The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

Contrastive Quantization with Code Memory for Unsupervised Image Retrieval

Jinpeng Wang'->4, Ziyun Zeng'*, Bin Chen?*, Tao Dai’, Shu-Tao Xia'*

1Tsinghua Shenzhen International Graduate School, Tsinghua University
2Harbin Institute of Technology, Shenzhen
3Shenzhen University
“Research Center of Artificial Intelligence, Peng Cheng Laboratory
{wjp20, zengzy21} @mails.tsinghua.edu.cn, chenbin2021 @hit.edu.cn, daitao.edu@gmail.com, xiast@sz.tsinghua.edu.cn

Abstract

The high efficiency in computation and storage makes hash-
ing (including binary hashing and quantization) a common
strategy in large-scale retrieval systems. To alleviate the re-
liance on expensive annotations, unsupervised deep hashing
becomes an important research problem. This paper provides
a novel solution to unsupervised deep quantization, namely
Contrastive Quantization with Code Memory (MeCoQ).
Different from existing reconstruction-based strategies, we
learn unsupervised binary descriptors by contrastive learn-
ing, which can better capture discriminative visual seman-
tics. Besides, we uncover that codeword diversity regu-
larization is critical to prevent contrastive learning-based
quantization from model degeneration. Moreover, we intro-
duce a novel quantization code memory module that boosts
contrastive learning with lower feature drift than conven-
tional feature memories. Extensive experiments on bench-
mark datasets show that MeCoQ outperforms state-of-the-art
methods. Code and configurations are publicly released.

Introduction

Hashing (Wang et al. 2017) plays a key role in Ap-
proximate Nearest Neighbor (ANN) search and has been
widely applied in large-scale systems to improve search
efficiency. There are two technical branches in hashing,
namely binary hashing and quantization. Binary hashing
methods (Charikar 2002; Heo et al. 2012) transform data
into the Hamming space such that distances are measured
quickly with bitwise operations. Quantization methods (Je-
gou, Douze, and Schmid 2010) divide real data space into
disjoint cells. Then the data points in each cell are approx-
imately represented as the centroid. Since the inter-centroid
distances can be pre-computed as a lookup table, quantiza-
tion methods can efficiently calculate pairwise distance.
With the progress in deep learning, the past few years
have seen many deep hashing methods (Yuan et al. 2020; Liu
et al. 2016) with impressive performance. Unfortunately, an-
notating tons of data in real-world applications is expensive,
making it hard to apply these supervised methods. Recent
research interests have arisen in unsupervised deep hashing
to address this issue, but existing works are not satisfactory

*Corresponding author.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2468

enough. On the one hand, most existing studies in unsuper-
vised deep hashing focus on preserving the information from
continuous features. They mostly use quantization loss (Lin
et al. 2016; Chen, Cheung, and Wang 2018) and similarity
reconstruction loss (Shen et al. 2018) as the learning objec-
tives, resulting in heavy reliance on the quality of extracted
features from pre-trained backbones (Krizhevsky, Sutskever,
and Hinton 2012; Simonyan and Zisserman 2015; He et al.
2016). If an adopted backbone generalizes poorly in the tar-
get domain, the unsatisfactory features will degrade the out-
put binary codes fundamentally. On the other hand, Lin et al.
(2016); Huang et al. (2017) introduced rotation invariance
of images to learn deep hashing, but weak negative samples
and ineffective training schemes led to inferior performance.

This paper focuses on unsupervised deep quantization. To
make better use of unlabeled training data, we perform Con-
trastive Learning (CL) (Hadsell, Chopra, and LeCun 2006)
that learns representations by mining visual-semantic in-
variance from inputs (Chen et al. 2020; He et al. 2020).
CL has become a promising direction toward deep unsu-
pervised representation, but CL-based deep quantization re-
mains non-trivial. Specifically, we find three challenges in
this task: (i) Sampling bias. Without label supervision, a
randomly sampled batch may contain positive samples that
are falsely taken as negatives. (ii) Model degradation. We
observe that quantization codewords of the same codebook
tend to get closer during CL, which gradually degrades the
representation ability and harms the model. (iii) The con-
flict between effect and efficiency in training. CL benefits
from a large batch size that ensures enough negative sam-
ples, while a single GPU can afford a limited batch size.
Training by CL often requires multi-GPU synchronization,
which is complex in engineering and less efficient. To im-
prove the efficiency, some recent studies (Wu et al. 2018;
Misra and Maaten 2020) enable small-batch CL by caching
embeddings in a memory bank and reusing them as nega-
tives in later iterations. However, as the encoder updates, the
cached embeddings will expire and affect the effect of CL.

