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Abstract

Few existing face recognition (FR) models take local repre-
sentations into account. Although some works achieved this
by extracting features on cropped parts around face land-
marks, landmark detection may be inaccurate or even fail in
some extreme cases. Recently, without relying on landmarks,
attention-based networks can focus on useful parts automati-
cally. However, there are two issues: 1) It is noticed that these
approaches focus on few facial parts, while missing other po-
tentially discriminative regions. This can cause performance
drops when emphasized facial parts are invisible under heavy
occlusions (e.g. face masks) or large pose variations; 2) Dif-
ferent facial parts may appear at various quality caused by oc-
clusion, blur, or illumination changes. In this paper, we pro-
pose contrastive quality-aware attentions, called CQA-Face,
to address these two issues. First, a Contrastive Attention
Learning (CAL) module is proposed, pushing models to ex-
plore comprehensive facial parts. Consequently, more useful
parts can help identification if some facial parts are invisi-
ble. Second, a Quality-Aware Network (QAN) is developed
to emphasize important regions and suppress noisy parts in a
global scope. Thus, our CQA-Face model is developed by in-
tegrating the CAL with QAN, which extracts diverse quality-
aware local representations. It outperforms the state-of-the-
art methods on several benchmarks, demonstrating its effec-
tiveness and usefulness.

Introduction

Face recognition (FR) has many practical applications. Pre-
vious works can be divided into two categories: global-based
approaches and local-based methods. The former learns fea-
tures on global face images (Deng et al. 2019; Cao et al.
2020). However, they rarely consider representations on lo-
cal patches to improve discrimination of face features. Three
positive pairs are shown in Fig. 1 (a)&(f), the holistic faces
change dramatically by blur changes in (1), pose variations
in (2), and age gaps in (3). However, some local patches re-
main similar which can help the verification. For example,
the similar eyes in (1) or the similar noes in (2)&(3).
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Figure 1: Effects of the CQA-Face model on three posi-
tive pairs. (a)&(f): Input faces are affected by blur changes
(1), pose variations (2), and aging (3). (b-d)&(g-i): 1%, 2,
and 3™ local branches of local CNNs where different local
patches are located in each local branch. (e)&(k): Discrim-
inative local patches are emphasized in local CNNs. For a
good illustration, only three local branches are used to show
class activation maps (CAMs) (Zhou et al. 2016).

There are mainly two groups of methods to extract
discriminative local representations: landmark-based and
attention-based methods. Landmark-based works detected
face landmarks first and then extract local features on
cropped regions centered around landmarks (Sun, Wang,
and Tang 2014a; Ding and Tao 2017; Kang, Kim, and Kim
2018). However, these methods largely depend on accuracy
of landmark detection and may even suffer from detection
failure under dramatic pose variations or heavy occlusions.
For example, due to the ongoing outbreak of the COVID-19,
people are wearing face masks. Because some facial parts
(e.g. noses or mouths) are invisible, landmark detection may
be inaccurate or failed. Besides, even if face landmarks are
detected, the cropped parts may include masks which would
inevitably deteriorate the extracted face features. Without re-
lying on landmarks, some models employ attention modules
to automatically locate useful parts (Wang and Guo 2019;
Kang et al. 2019). However, no mechanism is designed to
select the local patches effectively, which may miss some
important facial parts, and thus limit the performance.

FR is challenging mainly because of two reasons: 1) High
intra-class variations. Faces from the same subject may ap-
pear at different poses or occlusion levels. In such a case, if
only few facial parts are located, the extracted features may
not be sufficient when these parts are invisible under occlu-
sions (e.g. face masks) or pose variations. 2) Small inter-



class differences. Faces from different subjects may have
similar local appearances, especially considering a large
number of subjects. The performance would decline if the
few emphasized facial parts across different subjects look
similar. To alleviate the above issues, it is necessary to cap-
ture local representations that are as rich as possible. In such
a way, more potentially useful facial parts can contribute to
FR if the few emphasized parts are invisible or remain sim-
ilar across different subjects. To achieve this goal, a con-
trastive attention learning (CAL) module is devised to en-
courage the diversity among different attention maps. Con-
sequently, it is ensured that varying local patches are well-
explored across face images and diverse discriminative fa-
cial parts are emphasized.

Local representations can provide discriminative informa-
tion for FR. However, concatenating local representations
directly without considering relations between different fa-
cial parts may not be optimal, as discussed in previous para-
graph. To address the limitations of separated facial parts,
the structural correlation of facial parts is built to boost the
discriminative ability of local representations. Besides, it is
observed that different facial parts have various quality un-
der occlusion, blur, or pose variations, as illustrated in Fig. 1
(b-d)&(g-1). The performance would be deteriorated if con-
catenating these local features directly. To address these two
issues, we devise a quality-aware network (QAN). It intro-
duces a part-level quality-aware module to explore the re-
lation between an individual facial part and the rest parts
by using graph convolutional networks. In such a manner, it
has two benefits. First, each local part itself and its relations
with other parts are considered simultaneously. This encour-
ages each part-level feature to utilize information from other
parts, making them more discriminative. Second, it can es-
timate the quality of located facial parts, emphasizing infor-
mative parts and suppressing noisy ones.

