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Abstract

Colorizing a grayscale image is inherently an ill-posed prob-
lem with multi-modal uncertainty. Language-based coloriza-
tion offers a natural way of interaction to reduce such un-
certainty via a user-provided caption. However, the color-
object coupling and mismatch issues make the mapping from
word to color difficult. In this paper, we propose L-CoDe, a
Language-based Colorization network using color-object De-
coupled conditions. A predictor for object-color correspond-
ing matrix (OCCM) and a novel attention transfer module
(ATM) are introduced to solve the color-object coupling prob-
lem. To deal with color-object mismatch that results in incor-
rect color-object correspondence, we adopt a soft-gated injec-
tion module (SIM). We further present a new dataset contain-
ing annotated color-object pairs to provide supervisory sig-
nals for resolving the coupling problem. Experimental results
show that our approach outperforms state-of-the-art methods
conditioned on captions.

1 Introduction
Image colorization, as the name implies, aims to add colors
to a grayscale image, since there are various types of pic-
tures that do not contain color, such as legacy photos, near-
infrared images, sketch or manga, and so on. The coloriza-
tion process could be fully automatic by predicting colors
from large-scale data using data-driven approaches (Isola
et al. 2017; Zhao et al. 2018; Su, Chu, and Huang 2020).
However, the problem is inherently ambiguous since there
are potentially infinite many colors that can be assigned to
the gray pixels of an input image (e.g., an apple may be col-
orized by green, yellow, or red). Hence, human intervention
often plays an important role to determine a unique solution.

With user interaction, scribble-based colorization meth-
ods (Luan et al. 2007; Zhang et al. 2017; Sangkloy et al.
2017) focus on propagating local user scribbles (e.g., color
points or strokes), while example-based colorization meth-
ods (Gupta et al. 2012; He et al. 2018; Xu et al. 2020; Lu
et al. 2020) colorize the input grayscale image with color
statistics transferred from a similar reference image. How-
ever, these methods often require a good sense of aesthet-
ics or a suitable reference image, which could be time-
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Figure 1: L-CoDe conducts colorization on a grayscale im-
age according to a given caption displayed on top of each im-
age row. Due to challenges caused by color-object coupling
(top row) and color-object mismatch (bottom row), state-of-
the-art methods (Manjunatha et al. 2018; Xie 2018) fail to
add the designated color according to the caption correctly,
while L-CoDe succeeds.

consuming for an untrained user. Language-based coloriza-
tion, a new interactive approach appearing in the recent
years (Manjunatha et al. 2018; Chen et al. 2018; Xie 2018),
colorizes a grayscale image conditioned on a caption. Users
only need to describe the object1 category desired to be col-
orized and the corresponding color of that region in the form
of natural language.

For language-based colorization, the colorized result
should be consistent with the description of the caption. To
meet this requirement, a caption is usually encoded into a
vector and injected into a colorization network as a condi-
tion (Manjunatha et al. 2018; Xie 2018), which makes it
more difficult than automatic colorization. There are two
problems with such an approach: (1) Color-object coupling:
When the color and object combination specified in the cap-

1In this paper, with a bit of abuse of concept, we refer to
thing/instance class (e.g., person, car, elephant) and stuff class (e.g.,
grass, wall, sky) together as “object”.
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tion is less observed in the dataset (“purple horse” in the top
example of Figure 1), the colorization method may fail to
change the “common sense”. This is because colors and ob-
jects in the caption are treated equally without decoupling.
(2) Color-object mismatch: An object whose color is not
mentioned in the caption may take on the color from another
object (e.g., the red car in the bottom example of Figure 1).

In this paper, we propose L-CoDe, a Language-based
Colorization network using color-object Decoupled condi-
tions. To deal with (1) color-object coupling, we adopt bi-
affine mechanism to predict the object-color corresponding
matrix (OCCM), and use it to transfer the correspondence
between visual regions and nouns to the correspondence
between regions and adjectives2, which is implemented by
proposing a new attention transfer module (ATM). To fur-
ther solve (2) color-object mismatch issue, we adopt a soft-
gated injection module (SIM) to ensure that the color will
not be applied to objects whose colors are not mentioned in
the caption. L-CoDe contributes to a novel language-based
colorization solution by
• decoupling colors and objects for correctly applying des-

ignated (could be unusual) color words to objects;
• improving the injection module to fulfill accurate color-

object matching with a soft-gated mechanism; and
• a new dataset containing annotated ground-truth corre-

sponding matrices with captions to supervise the train-
ing.