To tackle the problems, we propose Contrastive Quantiza-
tion with Code Memory (MeCoQ) that combines memory-
based CL and deep quantization in a mutually beneficial
framework. Specifically, (i) MeCoQ is bias-aware. We adopt
a debiased framework (Chuang et al. 2020) that can correct
the sampling bias in CL. (ii) MeCoQ avoids degeneration.

We find that codeword diversity is critical to prevent the
CL-based quantization model from degeneration. Hence, we
design a codeword regularization to reinforce MeCoQ. (iii)
MeCoQ boosts CL effectively and efficiently. We propose a
novel memory bank for quantization codes that shows lower
feature drift (Wang et al. 2020) than existing feature mem-
ories. Thus, it can retain cached negatives valid for a longer
period and enhance the effect of CL, without heavy compu-
tations from the momentum encoder (He et al. 2020).
Our contributions can be summarized as follows.

e We provide a novel solution to unsupervised deep quan-
tization, which combines contrastive learning and deep
quantization in a mutually beneficial framework.

e We show that codeword diversity is critical to prevent
contrastive deep quantization from model degeneration.

e We propose a quantization code memory to enhance the
effect of memory-based contrastive learning.

e Extensive experiments on public benchmarks show that
MeCoQ outperforms state-of-the-art methods.

Related Work

Unsupervised Hashing Deep hashing methods with
Convolutional Neural Networks (CNNs) (Krizhevsky,
Sutskever, and Hinton 2012; Simonyan and Zisserman 2015;
He et al. 2016) usually perform better than non-deep hash-
ing methods. Existing deep hashing methods can be catego-
rized into generative (Dai et al. 2017; Duan et al. 2017; Zieba
et al. 2018; Song et al. 2018; Dizaji et al. 2018; Shen, Liu,
and Shao 2019; Shen et al. 2020; Li and van Gemert 2021;
Qiu et al. 2021) or discriminative (Lin et al. 2016; Huang
et al. 2017; Su et al. 2018; Chen, Cheung, and Wang 2018;
Yang et al. 2018, 2019; Tu, Mao, and Wei 2020) series. Most
of them impose various constraints (i.e., loss or regulariza-
tion terms) such as pointwise constraints: (i) quantization
error (Duan et al. 2017; Chen, Cheung, and Wang 2018), (ii)
even bit distribution (Zieba et al. 2018; Shen, Liu, and Shao
2019), (iii) bit irrelevance (Dizaji et al. 2018), (iv) maxi-
mizing mutual information between features and codes (Li
and van Gemert 2021; Qiu et al. 2021); and pairwise con-
straints: (v) preserving similarity among continuous feature
vectors (Su et al. 2018; Yang et al. 2018, 2019; Tu, Mao,
and Wei 2020). They merely explore statistical characteris-
tics of hash codes or focus on preserving the semantic infor-
mation from continuous features, which leads to heavy de-
pendence on high-quality pre-trained features. On the other
hand, DeepBit (Lin et al. 2016) and UTH (Huang et al.
2017) introduce rotation invariance of images to improve
deep hashing. Unfortunately, rotation itself is not enough
to construct informative negative samples and the training
schemes of DeepBit and UTH are less effective, which leads
to inferior performances. Most recently, Qiu et al. (2021)
combined contrastive learning with deep binary hashing. By
taking effective data augmentations and engaging more neg-
ative samples, it shows promising results. Different from
them, we explore the combination of contrastive learning
and deep quantization that is more challenging. We pro-
pose a codeword diversity regularization to prevent model
degeneration. Besides, we adopt a debiasing mechanism and

2469

propose a quantization code memory to enhance contrastive
learning, yielding better results.