By putting the CAL and QAN together, a CQA-Face
model is developed to learn rich quality-aware local repre-
sentations. Our main contributions are three-fold:

1. A contrastive attention learning (CAL) is designed to
ensure the localization of comprehensive facial parts, espe-
cially the less discriminative but still useful facial parts;

2. A region-level quality-aware network (QAN) is pro-
posed to generate quality scores for each facial part by ex-
ploring its relation with the rest, emphasizing important fa-
cial parts and suppressing noisy ones;

3. By combining the CAL and QAN, the CQA-Face
model is developed, which outperforms the state-of-the-art
methods on many challenging datasets.

Related Works

Related works about face recognition and quality-aware net-
works are reviewed briefly.

Face Recognition

Most existing FR works trained networks on global face
images (Deng et al. 2019; Wang et al. 2019; Cao et al.
2020). However, they may suffer from performance drops
when tackling faces taken in challenging cases. Several ap-
proaches (Sun, Wang, and Tang 2014b; Sun et al. 2014;
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Xie, Shen, and Zisserman 2018; Ding and Tao 2017) trained
models on cropped parts around face landmarks. However,
landmark detection may be unreliable in many hard cases.

Rather than relying on landmarks, recent attention-based
networks weighed varying local patches adaptively. (Wang
and Guo 2019) was an early effort to apply attentions to
automatically emphasize important local patches and sup-
press noisy regions. (Kang et al. 2019) used attention scores
to capture the unique local pair relations. However, multi-
ple attention maps may have similar responses around few
facial parts. To address this problem, (Wang et al. 2020a)
maximized pairwise attention distances. However, these ap-
proaches typically ignore the mining of facial structure pat-
terns. Different from these, our CQA-Face model learns
quality scores for different facial parts, highlighting discrim-
inative parts and suppressing useless parts.

Quality-aware Networks

A quality-aware network was proposed in (Liu, Yan, and
Ouyang 2017) to learn a quality score automatically for
each sample in a set. Features and quality scores for all
samples in a set are fused to output set-level features. A
dependency-aware attention control network was presented
in (Liu et al. 2018) to fully exploit correlations among order-
less images within a set. An aggregation network was pro-
posed in (Gong, Shi, and Jain 2019) to fuse representations
of frames in a video based on quality and context informa-
tion. A region-based quality estimation network aggregated
complementary region-based features in a sequence (Song
et al. 2017). An attention-aware method was introduced in
(Rao, Lu, and Zhou 2017) for video face recognition where
deep reinforcement learning is used to discard the uninfor-
mative frames and focus on the important ones. However,
these approaches aim at set-level or video-level FR prob-
lems. A FR network was proposed in (Liu and Tan 2021)
which gives a quality score along with a feature vector. This
is the first work to generate an explicit quantitative quality
score for a face image. In contrast, our CQA-Face model is
capable of solving the image-based FR task by learning a
quality score for each facial part.

Methods

The overall framework of our approach is shown in Fig.
2, mainly composed of the stem CNN, Contrastive Atten-
tion Learning (CAL), and Quality-Aware Networks (QAN).
The stem CNN extracts high-level feature maps. Because
HSNet-61 model (Wang and Guo 2019) has an excellent
generalization ability, it is used as the default stem CNN.

If without a proper signal, multiple attention maps tend to
focus on few facial parts, while neglecting other important
parts. Motivated by this observation, the CAL is devised to
guide multiple local branches to extract diverse local repre-
sentations based on high-level feature maps.

However, since comprehensive image details are explored
thoroughly across an image, it is possible that some dis-
tracted regions (e.g. face masks) may also be represented.
To alleviate this, the QAN is proposed to learn quality scores
among different local patches from a global scope. Finally,
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Figure 2: (a) CQA-Face: The CAL pushes models to explore comprehensive local representations. The QAN learns a quality
score for each local patch in a global scope. GAP and FC refer to the global average pooling and fully-connected layers,
respectively. Notice that only three local branches are used for illustration. (b) LANet: The spatial attention in (Wang and Guo
2019) is used where h, w, and c is the height, width, and number of channels. r is the reduction ratio.

diverse quality-aware local representations are concatenated
for face matching. Details are illustrated as follows.