We demonstrate that L-CoDe provides higher quality col-
orization results both quantitatively and qualitatively, and
validate its applicability in colorizing legacy photos.

2 Related Work
We provide a brief overview of relevant prior works accord-
ing to different ways of user interaction.

Automatic colorization. Colorization could be conducted
without user interaction. Relying entirely on learning to
automate the colorization process has received increasing
attention in recent years (Zhang, Isola, and Efros 2016;
Zhao et al. 2018; Su, Chu, and Huang 2020). Cheng, Yang,
and Sheng (2015) proposed a fully automatic colorization
method by concatenating several pre-defined features and
feeding them into a three-layer fully connected neural net-
work. Deshpande, Rock, and Forsyth (2015) solved a linear
system to colorize an image. Recently, deep learning based
solutions have become the mainstream to automatically ex-
tract features and predict the colorized results. Iizuka, Simo-
Serra, and Ishikawa (2016) and Zhao et al. (2018) presented
a two-branch architecture that jointly learned and fused local
image features and global priors (e.g., semantic labels). Isola
et al. (2017) treated colorization as an image-to-image trans-
lation task and proposed a generative network. To handle
multi-modal uncertainty in colorization, some works predict
the color distribution of each pixel instead of a single color.
Zhang, Isola, and Efros (2016) proposed a network trained

2In this paper, nouns refer specifically to words describing the
object category and adjectives refer only to words representing col-
ors.

with a multinomial cross entropy loss with rebalanced rare
classes allowing unusual colors to appear. Larsson, Maire,
and Shakhnarovich (2016) used hypercolumns (Hariharan
et al. 2015) to interpret the semantic composition of the
scene and the localization of objects to predict the color his-
tograms of each pixel. Su, Chu, and Huang (2020) learned
object-level semantics instead of image-level or pixel-level
by training on the cropped object images and then fusing
the learned object level and full-image features. Due to the
multi-modal uncertainty, fully automatic solutions may not
always produce satisfactory results, which could be comple-
mented with various types of user interaction.

Scribble-based colorization. Early attempts leverage
high-level user scribbles (e.g., color points or strokes) to
guide the colorization process by propagating user-specified
color scribbles based on some low-level similarity met-
rics (Levin, Lischinski, and Weiss 2004; Yatziv and Sapiro
2006; Luan et al. 2007). The pioneering work (Levin,
Lischinski, and Weiss 2004) assumed that adjacent pixels
with similar luminance should have similar color, and then
solved an optimization problem based on this constraint.
Several follow-up approaches focused on reducing color
bleeding via edge detection (Huang et al. 2005) or improv-
ing the efficiency of color propagation with intrinsic dis-
tance (Yatziv and Sapiro 2006) or texture similarity (Qu,
Wong, and Heng 2006; Luan et al. 2007). However, these
methods predict the color of each pixel completely depend-
ing on user inputs, so they may require a lot of user scribbles.
With a deep neural network (Zhang et al. 2017; Sangkloy
et al. 2017), pixels not specified by the user are learned from
training dataset, which alleviates the efforts.

Example-based colorization. This category of methods
transfers the color from a reference image to the input
image by computing the correspondences between them
based on some similarity metrics (Welsh, Ashikhmin, and
Mueller 2002; Liu et al. 2008; Bugeau, Ta, and Papadakis
2013; Charpiat, Hofmann, and Schölkopf 2008; Tai, Jia,
and Tang 2005; Ironi, Cohen-Or, and Lischinski 2005; Chia
et al. 2011; Gupta et al. 2012). The early work (Welsh,
Ashikhmin, and Mueller 2002) transferred colors by match-
ing global color statistics. For more accurate local trans-
fer, correspondence techniques at different levels were pro-
posed, including pixel level (Liu et al. 2008; Bugeau, Ta, and
Papadakis 2013), segmented region level (Charpiat, Hof-
mann, and Schölkopf 2008; Tai, Jia, and Tang 2005; Ironi,
Cohen-Or, and Lischinski 2005) and super-pixel level (Chia
et al. 2011; Gupta et al. 2012; Dong et al. 2019, 2020).