Contrastive Learning Contrastive Learning (CL) (Had-
sell, Chopra, and LeCun 2006) based representation learn-
ing has drawn increasing attention. Wu et al. (2018) pro-
posed an instance discrimination method that combines a
non-parametric classifier (i.e., a memory bank) with a cross-
entropy loss (aka InfoNCE (Oord, Li, and Vinyals 2018) or
contrastive loss (He et al. 2020)). Positive samples from the
same image are pulled closer and negative samples from
other images are pushed apart. The subsequent instance-
wise CL methods focus on designing end-to-end (Chen et al.
2020), memory bank-based (Misra and Maaten 2020), or
momentum encoder-based (He et al. 2020) architectures. Be-
sides, cluster-wise contrastive methods (Caron et al. 2020;
Li et al. 2021) integrate the clustering objective into CL,
which shows promising results. Moreover, there are some
works addressing sampling bias (Chuang et al. 2020) or ex-
ploring effective negative sampling (Robinson et al. 2021)
in CL, which improve the training effect. We uncover that
codeword diversity is critical to enable CL in deep quantiza-
tion. Besides, we propose a novel memory that stores quan-
tization codes. Interestingly, without needing a momentum
encoder, it can show lower feature drift (Wang et al. 2020)
than existing feature memories (Wu et al. 2018; Misra and
Maaten 2020) and thus boosts CL effectively.

Modeling Framework
Problem Formulation and Model Overview

Given an unlabeled training set D of Np images where each
image x can be flattened as a P-dimensional vector, the
goal of unsupervised deep quantization is to learn a neu-
ral quantizer Q : RY ~— {0,1}7 that encodes images as
B-bit semantic quantization codes (aka the binary represen-
tations) for efficient image retrieval. To this end, we propose
Contrastive Quantization with Code Memory (MeCoQ) in
an end-to-end deep learning architecture. As shown in Fig-
ure 1, MeCoQ consists of: (i) Two operators sampled from
the same data augmentation family (7" ~ 7 and T" ~ T),
which are applied to each training image to obtain two corre-
lated views (x4, and), € RP). (ii) A deep embedding mod-
ule A combined with a standard CNN (Simonyan and Zis-
serman 2015) and a transform layer, which produces a con-
tinuous embedding z € R¥ for an input view € R” . (iii)
A trainable quantization module that produces a soft quan-
tization code vector p and the reconstruction 2 € R” for
z € RP. In inference, it directly outputs the hard quantiza-
tion code vector b € {0, 1}7 for image . (iv) A code mem-
ory bank M to cache the quantization code vectors of im-
ages, which serves as an additional source of negative train-
ing keys and is not involved in inference.

Debiased Contrastive Learning for Quantization

Trainable Quantization It is hard to integrate traditional
quantization (Jegou, Douze, and Schmid 2010) into the
deep learning framework because the codeword assignment
step is clustering-based and can not be trained by back-
propagation. To enable end-to-end learning in MeCoQ, we

...

Step 1: Contrastive Quantization Learning

Code

2
3 >—> Q> Luecoq
i N
Mf, [=] — Juny
= Z Mt ~ p
q
— —>pr il
0
o
g

Step 2: Code Memory Update

Quantization Bias-aware Contrastive Learning

(Best viewed in color:)

Figure 1: The framework of MeCoQ. After augmentation, we set one view for an image as the training query x, and leave the
other view xj;, along with the views of other images as the keys in contrastive learning. Then, we extract the embeddings for
these images and forward them to the quantization module to get quantized reconstructions. Embeddings reconstructed from the
code memory bank serve as additional negative keys that boost contrastive learning. Next, we maximize the similarity between
the query and the positive key (i.e., the other view from the same image) and minimize the similarities of negative query-key
pairs. Finally, we update the code memory bank with the quantization codes of the views of current image batch.

apply a trainable quantization scheme. Denote the quanti-
zation codebooks as C = C' x C? x --- x CM, where
the m-th codebook C™ € R5*4 consists of K codewords
et ey, em € R Assume that z € RP can be di-
vided into M equal-length d-dimensional segments, i.e., z €
RP = [z}, 2M],2m e R4, d = D/M,1 <m < M.
Given a vector, each codebook is used to quantize one seg-
ment respectively. In the m-th d-dimensional subspace, the
segment and codewords are first normalized:

/e Ml -)

