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Abstract

Although deep-learning based video recognition models have
achieved remarkable success, they are vulnerable to ad-
versarial examples that are generated by adding human-
imperceptible perturbations on clean video samples. As indi-
cated in recent studies, adversarial examples are transferable,
which makes it feasible for black-box attacks in real-world
applications. Nevertheless, most existing adversarial attack
methods have poor transferability when attacking other video
models and transfer-based attacks on video models are still
unexplored. To this end, we propose to boost the transfer-
ability of video adversarial examples for black-box attacks
on video recognition models. Through extensive analysis, we
discover that different video recognition models rely on dif-
ferent discriminative temporal patterns, leading to the poor
transferability of video adversarial examples. This motivates
us to introduce a temporal translation attack method, which
optimizes the adversarial perturbations over a set of tempo-
ral translated video clips. By generating adversarial exam-
ples over translated videos, the resulting adversarial examples
are less sensitive to temporal patterns existed in the white-
box model being attacked and thus can be better transferred.
Extensive experiments on the Kinetics-400 dataset and the
UCF-101 dataset demonstrate that our method can signifi-
cantly boost the transferability of video adversarial exam-
ples. For transfer-based attack against video recognition mod-
els, it achieves a 61.56% average attack success rate on the
Kinetics-400 and 48.60% on the UCF-101.

Introduction

Recent years have witnessed the great success of deep learn-
ing techniques on a series of tasks (He et al. 2016; Liu et al.
2018; Feng et al. 2021), such as image recognition (He et al.
2016; Liu et al. 2020; Chen et al. 2020b,a), Image segmen-
tation (Jiao et al. 2021), object detection (Ren et al. 2016),
video recognition and retrieval (Wu et al. 2020c; Song et al.
2021). Therefore, DNNs have been widely applied in real-
world applications, e.g., online recognition services, naviga-
tion robots, autonomous driving (Tian et al. 2018), etc. How-
ever, recent studies have identified that DNNSs are vulnerable
to adversarial examples (Goodfellow, Shlens, and Szegedy
2014; Szegedy et al. 2013), which are carefully crafted to
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fool DNNs by adding small human-imperceptible pertur-
bations on clean samples. The existence of adversarial ex-
amples incurs security concerns in real-world applications.
Thus, it has raised increasing attention over recent years.

According to threat models, adversarial attacks can be
divided into two categories: white-box attacks (Wei et al.
2019) and black-box attacks (Guo et al. 2021). In the white-
box setting, an adversary can fully control and access DNN
models, including model architectures as well as parameters.
While in the black-box setting, the adversary can only access
the outputs of DNNs. Hence attacking a model in the black-
box setting is much more challenging. As recent studies have
shown adversarial examples have a property of transferabil-
ity, making it feasible to perform black-box attacks by us-
ing adversarial examples generated on a white-box model.
Therefore, several efforts have been made to boost the trans-
ferability of adversarial examples (Dong et al. 2018; Xie
et al. 2019), in order to achieve high success rates of black-
box attacks. Nevertheless, existing works focus on improv-
ing the transferability of image adversarial examples, while
the transferability of video adversarial examples has not yet
been explored.

This paper investigates the transferability of video adver-
sarial examples to realize black-box attacks for video recog-
nition models. The major challenge of this task comes from
the fact that generated adversarial examples are prone to
overfitting to white-box models and have poor transferabil-
ity for other black-box models. Compared to images, videos
have an additional temporal dimension, endowing videos
with rich temporal information that describes the dynamic
cues (e.g., motion). To capture such rich temporal informa-
tion, various of video recognition models (e.g., I3D (Car-
reira and Zisserman 2017), SlowFast (Feichtenhofer et al.
2019)) which are based on 3D convolutional neural net-
works (CNNs) are designed. Intuitively, the discriminative
temporal patterns captured by video recognition models may
vary across different architectures. As generated adversarial
examples are highly correlated with such patterns or gradi-
ents of the white-box model, directly utilizing adversarial
video examples generated from the white-box model to at-
tack other black-box video recognition models may lead to
unsatisfactory results.