These methods work remarkably well when the input and
the reference share similar contents. However, finding an
appropriate reference image is time-consuming and can be
challenging for rare objects or complex scenes, even if us-
ing an automatic retrieval system (Chia et al. 2011). To solve
these problems, He et al. (2018) proposed a deep learning
approach, which allows controllability and is robust to ref-
erence selection. In order to further improve the robustness,
Xu et al. (2020) adopted a novel two-way architecture to
jointly learn faithful colorization with a related reference
and plausible color prediction with an unrelated one, and Lu
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Figure 2: Pipeline of L-CoDe. L-CoDe takes as input a grayscale image (luminance) and a caption. First, the grayscale image
is encoded into visual features. Then the OCCM and ATM are used to generate color-object decoupled conditions. The SIM
injects color-object decoupled conditions into the visual regions described by the caption. Finally, modulated visual features
are converted into chrominance by the decoder.

et al. (2020) designed an attention gating mechanism based
network to fuse the semantic colors and global color dis-
tribution from the reference image, both methods achieved
better colorization.

Language-based colorization. Recently, a language-
based colorization method was presented to colorize
grayscale images using sentences that describe objects with
colors (Manjunatha et al. 2018). Context confusion and spa-
tial inconsistency are common problems for language-based
colorization. To deal with complex sentences, Chen et al.
(2018) used recurrent attentive models to fuse image and
language features, and to enhance the spatial consistency of
colorized results. Xie (2018) adopted a semantic segmen-
tation side-task to facilitate the learning of high-level se-
mantics. Due to the flexibility of using natural language,
language-based colorization derives many interesting appli-
cations. Zou et al. (2019) designed a system to colorize
scene sketches guided by captions in a progressive way.
Bahng et al. (2018) proposed a novel approach to generate
multiple color palettes that reflect the semantics of input text
and then colorize a given grayscale image according to the
generated color palettes.

3 Method
In this section, we first present an overview of the pipeline
of L-CoDe. Then, we elaborate on the detailed designs of
the three components: the OCCM predictor, ATM and SIM.
Finally, we introduce the loss function and training details.

3.1 Overview
The pipeline of L-CoDe is illustrated in Figure 2. It works
in the CIE Lab color space, which is perceptually linear. In
the CIE Lab color space, each image is separated into a lu-
minance channel L and two chrominance channels a and b.
L-CoDe predicts two missing color channels of a gray-scale
image conditioned on a caption.

L-code adopts an encoder-decoder backbone. The en-
coder first extracts visual features V ∈ RDv×H×W from
an input grayscale image, where Dv donates the number
of channels, H and W are the height and width of the
feature maps. Then three modules are proposed to gener-
ate the decoupled conditions and modulate the visual fea-
tures. Finally, the decoder converts modulated visual fea-
tures V ′ ∈ RDv×H×W into the colorized result.

Here we briefly introduce the proposed key modules,
which will be explained in detail in the following subsec-
tions: (1) The object-color corresponding matrix (OCCM)
is predicted by the OCCM predictor; (2) the attention trans-
fer module (ATM) transfers the correspondence between vi-
sual regions and nouns to the correspondence between re-
gions and adjectives using OCCM to provide color-object
decoupled conditions; and (3) the soft-gated injection mod-
ule (SIM) modulates visual features with decoupled condi-
tions.