Then each segment is quantized with codebook attention by

m m

2™ 2" 2"y, e ¢

K
2™ = Attention(z",C"™,C™) = szmczm, @)
i=1

where attention score p;”* is computed with the a-softmax:

" exp (Oé . zmTc;n)

’) Zfil exp (a-zmTel)

3)
The a-softmax is a differentiable alternative to the argmax
that relaxes the discrete optimization of hard codeword as-

signment to a trainable form. Finally, we get soft quantiza-
tion code and the soft quantized reconstruction of z as

mTC

pi* = softmax,, (z

“
&)

Debiased Contrastive Learning We conduct Contrastive
Learning (CL) based on the soft quantized reconstruction
vectors. Because negative keys for a training query are ran-
domly sampled from unlabeled training set, there are un-
avoidably some false-negative keys that harm CL. To tackle

p = concatenate (p', p*,- - ,p™) € REM,

Z = concatenate (21, 22 ... ,2M) .

2470

this problem, we adopt a bias-aware framework (Chuang
et al. 2020). The debiased CL loss is defined as
Sq,k+

)
) + /\/In—Batch ’

exp(
Sq,k+
=

(6)

2N
Lpc, =—) log
qz:; exp(

where N is the batch size, ¢ and £ denote the indices of the
training query and the positive key in the augmented batch, 7
is the temperature hyper-parameter. The similarity between a
query q and akey k is defined as s i = ﬁ(IT 2. The debiased
in-batch negative term in Eq.(6) is defined as

In-Batch — = 1 _ p+ 1_ p+ 9
k= ¢{q,kt}

(7
where k™~ denotes the indices of negative key and p™ is the
positive prior for bias correction.

Regularization to Avoid Model Degeneration

Model Degeneration We find that deep quantization is
prone to degenerate as CL goes on. To show the isuue, we re-
duce irrelevant factors! and train a simplified 32-bit MeCoQ
by vanilla CL on the Flickr25K dataset. As shown in Fig-
ure 2(a), the model performance (solid red line) declines
while the loss (dash red line) rises with fluctuation. It seems
that the success of CL for continuous representation doesn’t
generalize to quantization directly. Considering the differ-
ence in models, we investigate the behavior of quantization

"We have done pretest about the effect of debiasing mechanism
to the issue. As the results showed that it does not change the phe-
nomenon, we exclude it for a concise interpretation in this section.

a 0.8 .
Jis 5
& =z
S 0 0.75(P
S E 3B &
3 & 3
i 0.6+~ o £
= = ©
8 g s 2o .
03500 1000 1500 2000° < 05500 1000 1500 2000

Training Iteration Training Iteration

(b) Learning Rate and Average Inter-

(a) Loss and MAP Curves. codeword Similarity Curves.

Figure 2: MeCoQ degenerates during contrastive learning
because codewords in the same codebook are getting closer.
The codeword diversitv reeularization can avoid it.

[\ [}
2—5 5
P e — o
-~ 9] Z ~ hard
= /0 13
= /o i
a 6 5 S
e ¥V § g2
% 3| w0 250 "":'
o raining lteration S1
L .- =}
M e}
0

500 1000 1500 2000

0 500 1000 1500 2000 0 .
Training lteration

Training lteration
(a) Feature Drift Estimations. (b) Quantization Errors.

Figure 3: We estimate the feature drifts of original features,
soft quantized features, and hard quantized features. The soft
features show lower drift than the original features because
moderate quantization error can compensate for the drift.

codebooks during CL. Intuitively, we observe the changes of
average inter-codeword similarity, namely,

M K K

1
Qe = e Z ZZC?TC;".

m=1i=1 j=1

®)

Figure 2(b) shows a monotonic increase of {2, which slows
down as the learning rate decreases. It suggests that the op-
timization leads to a degenerated solution.

Here we discuss what may cause this phenomenon. Recall
that vanilla CL loss w.r.t. a training query x, is

Lon(zg) = —1 exp (=)
cL(Zq) = — l0g 5 -
’ exp(Zuth) 4 3PN exp(Pein)
k™ ¢{q .k}
)

Proposition 1. Suppose that .+ is the positive training key
and x - is a negative key to . 2+ and Zy— are the recon-
structed embeddings w.r.t. x+ and x;,—, then we have

ILcr(xq) OLcL(xq)
O0Zp+ 0Z-
It suggests that the scale of loss gradient w.r.t. the pos-

itive key is greater than that w.rt. any negative key. En-
gaging more negatives leads to a larger gap between such

> 0.