To improve the transferability of video adversarial exam-
ples, this paper proposes a temporal translation method to
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Figure 1: Overview of the proposed method. Given a video clip, temporal shifting is applied to generate a set of video clips.
Then gradients obtained from these temporal translated video clips are linearly combined to form the augmented gradients. As
temporal translation alleviates the effect of different discriminative temporal patterns between video recognition models, the
adversarial video example generated from the augmented gradients is less sensitive to the discriminative temporal patterns of

the white-box model and hence enjoys higher transferability.

generate adversarial examples that generalize well across
different video models. The key idea is to optimize adver-
sarial examples on a set of temporal translated video clips.
In this way, video adversarial examples will be less sensi-
tive to discriminative temporal patterns of white-box models
and enjoy higher transferability. Our method is motivated by
(Dong et al. 2019), where spatial translations are adopted
on images to mitigate the effect of different discriminative
regions between models and improve the transferability of
image adversarial examples.

Figure 1 gives an overview of the proposed method. Given
a video clip, temporal translation with a shift length L is ap-
plied to generate a set of video clips. Note that the tempo-
ral translation can be performed both forward and backward
along the temporal axis, hence we can obtain 2L translated
video clips. Along with the original video clip, these 2L + 1
video clips are then inputted into the white-box model to ob-
tain corresponding translated gradients, which are the gradi-
ents of the loss function with respect to video clips. To obtain
the augmented gradients, the translated gradients are then
shifted back to the original temporal order and combined
linearly by a weight matrix. Finally, the resulting augmented
gradients are used to generate adversarial examples that are
able to generalize across different recognition models. We
briefly summarize our primary contributions as follows:

* We study transfer-based attacks in videos and propose a
temporal translation attack method to boost the transfer-
ability of adversarial samples. To the best of our knowl-
edge, this is the first work on transfer-based black-box
attacks for video recognition models.

* We provide insightful analysis on the correlation of dis-
criminative temporal patterns from different models and
empirically prove that the discriminative temporal pat-
terns among video models are different. Based on this ob-
servation, we combine the gradients from temporal trans-
lated videos to generate adversarial examples with higher
transferability.

* We conduct empirical evaluations using six video recog-
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nition models trained with the Kinetics-400 dataset and
UCF-101 dataset. Extensive experiments demonstrate
that our proposed method helps to boost the transferabil-
ity of video adversarial examples by a large margin.

Related Work

In this section, we first introduce white-box attacks, then re-
view several transfer-based attacks on image models. We
then review existing works on black-box attacks on video
recognition models for showing the necessity of propos-
ing transfer-based video attacks. We finally present several
video recognition models with varying structures.

Transfer-based Attacks on Images Models

The basic white-box attacks: Fast Gradient Sign Method
(FGSM) (Goodfellow, Shlens, and Szegedy 2014), Basic It-
erative Method (BIM) (Kurakin, Goodfellow, and Bengio
2017) are usually utilized for transfer-based attacks. FGSM
takes a one-step update on the clean sample along with the
sign of gradient towards maximizing the loss function. Ba-
sic Iterative Method (BIM) iteratively applies FGSM mul-
tiple times with a small step size. Although BIM can over-
fit the discriminative pattern well and generate more pow-
erful adversarial examples than FGSM on the white-box
model, the transferability of generated adversarial exam-
ples is worse than FGSM (Kurakin, Goodfellow, and Ben-
gio 2016). To further improve the transferability of adver-
sarial examples, several approaches are proposed recently.
One of the main causes for low transferability is that the
generated adversarial examples tend to over-fit the white-
box model. Hence to avoid over-fitting, several methods pro-
pose to increase the diversity of the input data with data
augmentation. For example, Variance-Reduced attack (VR
Attack) (Wu et al. 2018) adds gaussian noise to the input
for alleviating the shattering of gradients. Diversity Input at-
tack (DI Attack) (Xie et al. 2019) applies random resizing
and padding to the input at each iteration for creating di-
verse input patterns. Translation-invariant attack (T Attack)