3.2 OCCM Predictor
The previous methods (Manjunatha et al. 2018; Xie 2018)
encode the caption into a single vector which mixes the
nouns and adjectives together, resulting in stronger coupling
issue. In order to distinguish the nouns and adjectives, we
encode each word in the caption into a vector. Specifically,
given a caption with N words, we use Bi-LSTM (Schuster
and Paliwal 1997) to extract context-aware feature matrix
W ∈ RDw×N . Each column of W represents a word vec-
tor, the dimension of which is Dw. Moreover, we predict
the OCCM to find the correspondence between nouns and
adjectives in the caption, which is required by the follow-
ing ATM. Inspired by the biaffine attention in dependency
parsing (Dozat and Manning 2016; Fernández-González and
Gómez-Rodrı́guez 2020), we adopt two MLPs (Dozat and
Manning 2016) f col and f obj to convert the word vectors into
“object space” and “color space” respectively:

Hcol
i = f col(Wi), Hobj

i = f obj(Wi), (1)
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Figure 3: Visualization of attention maps before/after (top/bottom on the left) Step T and the OCCM. We visualize the attention
maps by expanding them to 224 × 224 with Gaussian filters. The brighter the region in the visualization, the greater the
probability that the object is located in that region.

where Hobj
i ∈ RDh×1 and Hcol

i ∈ RDh×1 donate the i-th
vector in “object space” and “color space” respectively. Wi

is the i-th column vector of W . The corresponding relation-
ship between color and object in the OCCM is predicted by:

Ti,j = σ((Hobj
i )⊤UHcol

j + (Hobj
i )⊤u). (2)

If the i-th word is a noun whose color is described by the
j-th word, the value of Ti,j is close to 1. Otherwise, Ti,j is
close to 0. σ(∗) is the sigmoid function. U ∈ RDh×Dh and
u ∈ RDh×1 are learned parameters.

3.3 Attention Transfer Module
To obtain the color-object decoupled condition, the widely
used cross-modality attention (Xu et al. 2018), which syn-
thesizes fine-grained images based on individual word rep-
resentation, could be a useful reference. We briefly review
the crucial steps in Xu et al. (2018) to make our following
explanation self-contained: First, they project the word vec-
tors into the semantic space of the visual vectors; then they
calculate the dot product of the visual vectors (query) and
the word vectors (key) to obtain the probability of each vi-
sual region corresponding to all words in the sentence; fi-
nally, the weighted sum of the word vectors (value) is calcu-
lated to generate the condition corresponding to each visual
region.

However, in the colorization task, the input visual features
lack color information, so the visual regions tend to corre-
spond to nouns. Cross-modality attention (Xu et al. 2018)
ignores the adjectives describing the unusual and counter-
intuitive color details which finally makes the result stick to
“common sense”. In addition, the such an attention uses the
same key and value, which also aggravates the coupling.

To overcome the problems above, we propose a new
“attention-transfer” mechanism to map the correspondence
between regions and nouns into the correspondence between
regions and adjectives. In this way, we can use nouns to find
the corresponding regions, and take the adjectives to col-
orize them. It has been suggested that using separate pro-
jection layers can make the key focus on matching with the
visual regions, and the value is optimized towards generat-
ing a better condition (Liu et al. 2021). So we use two lin-

ear projection layers to convert word vectors from the “ob-
ject space” and “color space” into the visual space obtaining
Ĥobj ∈ RDv×N and Ĥcol ∈ RDv×N , and take them as the
key and value respectively. The proposed ATM contains “A-
T” as two crucial steps, which are detailed as follows.

• Step A: We obtain the correspondence between regions
and nouns by calculating attention maps of visual fea-
tures and words:

S = Ṽ ⊤Ĥobj, (3)

where Ṽ ∈ RDv×M is the flattened version of V , M =
H×W , and S ∈ RM×N . Each element Si,j in the matrix
S represents the score that the j-th words corresponds to
the i-th position of visual features.

• Step T: To filter out the unreasonable pairs, we set the
elements that are smaller than the threshold α in the
OCCM to zero, and normalize it to T̄ (using the l1-norm).
Then we use T̄ to transfer the correspondence between
regions and nouns to the correspondence between regions
and adjectives, which obtains S′. An example for visual-
ization of S/S′ and OCCM is shown in Figure 3.

T̄i,j =
Ti,j∑N−1

k=0 (Ti,k)
, S′ = ST̄ . (4)

We use softmax to normalize S′ to S̄′, and obtain the de-
coupled conditions C ∈ RDv×M by Ci =

∑N−1
j=0 S̄′

i,jĤ
col
j ,

where Ci is the i-th column of C and corresponds to the i-th
position of visual features.