(10)

2471

scales. Besides, to reduce the deviation between soft quanti-
zation in training and hard quantization in inference, we take
a relatively large « (10 by default) in the codeword atten-
tion (Eq.(2)). It makes each soft reconstruction and assigned
codeword approximate at the forward step. In the back-
propagation, their gradients are also approximate. Thus, it
can hold when replacing 2;+ and 2, in Proposition 1 with
assigned codewords. If the query and the positive key are as-
signed to different codewords, there will be a large gradient
to pull these codewords closer. We find it irreversible with-
out explicit control, because of the insufficient frequency of
the same assignment for negative pairs along with subtle gra-
dients to push the same of codewords away. As a result, the
representation ability of codebooks degrades and the model
degenerates.

Codeword Diversity Regularization To avoid degenera-
tion, we regularize the optimization by imposing Q¢ < e,
where € is a fixed bound. In practice, we set it as a loss term
that encourages codeword diversity and guides deep quanti-
zation model to pay more attention to proper codeword as-
signment rather than violently moving the codewords. The
blue lines in Figure 2(a) show that the regularization effec-
tively avoids the issue and also helps to calm the loss down.

Quantization Code Memory to Boost Training

Effective CL methods rely on sufficient negative samples
to learn discriminative representations. Therefore, existing
memory-based methods cache the image embeddings and
serve them as the negatives in the later training. However,
as the model keeps updating, the early cached embeddings
expire and become noises to CL. To enhance the effect of
memory, MoCo (He et al. 2020) introduces a momentum
encoder that mitigates the embedding aging issue at a higher
computation cost. In contrast, we find an elegant solution
that achieves a similar effect more efficiently.

Feature Drift We follow Wang et al. (2020) to investigate
the embedding aging issue. We define the feature drift of a
neural embedding model h by

1
2 3 i 03) w0329
TeEX (11)

where X’ is a given image set for estimation, @y, is the pa-
rameters of h, t and At denote the number and the inter-
val of training iterations (i.e., batches) respectively. We train
a 32-bit CL-based quantization model and compute its fea-
ture drift based on original embeddings, soft quantized re-
constructions, and hard quantized reconstructions.

As shown in Figure 3(a), the embeddings violently change
at the early stage, after which they become relatively stable.
Moreover, it is surprising that the soft quantized embeddings
show even lower feature drifts than the original embeddings.
We realize that undesirable quantization error (illustrated in
Figure 3(b)) that used to be eliminated in quantization mod-
els partially* offsets the feature drift, keeping the cached in-
formation valid for a longer time.

Drift(X’, t; At)

*Note that hard quantization shows higher feature drift. It
doesn’t benefit from the offset because of large quantization error.

Memory-augmented Training Base on the above facts,
we start using a memory bank M with Ny, slots to
store soft quantization codes after the warm-up stage.
In each training iteration, we fetch the cached codes
DM PMss " s PMuy,, from the memory bank. Then,
we forward them to the quantization module and respec-
tively reconstruct the embeddings Zaq,, Za1,, - , ZM N
by Eq.(2) and (5). Finally, we integrate these embeddings to
Eq.(6) and formulate the memory-augmented loss as

2N exp(q,kt)
EM CoQ = — IOg
- ; exp(RCLS) + -/Vin Batch 1 NMemory
(12)
where the added negative term about code memory is
N Sq,M; + Sq kTt
a exp(=) pt - exp(—)
NMemory - Z 1 _p+ - 1 _p+ (13)

i=1

At the end of each training iteration, we update the mem-
ory as a queue, i.e., the current batch is enqueued and an
equal number of the oldest slots are removed. To simplify
engineering, we set the queue size N4 to a multiple of the
batch size IV so that we update the memory bank by batches.

Learning Algorithm
The learning objective of MeCoQ is

glirclELMeCOQ +ﬂ||0h||g +’YQC7 (14)
hs

where Lyecoq is formulated as Eq.(12), Q¢ is defined as
Eq.(8). 8y, denotes the network parameters of the embedding
module h, 5 and y are the trade-off hyper-parameters. The
training process is quite efficient as we formulate the whole
problem in a deep learning framework. Many off-the-shelf
optimizers can be applied within a few code lines.