(Dong et al. 2019) optimizes perturbations over an ensem-
ble of translated images to generate more transferable ad-
versarial examples against defense models. Scale-invariant
method (SIM Attack) (Lin et al. 2019) optimizes the per-
turbations over the scale copies of the input. Other meth-
ods attempt to stabilize the update direction or to obtain
the vulnerable (high transfer-based attack success rate) gra-
dients for optimization. For example. Momentum Iterative
attack (MI Attack) (Dong et al. 2018) integrates the mo-
mentum term into the iterative process for stabilizing update
directions. Skip Gradient method (SGM Attack) (Wu et al.
2020a) uses more gradients from the skip connections rather
than residual modules for improving the transferability. Nes-
terov accelerated gradient is integrated into the FGSM to
boost the transferability (Lin et al. 2019). Besides, new loss
functions are also proposed for optimizing the transferablil-
ity. For example, Attention-guided Transfer Attack (ATA)
(Wu et al. 2020b) maximizes distance between clean im-
ages and their adversarial images in the attention map. In
contrast, we discover different discriminative temporal pat-
terns among video recognition models, which we utilize to
overcome the over-fitting problem and improve the transfer-
ability of video adversarial examples. Different to TI, which
adopts translation on the spatial dimension, our method per-
forms translation on the temporal dimension and shifts gra-
dients of translated inputs back to the original order before
taking the weighted sum. To the best of our knowledge, our
method is the first attempt in investigating the transfer-based
attacks in the video domain.

Black-box Attacks on Video Recognition Models

The black-box setting assumes that the adversary can only
access the output of models, hence it is much more dif-
ficult than the adversarial attack under the white-box sce-
nario. To realize black-box attack on video recognition mod-
els, Jiang et al. (Jiang et al. 2019) estimate the partition-
based rectifications by the NES (Ilyas et al. 2018) on parti-
tions of tentative perturbations transferred from image mod-
els to generate adversarial examples with fewer queries.
To boost the attack efficiency and reduce the query num-
bers, Wei et al. (Wei et al. 2020) propose a heuristic black-
box attack method to generate sparse adversarial perturba-
tions. Later, Zhang et al. (Zhang et al. 2020) introduce a
motion-excited sampler to correlate pixels in videos. Chen
et al. (Chen et al. 2021) stealthily attacks video models with
bullet-screen comments. However, these methods still need
a lot of queries to attack video models. Different from these
works, we propose to realize black-box attacks on video
recognition models by improving the transferability of video
adversarial examples generated on white-box models.

Video Recognition Models

Video recognition task has been widely investigated in re-
cent years. Many studies (Jiang et al. 2017; Yue-Hei Ng
et al. 2015) applies 2D CNNs over per-frame input to ex-
tract features, followed by a 1D module that integrates tem-
poral features. The separation of spatial and temporal mod-
eling limits the ability to jointly capture the dynamic se-
mantics of videos. Therefore, 3D CNNs are proposed to
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stack 3D convolutions to better handle temporal and spa-
tial information. For example, I3D (Carreira and Zisserman
2017) utilizes the inflated 2D convolution kernels to learn
spatio-temporal representations from videos. Non-local net-
work (Wang et al. 2018) inserts the non-local blocks into
13D, non-local blocks calculate the response at a position
as a weighted sum of all position features. SlowFast (Fe-
ichtenhofer et al. 2019) involves a slow pathway to cap-
ture spatial semantics, and a fast pathway to capture mo-
tion. SlowFast uses lateral connections to fuse from the fast
to the slow pathway. This architecture contrasts the speed
along the temporal axis. Temporal Pyramid Network (TPN)
(Yang et al. 2020) models the visual tempos of action in-
stances as a feature-level pyramid. In the feature aggregation
part, TPN fuses features from multiple depths in a single net-
work to cover various visual tempos. There also exist other
architectures of video recognition models, e.g., pseudo-3d
residual network (Qiu, Yao, and Mei 2017). In this paper,
we use three representative video recognition models for ex-
periments, including non-local network (NL), SlowFast, and
TPN, with 3D ResNet-50 and ResNet-101 as backbones. For
simplicity, we use Network-50/101 to denote the specified
Network with ResNet50/ResNet101 as the backbone.