Contrastive Attention Learning

Existing attention-based methods do not perform localiza-
tion of less discriminative but still useful ones. If models fo-
cus on few facial parts, they would suffer from performance
drop if facial parts are invisible or remain similar across dif-
ferent subjects. To address this, a contrastive attention learn-
ing (CAL) mechanism is proposed to encourage diversity in
multiple attention maps. Consequently, learned models can
retrieve comprehensive local patches across face images.

Suppose that X € R"™WY*¢ denote the input of the
CAL, where h, w, and c refer to the height, width, and
number of channels, respectively. Next, it is expected to
learn diverse attention maps in different local branches, i.e.
[My, M, ..., My], where b is the number of local branches.
As shown in Fig. 2 (b), the spatial attention (i.e. LANet) in
(Wang and Guo 2019) is used to weigh different regions, as-
signing high weights to important parts and small weights to
useless ones. There are two convolutional layers in LANet in
which the first layer uses the ReL.U function and the second
layer adopts the Sigmoid function.

For the i local branch, the output O; is calculated by the
product of the attention map M; and input X as follows:

O; = X o M;, ey
where o denotes Hadamard product.

However, if without a proper guidance, multiple attention
maps [O1, O3, ..., Op] tend to have similar responses around
the same facial parts, limiting the representational ability.

To address this issue, we propose a contrastive attention
learning (CAL) using a divergence loss as follows:

b
LcarL =

2 ’ .
o= Z Z maz(0, —t + exp MMy,
1=1 j=1i+1

)
where M; and M; mean attention maps in the i'" and ;"
local branches, respectively. ¢ is a hyper-parameter margin.
o is a positive value to control the shape of the Gaussian
function.
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The loss Lcar, measures the correlation between M; and
M;. When M; and Mj are similar, Lcar tends to be large,
pushing M; and M; to be dissimilar. In such a way, M;
and M; would have responses around different facial parts.
Comprehensive facial parts are well-explored across face
images. Consequently, models can rely on more useful parts
if some parts are invisible for faces with occlusions or pose
variations.

After that, a global average pooling (GAP) layer is
used to pool feature maps [O1, O, ..., Oy] in different lo-
cal branches, generating local representations in each local
branch [Py, P», ..., Py).

It should be mentioned that the diverse learning proposed
in (Wang et al. 2020a) can also extract diverse local patches.
The divergence loss is defined as follows:

b b
2 .
Lp= m} " max(0,t — dist(M;, M), (3)
i=1 j=i+1

where dist(M;, M) is the Euclidean distance between M
and Mj. As a result, varying attention maps are encouraged
to be different from each other, and thus focus on differ-
ent facial parts. Compared with L (Wang et al. 2020a), our
proposed Lcar is more flexible to measure distances of two
attention maps. Experimental results also verify the superi-
ority of our Lcay.

Quality-aware Networks

Local patches appear at facial images can be divided into
three categories: Few important local patches (e.g. the nose,
mouth, both eyes, or mouth) which can significantly con-
tribute to FR; Some unimportant regions, like the cheek or
forehead; Distracted background or occlusions which may
be represented. This is because these parts are close to im-
portant parts (e.g. eyes) in profile or masked faces. It is
highly desired that discriminative parts should be empha-
sized and distracted regions should be suppressed.

The attention module automatically determines which re-
gions should be highlighted. However, few existing ap-
proaches design a mechanism to refine attention responses.
Consequently, some distracted regions may be extracted,
such as noisy background or face masks, which deteriorate
the performance. This issue is especially serious when the



CAL is used, because every face detail is explored to ex-
tract comprehensive features. For example, for masked face
matching, because face masks are very close to discrimina-
tive parts, noisy information tends to be represented.

Therefore, there are two issues: Local patches may exhibit
varying quality scores; It is necessary to infer the relations
between one facial part and others because the relations pro-
vide important clues to refine attention maps. To alleviate
these issues, a quality-aware network (QAN) is designed.
Specifically, it is implemented by a graph convolutional net-
work where relationships between different local patches are
captured and quality scores are learned simultaneously.

Since each local branch generates a local patch, the num-
ber of local patches is b. Assume that G(V, €) is the con-
structed graph with b nodes where V = [Py, P», ..., Py and
the edge ¢ models the relation between two patches. The
adjacent matrix A € R"*P represents pairwise relations of
local patches.

Inspired by the work (Wang and Gupta 2018), pairwise
relations between every two local patches are represented as
follows:

e(Py, Pj) = ¢(P;) T o(Py), )

where ¢ and ¢ represent two different projects of local fea-
tures. More specifically, = W P; and ¢ = W ¥ P; where
W W¢¥ € RY> ris a dimension reduction ratio to re-
duce the number of parameters. W% and W¢ are imple-
mented by two 1 X 1 convolutional layers followed by batch
normalization (BN) and ReLU operations. In such a man-
ner, the transformations allow models to learn correlations
between different local patches adaptively.