Encoding and Retrieval

In inference, we encode the database with hard quantization:
im = argmax 27 T ¢, 24y, = Cim - (15)
1<i<K
We can aggregate the indices [i}ib,ifib, e ,i%] and con-
vert it into a code vector by, for the database image xgp.
Given a retrieval query image x,, we extract its deep em-
bedding and cut the vector into M equal-length segments,
ie,zg=[z0;22;- - 2], 2" € RY. We adopt Asymmet-
ric Quantlzed Slmllarlty (AQS) (Jegou, Douze, and Schmid
2010) as the metric, which computes the similarity between
z4 and the reconstruction of a database point 245 by

M Z M mTcm
AQS :Bq,:ljdb Z db — Z Ta gy (16)
m=1 m=1 H q ||
We can set up a query-specific lookup table &, € RM*K

for each =, which stores the pre-computed similarities be-
tween the segments of x, and all codewords. Specifically,

2472

=m —

T
Eqim = 2y’ c%/”z? ||2 Hence, t.he AQS can be effi-
ciently computed by summing chosen items from the lookup
table according to the quantization code, i.e.,

M
AQS(xq, xar) = D Eiln (17)
m=1

where 47j; is the index of codeword in the m-th codebook.

Experiments
Setup

Datasets (i) Flickr25K (Huiskes and Lew 2008) con-
tains 25k images from 24 categories. We follow Li and van
Gemert (2021) to randomly pick 2,000 images as the testing
queries, while another 5,000 images are randomly selected
from the rest of the images as the training set. (ii) CIFAR-
10 (Krizhevsky and Hinton 2009) contains 60k images from
10 categories. We consider two typical experiment proto-
cols. CIFAR-10 (I): We follow Li and van Gemert (2021)
to use 1k images per class (totally 10k images) as the test
query set, and the remaining 50k images are used for train-
ing. CIFAR-10 (1I): Following Qiu et al. (2021) we randomly
select 1,000 images per category as the testing queries and
500 per category as the training set. All images except those
in the query set serve as the retrieval database. (iii) NUS-
WIDE (Chua et al. 2009) is a large-scale image dataset con-
taining about 270k images from 81 categories. We follow
Li and van Gemert (2021) to use the 21 most popular cate-
gories for evaluation. 100 images per category are randomly
selected as the testing queries while the remaining images
form the database and the training set.

Metrics We adopt the typical metric, Mean Average Preci-
sion (MAP), from previous works (Yang et al. 2018; Li and
van Gemert 2021; Qiu et al. 2021). It is defined as

e (®
(18)

. €Q
where Q is test query image set and n is the index of a
database image in a returned rank list. Precy(n) is the pre-
cision at cut-off 7 in the rank list w.r.t. x,. R, is the set of
all relevant images w.r.t. x,. I} is an indicator function. We
follow previous works to adopt MAP@ 1000 for CIFAR-10
(I) and (II), MAP@5000 for Flickr25K and NUS-WIDE.

Models We compare the retrieval performance of MeCoQ
with 24 classic or state-of-the-art unsupervised baselines,
including: (i) 5 shallow hashing methods: LSH (Charikar
2002), SpeH (Weiss, Torralba, and Fergus 2008), SH
(Salakhutdinov and Hinton 2009), SphH (Heo et al. 2012)
and ITQ (Gong et al. 2012). (ii) 2 shallow quantization
methods: PQ (Jegou, Douze, and Schmid 2010) and OPQ
(Geetal. 2013). (iii) 15 deep binary hashing methods: Deep-
Bit (Lin et al. 2016), UTH (Huang et al. 2017), SAH (Do
etal. 2017), SGH (Dai et al. 2017), HashGAN (Dizaji et al.
2018), GreedyHash (Su et al. 2018), BinGAN (Zieba et al.
2018), BGAN (Song et al. 2018), SSDH (Yang et al. 2018),
DVB (Shen, Liu, and Shao 2019), DistillHash (Yang et al.