Methodology
Preliminary

Given a video sample z € X C RT*XHXWXC yith its
ground-truth label y € Y = {1,2,..., K}, where T, H,
W, C denote the number of frames, height, width and chan-
nels respectively. K represents the number of classes. We use
f(x) : X — Y to denote the prediction for an input video. In
this paper, we focus on untargeted adversarial attacks. Thus,
the goal of adversarial attacks is to add an adversarial per-
turbation § on 2 to generate the adversarial example %%,
which fools the DNNs to satisfy f(x%4?) # y. To make the
perturbation human-imperceptible, the perturbation § is re-
stricted by ||6||, < €, where || - ||, denotes the L, norm, and
€ is a constant of the norm constraint. In this paper, we set
L, as L., norm. Denoting J as the loss function, the objec-
tive of untargeted adversarial attacks can be formulated as
follows:

argmax J(f(z +9),y),s.t. ||§]cc <e.
s

(D

In white-box settings, the Equation 1 can be approximately
solved by an iterative attack process by computing the gra-
dients of J with respect to « + §. However, in black-box set-
tings, the adversary cannot access the gradients. This paper
focuses on transfer-based black-box attacks, which lever-
age adversarial examples generated from a white-box video
recognition model to attack other black-box video recogni-
tion models.

Discriminative Temporal Patterns Analysis

Our proposed method is based on the assumption that differ-
ent video recognition models rely on different discrimina-
tive temporal patterns, and hence adversarial videos gener-
ated from white-box models are difficult to transfer to other
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Figure 2: Correlations of discriminative temporal patterns between different video recognition models. A high correlation value
indicates similar discriminative temporal patterns between the two models and is marked in the darker color.

video recognition models. To verify this assumption and ex-
plain the reason for the low transferability of video adversar-
ial examples, we analyze discriminative temporal patterns of
different video recognition models in this section.

In contrast to image recognition models, where discrimi-
native regions can be directly visualized with class activation
mapping (Zhou et al. 2016), discriminative temporal pat-
terns of video recognition models are difficult to visualize.
As a result, directly comparing the discriminative temporal
patterns of different video models through visualization is
not feasible. To this end, we compare discriminative tem-
poral patterns in an indirect way. Intuitively, if two models
share similar temporal patterns, the distribution of the im-
portance of frames would be similar. Therefore, the discrim-
inative temporal patterns can be compared by calculating the
correlations between the importance orders of video frames
from different models. In this work, we provide three ways
to measure the importance of each frame: Grad-CAM (Sel-
varaju et al. 2017), zero-padding, and Mean padding.

Grad-CAM. Grad-CAM uses the gradients of the pre-
dicted value in the target class with respect to the final con-
volutional layers to highlight the important regions. After
obtaining the attention map by Grad-CAM (Please refer to
(Selvaraju et al. 2017) for details), the average value of i-
th frame’s attention map is used to present the ¢-th frame’s
importance p;.

Zero-padding. Zero-padding measures the contribution
of i-th frame by replacing the i-th frame with zero val-
ues. Let M; € {0, 1}T*H*WXC denote the temporal mask,
where elements in i-th frame are 0, other frames are 1. Thus,
the ¢-th frame’s importance p; is defined as follows:

pi = J(f(z- My),y) — J(f(2),y). ()
If the value of p; is large, it indicates the ¢-th frame is im-
portant for the model.