The element A; ; in adjacency matrix A represents the re-
lation between P; and P;. For the ith feature node, pairwise
relations with all the nodes are stacked in a fixed order to ob-
tain a relation vector A; = [A(i,:), A(:,4)] € R?®. Since the
relations are stacked into a vector with a fixed order, spatial
information is also represented in the relation vector A;.

Each P; represents original local features, while A; de-
notes the structural relations. They complement and rein-
force each other but in different embedding spaces. There-
fore, we combine them in their respective embedding space
and jointly learn an importance S; of feature node P; by the
following formulation:

Si = 0([u(Pi), v(As)]), ®)]

where ;1 and v represent projection functions for P; and
A;, respectively. Specifically, they consist of a spatial 1 x 1
convolutional layer followed by BN and ReLU operations.
Then, an embedding function is conducted to mine rich in-
formation from them for inferring quality scores through
two 1 x 1 convolutional layers.

For all nodes, we have a quality score list S
[S1, Sa, ..., Sp]. We normalize the quality scores by the Sig-
moid function to obtain normalized quality scores S
[§1, So, ..., S},} as follows:

5 1
folteS

6)
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Then, each local representation is multiplied by its corre-
sponding quality score as follows:

P, =S5,-P. @)

For an image, we first concatenate local representations

[]31, P, ..., Pb] from b local branches, which are followed
by a FC layer with 512 units before the classification layer.

Overall Loss

Lcys 1s the CosFace loss (Wang et al. 2018), guiding models
to learn discriminative features. CosFace loss is formulated
as follows:

es(cos(Gyi i)—m)

1 N
Les =—— E log
s(cos(eyi‘i)—m) scosf;;’
N -1 € + Zj#yi €
(®)

where N represents the number of samples. m is the co-
sine margin to maximize the decision margin in the angular
space. The sample z; is normalized and re-scaled to s, be-
longing to the y; class.

The overall loss is defined as follows:

Loveran = Lcis + ALcar, 9

where Lcap encourages multiple attention maps to locate
diverse facial parts, learning comprehensive local represen-
tations. A is a coefficient to control the balance in these two
losses.

Experiments
Data

Training and test faces are aligned via MTCNN (Zhang et al.
2016). VGGFace2 (Cao et al. 2018) and MS-Celeb-1M (Guo
et al. 2016) are used as the training data. The former has
3.14M faces of 8,631 identities which is the default train-
ing data. The MSIMV2 version (Deng et al. 2019) con-
tains 5.8M images of 85K subjects by removing noisy labels
in the original MS-Celeb-1M. In testing, we evaluate our
models on various challenging tasks: 1) Cross-quality face
matching on IJB-A quality (Guo and Zhang 2018); 2) Cross-
pose face matching on CPLFW (Zheng and Deng 2018) and
CFP-FP (Sengupta et al. 2016); 3) Cross-age face match-
ing on CALFW (Zheng, Deng, and Hu 2017); 4) General
face matching on LFW (Huang et al. 2008). For more details
about test datasets, please refer to the related references.
We also consider masked face matching which is impor-
tant under the global outbreak of the COVID-19. Real-world
masked face recognition dataset (RMFRD) and masked
LFW (MLFW) dataset in (Wang et al. 2020b) are used. The
RMFRD contains 1,945 masked and 80,577 normal faces
from 403 common identities, with two sub-tasks designed.
First, Masked2Normal (M2N) means matching between
masked faces and normal faces, which has verification and
identification protocols. In verification, each masked face is
matched with every normal face, generating 394K positive
pairs and 156M negative pairs. Performances are reported
when FAR= 0.1, 0.01, and 0.001, respectively. In identifi-
cation, the gallery set consists of features which are com-
puted by averaging features of normal faces within the same



CAL | QAN [ Lp | LFW | CALFW | CPLFW
9935 | 9255 | 8955
v 9947 | 9290 | 89.85
Y | v/ 9933 9320 | 89.82
7 |V 99.52 | 9337 | 90.20

Table 1: Effectiveness of different modules. L refers to the
diverse learning in (Wang et al. 2020a).

subject. Every masked face is employed as the probe face
and Rank-1 accuracy is reported. Second, Masked2Masked
(M2M) refers to matching between each masked face and
every other masked faces. There are 3.76M negative pairs
and 20K positive pairs. TAR (True Accept Rate) values are
reported when FAR= 0.1, 0.01, and 0.001, respectively. In
MLFW, a method was used to generate synthetic masked
faces for face images in LFW (Wang et al. 2020b). Be-
cause some faces are failed to wear masks, there are 13,175
masked faces from 5,749 subjects. Consequently, the ver-
ification protocol has 5,955 pairs in MLFW. We measure
the performance by the accuracy and TAR values when
FAR= 0.1, 0.01, and 0.001, respectively.

