2.1% and 1.9% in mAP on
these tasks, respectively. With the same base configuration
as SpCL, our method outperform SpCL by 7.1%, 2.7%,
9.2% and 6.0% in terms of mAP on these tasks, respectively.
The comparison with MMT (Ge, Chen, and Li 2020) and
UNRN (Zheng et al. 2021a) are valuable, since they adopt
a teacher-student framework which consists of two identical
models while our method can outperform them with only a
single model.
Performance under the fully unsupervised re-ID setting.
Our proposed method can be easily generalized to fully un-
supervised re-ID tasks. We compare our method with other
state-of-the-art approaches for unsupervised re-ID in Ta-
ble 6. As is shown, our method remarkably surpasses the
state-of-the-art fully unsupervised person re-ID methods on

Market, Duke and MSMT datasets, which validates the ef-
fectiveness of our method once again. Specially, our MCRN
outperforms the second best method RLCC (Zhang et al.
2021b) by 3.1%/1.7% and 3.3%/7.1% in mAP/R1 on Market
and MSMT datasets, respectively.

Conclusion
In this work, we propose a unified framework, Multi-
Centroid Representation Network (MCRN), to address the
unsupervised domain adaptive person re-ID task. To al-
leviate the impact of label noises, we propose a Multi-
Centroid Memory (MCM) to capture more identity infor-
mation and select reliable positive/negative samples for
each input query. In order to learn more discriminative
feature representation, we propose Domain-Specific Con-
trastive Loss (DSCL) to fully explore intra-domain infor-
mation and Second-Order Nearest Interpolation (SONI) to
enrich informative hard negative samples for the query from
the target domain. Extensive experiments have demonstrated
the effectiveness of our framework.
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