Mean-padding. In contrast to zero-padding, mean-
padding measures the contribution of i-th frame by replacing
the ¢-th frame with the mean value of the previous and the
next frames. Similar to zero-padding, the importance of ¢-th
frame is calculated by measuring the loss change before and
after mean-padding.

Then, we can obtain the model A’s importance list P{‘ =
{p1,p2, ..., pr} for each frame in the video z. The correla-
tion between any two models (A and B) can be calculated by
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the Spearman’s Rank Correlation (Zwillinger and Kokoska
1999) between P/* and P2, which is defined as follows:

657 a2
_ Ay B _ Jj=1"3
dj =rg(P;) —rg(Py),pap =1 TaT—1)’ 3)

where the function r¢(-) performs a sorting process and re-
turns the importance orders of video frames. The value of
pa,B varies between -1 and +1. p 4 g equals O indicates there
is no correlation between discriminative temporal patterns of
model A and model B. p g will be large when 7g(p2') and
rg(pg) have a similar rank and be small when 7¢g(p2) and
rg(p; ) have a dissimilar rank. p4 g equals -1 or +1 imply an
exact monotonic relationship between rg(p2) and rg(pZ).
In this way, the correlation of discriminative temporal pat-
terns can be measured by p4 p.

We analyze the correlations of discriminative tempo-
ral patterns among 6 video recognition models, including
NL-101, NL-50, SlowFast-101, SlowFast-50, TPN-101, and
TPN-50. This analysis is conducted on 400 randomly se-
lected video clips from the Kinetics-400 dataset. Figure 2
shows their average correlations of the discriminative tem-
poral patterns. It can be clearly observed that the correlations
of discriminative temporal patterns between different mod-
els are low, which verifies our assumption that there are dif-
ferent temporal patterns among video recognition models.
Therefore, disturbing the temporal discriminative pattern of
the white-box model being attacked can help to improve the
transferability of video adversarial examples.

Temporal Translation Attack Method

To transfer adversarial examples across video models, we
propose the temporal translation attack method based on the
previous observation. Through translating video clips along
the temporal axis, we can obtain multiple gradients from
various temporal directions. It helps to alleviate the high
correlation between generated adversarial examples and the
white-box model being attacked.

Therefore, in our approach, instead of using V. J(f(x +
d),y) as gradients to iteratively update adversarial examples,
we combine gradients of temporally translated videos by g;:

L
g= > wiTR_ (Vo J(f(TR;(x +9)),y)),

i=—L

“4)



where L denotes the shift length, which is the maximal
shift number of frames, and ¢ € {—L,...,L}. The tem-
poral translation function TR;(-) shifts each video frame
by ¢ frames along the temporal axis, which generates tem-
porally translated video clips and is carried out in the
video loop. We then shift the computed gradients back
TR_i(VzJ(f(TR;(z + 0)),y)) with the inverse func-
tion, converting sequences of temporally translated gradi-
ents V,J(f(TR;(x + ¢§)), y) back to the same sequence as
x. W ={w_r,...,wo, ...,wr, } is the symmetric weight ma-
trix of size 2L + 1, with w; = w_;. w; € W is the weight
for TR_;(V4J(f(TR;(x + 0)),y)). The Equation 4 cal-
culates gradients for all translated clips and then combines
these gradients with the weight matrix W. In this way, the
temporal translation function makes it possible to optimize
an adversarial example using a set of temporally translated
video clips with varying positions, which prevents over-
fitting. With this method, the generated video adversarial ex-
ample has a low correlation with the discriminative tempo-
ral patterns used by the white-box model and can be better
transferred to another model. The fixed weight matrix W
determines the quality of augmented gradients. Intuitively,
the video clips with smaller shifts should be more important
than those with larger shifts. Following (Dong et al. 2019),
we consider three strategies to generate W':