Implementation Details

CosFace loss (Wang et al. 2018) is used. The number of
warm-up epochs is 2. The batch-size is set to 256. During
training on VGGFace?2, learning rate starts at 0.03 and is di-
vided by 10 at the 7% and 10" epochs, respectively. The
learning rate is set to le-4 at the 12*" epoch. Training stops
at the 12! epoch. During training on MS1MV2, learning
rate is 0.03 and is divided by 10 at the 13" and 19" epochs,
respectively. It is set to le-4 at the 23"% epoch. Training stops
at the 24*" epoch. The ResNet-100 used as the stem CNN.

After comparative experiments, the number of local
branches (b) is set to 4. The o and ¢ in Eqn. (2) are set to
0.01 and 0.2, respectively. The A in Eqn. (9) is 0.5.

Ablation Study
In ablation study, experiments are conducted, as shown in
Tables 1 and 2 where a tuple (-, -, -) refers to results on

LFW, CALFW, and CPLFW, respectively.

Effects of the proposed components. The proposed
CQA-Face model mainly consists of two components: the
CAL and QAN. Their performances are shown in Table 1.

Without an explicit guidance, multiple attention maps
tend to focus on only few facial parts and miss other im-
portant regions. As shown in Fig. 3 (b)&(g), attention-based
methods can learn some important face parts automatically.
However, since there is not an explicit signal, some im-
portant regions are ignored. To alleviate this problem, the
CAL is proposed to locate diverse local patches by encour-
aging distances between each two attention maps. For face
pairs from the same subject, it is possible that some local
patches are distinctive across large age gaps. This is the rea-
son why the accuracy is boosted from 92.55% to 92.90% on
CALFW. For profile faces, some facial parts are occluded
due to viewpoint changes. This would deteriorate the per-
formance if only few facial parts are located. In contrast,
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Figure 3: Effects of the CQA-Face model on several chal-
lenging faces. (a)&(f): Input faces which are affected by
illumination changes, occlusions, or pose variations where
MTCNN fails to detect landmarks. (b)&(g): Without an ex-
plicit signal, multiple attention maps emphasize few face
parts, while missing some important parts. (c)&(h): The
CAL can locate rich local patches. However, different lo-
cated regions may exhibit different discriminative ability,
like background and snow goggles. (d)&(i): The QAN
can emphasize important face parts and suppress noisy re-
gions.(e)&(k): Located regions if the Lp in Eqn. (3) is used.

the CAL can generate diverse local patches. Consequently,
other important regions can help the matching besides oc-
cluded ones, leading to a moderate improvement on CPLFW
which is from 89.55% to 89.85%. Since rich local represen-
tations are mined across face images, the performance on
LFW is slightly increased from 99.35% to 99.47%. Besides,
we also qualitatively show localization ability of diverse lo-
cal patches in Fig. 1 (b-d)&(g-1). Guided by the CAL, di-
verse discriminative local patches are located.

While the CAL generates diverse local patches by ex-
ploring every image detail, this may raise two questions:
Noisy information may be extracted, like face masks; Dif-
ferent facial parts may appear at various quality under oc-
clusion, blur, or illumination changes. For instances, since
background is very close to discriminative parts for profile
faces, noisy information tends to be represented. The QAN
alleviates these issues by learning a quality score for each
face part automatically from a global view. As shown in Fig.
4, discriminative local patches are assigned with large qual-
ity scores, while less important regions have small quality
scores. Consequently, discriminative parts are highlighted
and useless regions are suppressed. Therefore, the accuracy
is increased from (99.47%, 92.90%, 89.85%) to (99.52%,
93.37%, 90.20%). Second, some background information
may be represented under the guidance of the CAL, the
QAN can assign low weights to distracted regions and large
weights to discriminative parts, which well prepares our
models for pose changes. The large accuracy gain (0.35%)
on CPLFW verifies the effectiveness of the QAN.

As shown in Fig. 3 (b)&(g), attention-based methods can
learn some important face parts automatically. However,
since there is not an explicit signal, some important regions
are ignored. This would inevitably deteriorate the perfor-
mance if only some face parts are visible under pose vari-
ations or occlusions. The CAL alleviates this issue by en-
larging pairwise distances about each two attention maps.



Figure 4: Quality scores learned by the QAN on 4 local
branches.

As demonstrated in (c)&(h), rich local regions are located
under the guidance of the CAL. However, it can be observed
that some noisy regions are emphasized, like background,
or snow goggles. The QAN can adaptively assign weights to
different regions through learning from a global perspective.
As observed in (d)&(i), some important regions are empha-
sized and noisy regions are suppressed. As a result, more
discriminative features are extracted to improve the perfor-
mance.