3.4 Soft-gated Injection Module
When describing an image using natural language, people
may only want to mention the objects they are interested
in. An example is given in the top left corner of Figure 2.
Only “black dog” and “red frisbee” are provided in the in-
put caption, while other objects like the sky, trees, grass, and
house are not provided with designated color labels. To pre-
vent these unmentioned objects from taking colors appear-
ing in the caption, we propose the SIM module to deal with
such color-object mismatch.
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Observing that attention module focuses on visual regions
whose color is mentioned in the caption (bottom left of Fig-
ure 3), we consider using S′ to ensure that the color would
not be applied to objects whose color are not mentioned in
the caption. Specifically, we reshape S′ to N ×H ×W and
applying 1×1-conv operation with sigmoid activation f conv

on S′ to obtain the soft-gated mask m ∈ R1×H×W :

m = f conv(S′). (5)

The mask m indicates which visual regions have corre-
sponding adjectives.

We adopt scale and shift parameters to modulate the vi-
sual features. The decoupled condition C is reshaped to
Dv × H × W , and converted to scale and shift parameters
by two 1×1-conv layers. Then we use the soft-gated mask
to further constrain the modulation parameters:

γ′ = γ(C)⊙m+ (1−m)⊙ 1,

β′ = β(C)⊙m+ (1−m)⊙ 0,
(6)

where γ′ ∈ RDv×H×W , β′ ∈ RDv×H×W , “⊙” donates
element-wise multiplication, γ(∗) and β(∗) represent the
convolution layers that convert C to the scale and shift pa-
rameters respectively. 1 and 0 denote tensors of ones and
zeros respectively. Finally, the modulated feature V ′ can be
defined as:

V ′ = γ′ ⊙ V − µ

σ
+ β′. (7)

µ and σ are the estimated mean and standard deviation from
aggregating both batch and spatial dimensions:

µ =
1

BHW

∑
b,h,w

Vb,c,h,w,

σ =

√
1

BHW

∑
b,h,w

(V 2
b,c,h,w − µ2),

(8)

where B donates the batch size.

3.5 Loss Function and Training
We adopt a smooth-l1 loss (Huber 1992) with δ = 1 as a
robust estimator to train colorization network:

ℓδ(x, y) =
1

2
(x− y)21{|x−y|<δ}+

δ(|x− y| − 1

2
δ)1{|x−y|≥δ}.

(9)

In addition, we optimize the binary cross entropy between
the estimated OCCM and the ground-truth matrix:

ℓBCE(x, y) = −(y log(x) + (1− y) log(1− x)). (10)

The model is trained in an end to end manner. For the in-
put, we resize the grayscale image to 1 × 224 × 224 and
repeat it as 3 × 224 × 224. In the encoding stage, the vi-
sual feature maps in the first 4 convolutional blocks contain-
ing 2 (or 3) convolution layers are progressively halved spa-
tially while doubling the feature channel number. In the de-
coding stage, the modulated feature maps are progressively
doubled spatially while halving the feature channel number.

All down-sampling layers use MaxPool with a stride of 2,
while all upsampling layers use deconvolution with a stride
of 2. BatchNorm layers (Ioffe and Szegedy 2015) are added
after each convolutional block. All the convolutional layers
use ReLU as the activation function, and only the last layer
uses Tanh to constrain the output within a meaningful bound.
The first four convolutional blocks in the network are ini-
tialized with pre-trained weights from a VGG16-BN model.
The rest of the colorization network is initialized with the
Xavier method.

We set the batch size to 16, α = 0.1 in the ATM. We
minimize our objective loss using Adam optimizer with
learning rate set as 2 × 10−4 and momentum parameters
β1 = 0.99 and β2 = 0.999. Experiments were conducted
on two NVIDIA GTX 1080Ti GPUs.

4 Experiments
In this section, we present experimental results to validate
the advantages of L-CoDe and demonstrate its applications.
We start by describing the evaluation datasets and met-
rics. Then we compare our results with the state-of-the-art
language-based colorization methods and carry out an ab-
lation study to validate our ATM and SIM. We also demon-
strate applications of our L-CoDe on colorizing legacy black
and white photos. Finally, we conclude this section with an
example of failure case.