1 .
2L+1°

1) Uniform: w;

l4]

2) Linear: w; =1 — STAT

w; .
and w; = 72 —;
i

i2
7\/21—71_06_27, and w; = Zi’”w :
the radius of 3¢ has more than 97% of the total informa-

tion, we assign the standard deviation o to %

Because

3) Gaussian: w; =

It is worthwhile to note that for temporal translation, apart
from adjacent shifting which shifts the frames within the
adjacent positions, other frame shifting strategies, such as
random shifting, remote shifting, can also be applied. Ran-
dom shifting shifts frames to random positions while remote
shifting shifts the clip by ¢ + % frames along the temporal
axis. In our approach, we choose adjacent shifting in order
to avoid a great change of gradients caused by large shifts.

Algorithm 1 illustrates the generation of adversarial ex-
amples. In each update step, we combine the translated gra-
dients by the weight matrix W, then use clip, () to restrict
generated adversarial examples to be within the e-ball of
x. The algorithm introduces the temporal translation-based
gradient augmentation to the procedure of FGSM (I = 1)
and BIM (I > 1), named TT-FGSM and TT-BIM separately.
Our algorithm focuses on the temporal dimension, and thus
it can be easily integrated into other spatio-based transfer
methods.

Experiments
Experimental Setting

Dataset We evaluate our approach using UCF-101
(Soomro, Zamir, and Shah 2012) and Kinetics-400 datasets
(Kay et al. 2017), which are widely used datasets for
video recognition. UCF-101 consists of 13,320 videos from
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Algorithm 1: Temporal translation (TT) attack

Input: Loss function J, clean video z, ground-truth class y.
Parameter: The perturbation budget ¢, iteration number I,
shift L, weight matrix W.
Output: The adversarial example.
To < T
a<+ §
fori=0to ] —1do
Tip1 = clipy (i + - g)
end for
return xy

AN S r ey

101 action categories. Kinetics-400 contains approximately
240,000 videos from 400 human action classes.

Video Recognition Models Our proposed method is eval-
uated on three video recognition models': Non-local net-
work (NL) (Wang et al. 2018), SlowFast (Feichtenhofer et al.
2019) and TPN (Yang et al. 2020). For each model, we
experiment with ResNet-50 and ResNet-101 as backbones,
totaling 6 models. Non-local network inserts 5 non-local
blocks into I3D. All models are trained on the RGB domain.
Input clips are formed by randomly cropping out 64 con-
secutive frames from videos and then skipping every other
frame. The spatial size of the input is 224 x 224.

Attack Setting In our experiments, video recognition
models with ResNet101 as its backbone are used as white-
box models for adversarial example generation. We use the
Attack Success Rate (ASR) to evaluate the attack perfor-
mance, which is the rate of adversarial examples that are
successfully misclassified by the black-box video recogni-
tion model. Thus higher ASR means better adversarial trans-
ferability. We randomly sampled one clip, which is correctly
classified by all models, for each class from the kinetics-400
validation dataset and the UCF-101 test dataset to conduct
all attacks. Following (Dong et al. 2019; Zhou et al. 2018),
we set the maximum perturbation as € = 16 for all exper-
iments. For the iterative attack, we set the iteration number
to I = 10, and thus the step size o« = 1.6.