Comparison between CAL and diverse learning and
dropout. The diverse learning in (Wang et al. 2020a) en-
courages the dissimilarities among multiple attention maps
by the Lp in Eqn. (3). Our proposed CAL is compared with
the Lp in Table 1. If the Lp is used, its performance is
(99.33%, 93.20%, 89.82%). In contrast, our CAL is able to
achieve a higher performance of (99.52%, 93.37%, 90.20%).
This is because our CAL adopts a more flexible divergence
loss where the o controls the variation around its mean
value.

Besides quantitative results in Table 1, we run a ex-
periment by adding only Lp into our baseline, achieving
(99.42%, 92.67%, 89.68%), which is inferior than only
adding CAL (99.47%, 92.90%, 89.85%). Besides, as shown
in Fig. 3, qualitative results between Lp (e&k) and CAL
(d&i) also demonstrate the superiority. This is because Lp
uses Euclidean distance to calculate the similarity of two at-
tention maps. However, it is sensitive to scales due to char-
acteristics of Euclidean distances. This makes it less effec-
tive under the scenario of large scale variations in attention
maps where some noise may have high responses. In con-
trast, CAL takes advantages of Gaussian function and the
diversity penalization is affected by the Gaussian distance,
preventing more penalization variances and achieving bet-
ter performance than Euclidean distance (Gong, Zhong, and
Hu 2019). Furthermore, we thoroughly explore different val-
ues of ¢ which can control the Gaussian distances flexibly.
Three local branches locate different local patches in Fig. 1
(b-d)&(g-i).

If dropout is used instead of CAL, it achieves (99.42%,
92.72%, 89.52%). Although dropout can encourage the
learning of more parts, this signal is too weak to achieve di-
versity. In contrast, our CAL enforces attention maps away
from each other, locating diverse local patches.

Different number of local branches b. Different num-
ber of local branches (i.e. 2, 4, 8, and 16) are compared in
Table 2. If b is set to 2, only few facial parts are located,
while missing some important local patches. b is improved

2509

b A o t | LFW | CALFW | CPLFW
2 1050 001 | 0279932 93.15 90.02
4 1050 | 001 | 02]9952 | 93.37 90.20
8 | 050 | 0.01 | 0.2 ] 99.45 93.13 90.00
16 | 0.50 | 0.01 | 0.2 |99.40 | 92.80 89.78
4 1500 | 001 | 029943 93.10 90.22
4 1100 | 001 | 029942 | 93.18 90.00
4 1050 | 001 | 029952 | 93.37 90.20
4 1010 | 001 | 0.2 | 9947 92.90 89.85
4 1005 | 001 | 029940 | 9288 90.18
4 1050 1]0.001 | 0.2 | 9940 | 93.17 90.22
4 10501 0.005 029955 | 9323 90.07
4 105010010 | 0.2 |99.52 | 93.37 90.20
4 1050 ] 0.050 | 0.2 | 9940 | 93.27 89.92
4 105010100 | 0.2 | 99.47 93.20 90.12
4 1050 | 001 | 0.6 | 99.35 93.18 90.07
4 1050 | 001 | 0.4 | 99.35 93.07 90.17
4 1050 0.01 |02]9952 | 9337 90.20
4 1050 | 001 | 0.0 | 9945 93.18 90.17

Table 2: Performance comparison (%) of different hyper-
parameters: Varying number of local branches (b) and values
of A Eqn. (9), and ¢ and ¢ in Eqn. (2).

to 4, boosting the results from (99.32%, 93.15%, 90.02%)
to (99.52%, 93.37%, 90.20%). However, if the b is 8, some
unnecessary information may be represented. Consequently,
the result is dropped to (99.45%, 93.13%, 90.00%). This is-
sue is becoming more serious when b is 16, which achieves
the result of (99.40%, 92.80%, 89.78%).

Different values of \. As illustrated in Table 2, we com-
pare the performance of different values of A in Eqn. (9):
5, 1, 0.5, 0.1, and 0.05. If we reduce the value of )\ from
5, 1 to 0.5, the overall accuracy is boosted to (99.52%,
93.37%, 90.20%). This is because some noisy information
is extracted under the strong guidance of the ACL if A is
too large. On the other hand, if X is decreased from 0.5 to
0.1 and 0.05, the performance declines. This means that the
signal of the ACL is too weak to miss some important fea-
tures. Therefore, A is assigned to 0.5, which obtains a good
trade-off between the Lcys and Lcay..

Different values of 0. The o controls the shape of the
Gaussian function. When ¢ becomes larger, more variances
are allowed around the mean; As o becomes smaller, the
less variances allow. It is observed that the highest accuracy
is achieved when o = 0.01.

Varying values of ¢t. We investigate varying values of the
hyper-parameter margin ¢ in Eqn. (2) in Table 2: 0.6, 0.4, 0.2,
and 0. It shows that the best margin ¢ = 0.2 which achieves
the best accuracy.