4.1 Experimental Setting
Datasets. Learning-based image colorization methods
could be trained using the ImageNet dataset (Russakovsky
et al. 2015). However, language-based colorization re-
quires a caption describing the grayscale image, so existing
language-based methods choose to use image datasets with
captions, such as the COCO-Stuff (Caesar, Uijlings, and Fer-
rari 2018). For the captions in COCO-Stuff, there are many
objects whose colors are absent. According to Xie (2018),
we keep the images whose captions contain adjectives and
have 59K training images and 2.4K validation images left.
We further annotate the correspondence between objects and
colors by hand as the basis for generating ground-truth ma-
trices.

Evaluation metrics. Following the experimental protocol
by Su, Chu, and Huang (2020), we report the PSNR and
SSIM numbers to quantify the colorization quality. To com-
pute the SSIM on color images, we average the SSIM values
computed from individual channels. The recently proposed
perceptual metric LPIPS by Zhang et al. (2018) (version 0.1;
with VGG backbone) is also calculated and compared.

4.2 Comparisons with State-of-the-art Methods
The method proposed by Chen et al. (2018) is a conceptual
design, so a fair comparison is difficult because it requires a
separate implementation per dataset. The methods proposed
by Manjunatha et al. (2018) and Xie (2018) are the most
relevant language-based solutions, with which we hope to
compare. However, both of them have their own training and
testing datasets based on COCO-Stuff (Caesar, Uijlings, and
Ferrari 2018). To make a fair comparison, we retrain these
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Figure 4: Qualitative comparisons with state-of-the-art
methods (Manjunatha et al. 2018; Xie 2018). By success-
fully resolving the color-object mismatch and coupling is-
sues, L-CoDe (ours) correctly modifies the color of desig-
nated objects (top) and avoids wrongly colorizing objects
not mentioned in the caption (bottom).

networks using their publicly available code on the reorga-
nized dataset. Note that Manjunatha et al. (2018) and our
method take a grayscale image and a caption as input, while
Xie (2018) also needs the segmentation of the grayscale im-
age.

Quantitative comparisons. We show quantitative com-
parisons of colorization results conditioned on correspond-
ing captions in Table ??. L-CoDe performs favorably against
other methods on all three metrics, indicating that our col-
orization results to be more similar to ground truth images
on these metrics.

Qualitative comparisons. Qualitative comparisons also
demonstrate the effectiveness of our approach, as shown in
Figure 4. We generate different color images of a single im-
age by swapping out different colors in the caption to evalu-
ate whether each method is able to colorize the correspond-
ing object precisely. These examples show that L-CoDe is
particularly effective in dealing with color-object coupling
and color-object mismatch.

As shown in the top two rows in Figure 4, methods of
Manjunatha et al. (2018) and Xie (2018) have difficulties in

Method PSNR↑ SSIM%↑ LPIPS↓
Manjunatha et al. 21.055 85.333% 0.282
Xie et al. 21.407 84.016% 0.298
Ours 24.965 91.657% 0.169

Table 1: Quantitative comparison result. L-CoDe (ours) per-
forms best in three metrics. Throughout this paper, ↑ (↓)
means higher (lower) is better.

Method Experiment-1 Experiment-2
Manjunatha et al. 18.32% 16.68%
Xie et al. 18.68% 32.64%
Ours 63.00% 50.68%

Table 2: User study result. We conduct two user study ex-
periments to evaluate whether our colorization results are
favored by human observers. L-CoDe (ours) achieves obvi-
ously higher scores in both experiments.

changing the color of the bananas, which is strongly coupled
to yellow in the dataset, to red or green, while our method
successfully deals with this. In the bottom two rows, al-
though the object mentioned in the caption is painted with
the correct color, the regions not specified wrongly take on
the color from the caption. For instance, the input caption
specifies only the color of the umbrella, but the little girl’s
hair, the flowerpot, and the car are also colorized using the
same color as the umbrella.