Performance Comparison

In this section, we first compare our method with several
baselines such as FGSM and BIM and other methods that
aims to avoid over-fitting to the white-box model, including
DI, TI, SIM, and SGM. Then we integrate our method with
other attack methods, such as TI, MI, and ATA, for showing
the compatibility of our method. In the experiments, we fol-
low the original settings of these baseline methods. NL-101,
SlowFast-101 and TPN-101 are used as white-box models
for generating adversarial examples to attack other black-
box models. For our method, the shift length L is set as 7, the
weight matrix W is generated with Gaussian function, and
the adjacent shift is adopted in the temporal translation. We
conduct performance comparison under both one-step attack

!The models are implemented in https://cv.gluon.ai/model_zoo/
action_recognition.html
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Figure 3: Attack success rates (%) against video recognition models. The top and bottom row are the results on the UCF-
101 and Kinetics-400 respectively. The three columns use the NL-101, SlowFast-101, and TPN-101 models as white-box
models separately. Dashed lines and solid lines denote the one-step and multi-step attack methods respectively. The number in
parentheses indicates the number of iterations. In the legend, our methods are in red color.

Method UCF-101 Kinetics
TI(1) 45.96 54.38
TI+TT(1) 52.48 63.22
ATA(10) 9.98 8.52
ATA+TT(10) 12.87 10.58
MI(10) 33.58 40.60
MI+TT(10) 44.80 63.50

Table 1: The average ASR of all black-box video models
under three attack settings using NL-101, SlowFast-101 and

TPN-101 as white box models, respectively. Best results are
in bold.

and iterative attack on UCF-101 and Kinetics-400. The re-
sults are summarized in Figure 3, where dashed lines and
solid lines denote the one-step attaks and multi-step attacks
respectively, the number in parentheses of the legend indi-
cates the number of iterations. We use TT(1) and TT(10) to
denote TT-FGSM and TT-BIM, respectively.

One-step Attack For the one-step attack, we have the fol-
lowing observations. First, except for using TPN-101 as the
white-box model (Figure 3(i), 3(ii)), our temporal translation
attack method (TT(1)) consistently achieves much higher
success rates than other baselines. For example, when at-
tacking TPN-101 and TPN-50 using adversarial examples
generated from NL-101, our method yields an improvement
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of more than 30% compared with other transfer-based attack
methods. The results basically demonstrate the effectiveness
of our method towards improving the transferability of video
adversarial examples. Second, when using TPN-101 as the
white-box model for adversarial example generation (Fig-
ure 3(iii)), the improvement of attack success rate gained
from temporal translation is not so significant. Compared
to FGSM(1), the performance improvement is less than 1%
when attacking SlowFast-101. The results basically suggest
TPN-101 is less sensitive to temporal patterns.

Tterative Attack For the iterative attack, similar trends
can be observed. First, when using NL-101 (Figure 3(i))
and SlowFast-101 (Figure 3(ii)) as white-box models, our
method (TT(10)) outperforms all the other baselines. Com-
pared to BIM(10), our temporal translation boosts the attack
success rates of more than 30% for all the black-box models.
The results verify the effectiveness of temporal translation in
boosting the transferability of video adversarial examples.
Second, similar to the results on the one-step attack, tem-
poral translation (TT(10)) does not improve the success rate
too much when using TPN-101 (Figure 3(ii)) as the white-
box model. Note that compared to adversarial examples gen-
erated with the one-step attack, adversarial examples gener-
ated with the iterative attack attain much lower success rates
in black-box attacks when attacking video models. However
iterative attacks (such as MI, DI, SIM, etc.) transfer better
than one-step attacks when attacking image models. It in-
dicates that iterative attacks of spatial domain can’t directly
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Figure 4: Attack success rates of temporal translation based
attacks with various shift length L. Dashed lines and solid
lines denote TT(1) and TT(10) respectively.

be applied to temporal domain and iterative attacks tend to
overfit white-box models in the high-dimensional video do-
main. Nevertheless, combining with MI, the iterative attack
MI+TT(10) can exceed the one-step attack.