Experiments on Masked Face Matching

The most recent publicly available models are compared us-
ing the M2N, M2M, and MLFW protocols, respectively, in
Table 3. For a fair comparison, CQA-Face adopts ResNet-
100 as the stem CNN which is used in both ArcFace (Deng
et al. 2019) and CurricularFace (Huang et al. 2020).



Methods M2N M2M MLFW
FAR= | FAR= | FAR= FAR= | FAR= | FAR= | FAR= | FAR= | FAR=
0.1 0.01 0.001 | Rank-1 0.1 0.01 0.001 0.1 0.01 0.001 | Acc.
ArcFace
(Deng et al. 2019) | 31.53 8.54 1.45 15.73 2922 | 7.25 2.06 | 4492 | 12.85 1.81 | 69.25
CurricularFace

(Huang et al. 2020) | 33.43 | 13.21 4.42 17.38 31.55 9.79 2.95 59.24 | 23.45 3.62 | 74.61
CQA-Face 5940 | 34.22 | 16.72 | 4046 | 57.84 | 3493 | 17.75 | 89.33 | 86.68 | 84.23 | 92.78

Table 3: Performance comparison (%) of our CQA-Face models with two public models on masked face matching

Figure 5: Qualitative illustration of the CQA-Face model
on masked face matching. (1)&(3): Input faces with blur
changes in (a)&(b), pose variations in (c)&(d), and heavy
occlusions in (e)&(f)). (2)&(4) show CAMs on these faces.

M2N refers to matching between masked and normal
faces. For a clear presentation, a tuple (a,b,c,d) is used
to denote the performance where a, b, c is the TAR values
when FAR=0.1, 0.01, 0.001, respectively. d refers to the
Rank-1 accuracy. Because both masked and normal faces
are captured in the real-world scenarios, this is a very chal-
lenging task. Since ArcFace and CurricularFace are trained
on global faces without considering locating discriminative
local representations, the performance is significantly de-
creased on this task. Specifically, ArcFace obtains the ac-
curacy of (31.53%, 8.54%, 1.45%, 15.73%) and Curricular-
Face achieves the performance of (33.43%, 13.21%, 4.42%,
17.38%). However, due to its localization ability of diverse
local patches under the supervision of the CAL and its part-
level quality-aware capacity among multiple local patches
with the QAN, our CQA-Face model boosts the performance
t0 (59.40%, 34.22%, 16.72%, 40.46%). Although our model
uses an inferior CosFace, it still outperforms ArcFace and
CurricularFace, showing the superiority.

The M2M protocol refers to the verification between
masked and masked faces. For clarity, a tuple (a, b, ¢) is used
to denote the performance where a, b, ¢ is the TAR values
when FAR=0.1, 0.01, 0.001, respectively. Since both faces
in gallery and probe sets are masked faces where some fa-
cial clues are occluded in M2M, thus M2M is more chal-
lenging than M2N. Consequently, global-based models (i.e.
ArcFace, CurricularFace) have inferior performances, with
results of (29.22%, 7.25%, 2.06%) and (31.55%, 9.79%,
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2.95%), respectively. Compared with them, our CAL mod-
ule can locate rich local representations. Consequently, non-
occluded facial parts can contribute to the FR even if some
face clues are invisible. Besides, the QAN learns quality
scores for multiple local patches in a global scope, em-
phasizing important local patches and suppressing noisy re-
gions. This is especially important for masked face match-
ing where face masks cover some important face regions. In
such a manner, the QAN assigns low weights to unimportant
located parts. Therefore, our CQA-Face achieves the highest
overall performance of (57.84%, 34.93%, 17.75%).

MLFW means the verification protocol on masked LFW.
A tuple (a, b, ¢, d) is used where a, b, and ¢ represent TAR
values on FAR=0.1, 0.01, and 0.001, respectively, and d de-
notes the accuracy. As illustrated in Table 3, although Arc-
Face (Deng et al. 2019) model* achieves 99.77% on the orig-
inal LFW, its accuracy is reduced significantly to (44.92%,
12.85%, 1.81%, 69.25%). Similarly, although Curricular-
Face (Huang et al. 2020) obtains the 99.80% on the original
LFW, it achieves the accuracy of (59.24%, 23.45%, 3.62%,
74.61%) on MLFW. Our CQA-Face model improves over
them, achieving (89.33%, 86.68%, 84.23%, 92.78%).

As shown in Fig. 5, global faces change significantly
under different challenging factors, like blur changes in
(a)&(b), pose variations in (c)&(d), and heavy occlusions
in (e)&(f). However, our CQA-Face model can locate dis-
criminative parts effectively. As demonstrated in the above
analysis, our CQA-Face model is more robust to face masks,
which shows great potentials for recognizing masked faces
under the pandemic of the COVID-19.