User study. In addition to quantitative and qualitative
comparisons, we conduct two user study experiments to
evaluate whether our colorization results are favored by hu-
man observers. We design two experiments: Experiment-1:
In this task, we provide captions describing a ground truth
color image, participants are shown with the ground truth
image and three colorized results from three different meth-
ods: Manjunatha et al. (2018), Xie (2018), and ours, and
asked to choose the most visually pleasing result with re-
spect to the ground truth. But in this experiment, even if
a colorized result is similar to the ground truth image, it
cannot prove whether the caption correctly plays the re-
strictive role in the colorization process. Therefore, we de-
sign Experiment-2: In this task, we replace the color word
in a caption with another random color word. Participants
are shown a new caption and three colorized results from
three different methods and asked to choose an image that
matches best with the given caption.

Each experiment is composed of 100 tasks, and the image
in each task is randomly selected from the testing dataset.
We publish these two experiments on Amazon Mechanical
Turk (AMT) and each experiment is completed by 25 par-
ticipants. As shown in Table ??, our method achieves higher
scores in both experiments, which confirms the subjective
advantages of L-CoDe.
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Figure 5: An example of ablation study by replacing the
ATM module with attention in Xu et al. (2018). It becomes
less effective to apply unusual colors to objects.

Man in blue playing tennis. A yellow and black fire hydrant.

w/o SIM w/ SIM w/o SIM w/ SIM

Figure 6: An example of ablation study by replacing the SIM
module. There is dispersion and mismatch in the colorized
images.

Method PSNR↑ SSIM↑ LPIPS↓
(1) 24.778 91.643% 0.175
(2) 23.497 89.869% 0.207
Ours 24.965 91.657% 0.169

Table 3: Quantitative comparisons with replacing ATM (1),
replacing SIM (2) and our complete method (Ours).

4.3 Ablation Study
We evaluate the effectiveness of two new components —
the ATM and the SIM in two ablation settings: (1) We re-
place the ATM with attention module in Xu et al. (2018)
which takes the outputs of BiLSTM as inputs and discards
the OCCM; (2) we replace the SIM by modulating the vi-
sual feature with γ and β rather than γ′ and β′. Quantitative
comparisons are shown in Table ??, where our full method
achieves higher scores on all three metrics. After replacing
the ATM, there is no significant difference in the quantitative
results, because the colors in the test captions are the com-
mon colors of the objects. The qualitative comparison shown
in Figure 5 demonstrates that, without the ATM the network
becomes rather ineffective in changing colors according to
captions due to the coupling of color-object pairs. After re-
placing the SIM, there is dispersion and mismatch in the col-
ored images without the constraint of mask m. As shown
in Figure 6, blue color spread to the grass (left), and yellow
color was wrongly applied to the clothes behind (right). This
demonstrates that our SIM is effective.

The Tetons and
Snake River,
Ansel Adams,

1942

June 1949.
"Fashion model

in evening
gown"

A person in
purple stands

under the blue
sky.

A scenery of blue
sky, blue water

and green trees.

Figure 7: An example of colorization for legacy black and
white photos.

A medium sized green/orange boat going down a waterway.

Grayscale Ground truth green orange

Figure 8: An example of failure case. Our method may pro-
duce bleeding across object boundaries when handling ob-
jects with fine structures along edges.

4.4 Colorizing Legacy Photos
Since L-CoDe is trained on “synthetic” grayscale images by
removing the chrominance channels from natural color im-
ages, it is readily to be applied to add colors to legacy black
and white photos. We show some example results in Figure
7, which demonstrates the generalization capability of the
proposed method.

4.5 Failure Case
We show an example of failure cases in Figure 8. It is diffi-
cult to handle edges of objects with fine structures, because
of the limited resolution of image feature maps and attention
maps. As a result, our method may produce visible artifacts
such as color bleeding across object boundaries.

5 Conclusions
We propose L-CoDe, a Language-based Colorization net-
work using color-object Decoupled conditions. L-CoDe suc-
cessfully deals with the color-object coupling and color-
object mismatch issues that result in incorrect caption-color
correspondence. Although experimental results show that
our work achieves state-of-the-art performance, we believe
that there’s still plenty of room for improvement. In our fu-
ture work, we will consider adopting features and attention
representations of higher resolution to achieve colorization
with finer details.
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