Combining with Existing Methods Figure 3(iii) shows
that TI(1) achieves better results than TT, this is because
TPN-101 is less sensitive to temporal patterns. However, TT
can also play a supplementary role to TI. For verify this,
we evaluate the performance of TI-TT(1), which combines
the temporal translation with translation-invariant (TI) in the
one-step attack. In addition, we also evaluate the perfor-
mance of two variants of our method, denoted as TT-MI(10),
TT-ATA(10) for proving that our method is compatible with
other attacks. From the results shown in Table 1, we observe
that by combining temporal translation with other works, our
methods achieve the best results. It demonstrates that tempo-
ral translation plays a supplementary role to other transfer-
based attack methods, in terms of improving the transfer-
ability of video adversarial examples. In addition, TI+TT(1)
achieves the best result by mitigating the spatial and tempo-
ral discriminative patterns in the one-step attack. In the iter-
ative attack, MI+TT(10) exceeds the results of the one-step
attack on Kinetics-400 through the integration of momentum
and temporal translation. Moreover, ATA(10) achieves the
worst result. This is because different discriminative tem-
poral patterns induce various attention maps in video mod-
els, while ATA(10) depends on similar attention maps. To
summarize, the results demonstrate our temporal transla-
tion method is effective in increasing the success rates of
transfer-based attack, posing threatens to the real-world ap-
plications of video recognition models.

Ablation Study

We investigate the effects of different shift lengths L, weight
matrices W and shifting strategies on temporal translation.
The evaluations are conducted with TT(1) and TT(10). The
white-box model is the NL-101.

Shift Length The shift length L determines how many
translated clips are used for temporal gradient augmentation.
When L = 0, the attacks based on temporal translation de-
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Components of TT Choice TT(1) TT(10)
Uniform  65.06  49.80

Weight matrix Linear  66.37  52.60
Gaussian 66.80  51.35
Adjacent 65.56  43.37

Shifting strategies ~ Random  58.06  23.25
Remote  57.31 26.81

Table 2: Average ASR for TT(1) and TT(10) with different
W and shifting strategies. Best results are in bold.

generate into their vanilla versions. Thus, it is vital to study
L. Figure 4 shows the results, where L ranges from 1 to
9, dashed lines and solid lines denote TT(1) and TT(10) re-
spectively. As can be seen, the attack success rates on NL-50
are rather high and remain stable under different values of L
for both TT(1) and TT(10). In contrast, for other models, the
success rates increase firstly and then tend to be stable when
increasing the value of L. This is because NL-50 shares the
similar architecture with NL-101. Although a large value of
L leads to better transferability, it requires a large computa-
tion cost. To balance attack success rates and the computa-
tional cost, we set L as 7 in our experiments.

Weight Matrix We set the shift length L as 7 for compar-
ing the performance of different weight matrices: uniform,
linear and gaussian. Table 2 shows the results. It can be seen
that for TT(1), the gaussian matrix outperforms other ma-
trices on average ASR. And for TT-BIM, the linear matrix
achieves better results than the uniform and gaussian ma-
trices. In general, the linear and the gaussian matrices out-
perform the uniform matrix. Thus, we empirically adopt the
gaussian matrix because of similar results between the linear
and the gaussian matrices.

Shifting Strategies Table 2 shows the results of TT(1) and
TT(10) with different shifting strategies. The adjacent shift-
ing leads to higher attack success rates than both random and
remote shiftings. This is because adjacent shifting provides
a more stable gradient for optimization compared to random
and remote shiftings.

Conclusion

In this paper, we propose a temporal translation attack
method, which generates adversarial examples by using a
set of temporal translated videos to mitigate the effect of dif-
ferent discriminative temporal patterns across video recog-
nition models. Our method can be directly combined with
other transfer-based attack methods to further improve trans-
ferability. Extensive experimental results have demonstrated
the effectiveness of our method and indicated the vulnera-
bility of video recognition models in the transfer-based at-
tack setting. Since our attack generates perturbations with-
out temporal consistent, one of the potential defense meth-
ods can be designed by checking the temporal consistent.
We will explore these in future works. Code is available at
https://github.com/zhipeng-wei/TT.
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