Experiments on Cross-quality Face Matching

In some real-world applications, the captured face images
may be of low-quality, which are matched with enrolled
high-quality faces. Here cross-quality face matching is con-
ducted to simulate the above scenarios. Several public mod-
els are compared on IJB-A quality in Table 4. TAR values
are reported when FAR=0.01 and 0.001, respectively.
Several global-based approaches employed full face im-
ages as the training input: Center loss (Wen et al. 2016),
SphereFace (Liu et al. 2017), and ArcFace (Deng et al.
2019). However, they fail to extract discriminative local
patches, which lead to sub-optimal representations. Differ-
ently, LS-CNN (Wang and Guo 2019) used spatial attention
modules to focus on important local parts, and boosted the

“https://github.com/deepinsight/insightface/wiki/Model-Zoo



Methods

1JB-A quality

FAR= T FAR= CPLFW | CFP-FP | CALFW | LFW

0.01 | 0.001
Center loss (Wen et al. 2016) 52.5 31.3 77.48 - 85.48 99.13
SphereFace (Liu et al. 2017) 54.8 39.6 81.40 - 90.30 99.42
LS-CNN (Wang and Guo 2019) | 87.5 75.5 88.03 97.17 92.00 99.52
MV-Softmax (Wang et al. 2019) - - 89.69 95.70 95.63 99.79
ArcFace (Deng et al. 2019) 68.6 65.7 92.08 98.37 95.45 99.83
HPDA (Wang et al. 2020a) 87.6 80.3 92.35 - 95.90 99.80
DBM (Cao et al. 2020) - - 92.63 - 96.08 99.78
EQFace (Liu and Tan 2021) - - 92.60 98.34 95.98 99.82
CQA-Face 91.1 86.4 93.00 98.49 96.12 99.83

Table 4: Performance comparison (%) of our CQA-Face model with the state-of-the-art on different face matching tasks.

performance to (87.5%, 75.5%). Furthermore, HPDA model
(Wang et al. 2020a) enlarged pairwise attention distances,
emphasizing rich facial parts to make models robust to blur
changes. It obtains the performance of (87.6%, 80.3%).
Like ArcFace (Deng et al. 2019) which uses ResNet-100 as
the stem, CQA-Face boosts the performance from (68.6%,
65.7%) to (91.1%, 86.4%).

Experiments on Cross-pose Face Matching

CPLFW and CFP-FP datasets are used to evaluate the per-
formance where a tuple (a, b) is used to show the results.

Since some face clues are missed in profile view, it is in-
evitable that global-based methods (i.e. Center loss (Wen
et al. 2016), SphereFace (Liu et al. 2017), and MV-Softmax
(Wang et al. 2019)) suffer from performance drops. In con-
trast, LS-CNN (Wang and Guo 2019) locates discriminative
local patches by spatial attentions. Thus, it achieves com-
petitive performances on these datasets, which shows great
potentials of local descriptions in this task.

However, some important local patches may be missed.
HPDA (Wang et al. 2020a) alleviates this issue by maxi-
mizing pairwise attention Euclidean distances, and thus out-
performs LS-CNN, which is (92.35%, -) versus (88.03%,
97.17%). — denotes that the result is unreported. Mean-
while, CQA-Face adopts ResNet-100 as stem CNN, but fur-
ther increases the overall performance to (93%, 98.49%).
Our explanation is that the CAL enlarges pairwise atten-
tion distances, and thus make models locate diverse facial
parts. Non-occluded parts can contribute to FR if the oc-
cluded parts are invisible, making models robust to pose
variations. And also, the QAN learns a quality score for
each local representation in a global scope, assigning high
weights to important parts and low weights to noisy parts.
Although EQFace (Liu and Tan 2021) learns a quality score
for a whole facial image and achieves (92.60%, 98.34%), it
fails to explore quality scores for different facial parts. This
is important for cross-pose face matching because different
facial parts have different importance.

Experiments on Cross-age Face Matching and
LFW Dataset

We investigate the performance on cross-age face matching.
As shown in Table 4, our CQA-Face achieves the best result
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on CALFW (96.12%). Finally, our CQA-Face model obtains
the competitive result on LFW, achieving 99.83% accuracy.

Conclusions

We have proposed a new method, called CQA-Face model,
which is mainly composed of contrastive attention learning
(CAL) and quality-aware network (QAN). First, the CAL
encourages the diversity among different attention maps.
In such a manner, it is guaranteed that comprehensive fa-
cial regions are explored. Second, the QAN learns quality
scores for each local representations from a global scope.
Our CQA-Face model outperforms the state-of-the-art meth-
ods on several challenging tasks, illustrating the importance
and usefulness of our proposed approach.
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