_y Precy(n) Iz, er 3
R4l

MAP@N =

Dataset — Flickr25K CIFAR-10 (I) CIFAR-10 (II) NUS-WIDE

Method | Venue | Type | 16bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits
LSH+VGG STOC 02 BH 56.11 57.08 59.26 1438 15.86 18.09 1255 13.76 15.07 3852 4143 43.89
SpeH+VGG NeurIPS’08 BH 59.77 6136 64.08 27.09 29.44 3265 2720 2850 30.00 51.70 S51.10 51.00
SH+VGG IJAR’09 BH 60.02 6330 64.17 2828 28.86 2851 24.68 2534 27.16 46.85 53.63 56.28
SphH+VGG CVPR’12 BH 6132 6247 6449 2690 31.75 3525 2540 29.10 3330 4950 55.80 58.20
ITQ+VGG TPAMI’ 12 BH 6330 6592 68.86 3441 3541 38.82 30.50 3250 3490 6270 64.50 66.40
PQ+VGG TPAMI’ 10 Q 62.75 66.63 69.40 27.14 3330 37.67 28.16 3024 30.61 6539 67.41 68.56
OPQ+VGG CVPR’13 Q 63.27 68.01 69.86 2729 3517 3848 3217 3350 3446 6574 6838 69.12
DeepBit CVPR’16 DBH 62.04 66.54 6834 1943 2486 27.73 20.60 2823 3130 39.20 4030 42.90
UTH ACMMMW’17 DBH - - - - - - - - - 45.00 49.50 54.90
SAH CVPR’17 DBH - - - 4175 4556 47.36 - - - - - -
SGH ICML 17 DBH 72.10 72.84 72.83 3451 37.04 3893 4350 43.70 4330 5930 59.00 60.70
HashGAN CVPR’18 DBH 72.11 7325 7546 44770 4630 48.10 42.81 47.54 4729 6844 7056 71.71
GreedyHash NeurIPS’18 DBH 6991 7085 73.03 4480 47.20 50.10 4576 4826 5334 6330 69.10 73.10
BinGAN NeurIPS’18 DBH - - - - - - 47.60 51.20 52.00 6540 7090 71.30
BGAN AAAT'18 DBH - - - - - - 5250 53.10 56.20 6840 71.40 73.00
SSDH IICAT’ 18 DBH 75.65 77.10 76.68 36.16 4037 44.00 3330 3829 40.81 58.00 59.30 61.00
DVB ICvV’19 DBH - - - - - - 4030 4220 4460 6040 6320 66.50
DistillHash CVPR’19 DBH - - - - - - - - - 62.70 65.60 67.10
TBH CVPR’20 DBH 7438 76.14 77.87 54.68 58.63 6247 5320 5730 5780 71.70 7250 73.50
MLS®*RDUH IICAT’20 DBH - - - - - - - - - 7130 72.70 75.00
Bi-half Net AAAT21 DBH 76.07 7793 7862 56.10 57.60 59.50 49.97 52.04 5535 76.86 7831 79.94
CIBHash IICATI'21 DBH 7721 7843 7950 59.39 63.67 65.16 59.00 6220 64.10 79.00 80.70 81.50
DBD-MQ CVPR’17 DQ - - - 21.53 2650 31.85 - - - - - -
DeepQuan IICAT’ 18 DQ - - - 39.95 4125 43.26 - - - - - -
MeCoQ (Ours) AAAI'22 DQ 81.31 81.71 82.68 68.20 69.74 71.06 62.88 64.09 65.07 80.18 82.16 83.24

Table 1: Mean Average Precision (MAP, %) results for different number of bits on Flickr25K, CIFAR-10 (I and II) and NUS-
WIDE datasets. ‘D’, ‘Q’ and ‘BH’ indicate ‘Deep’, ‘Quantization’ and ‘Binary Hashing’ for short in “Type’ column.

2019), TBH (Shen et al. 2020), MLS*RDUH (Tu, Mao,
and Wei 2020), Bi-half Net (Li and van Gemert 2021) and
CIBHash (Qiu et al. 2021). (iv) 2 deep quantization meth-
ods: DBD-MQ (Duan et al. 2017) and DeepQuan (Chen,
Cheung, and Wang 2018). We carefully collect their results
from related literature. When results about some baselines
on a certain benchmark are not available (e.g. CIBHash on
Flickr25K dataset), we try to run their open-sourced codes
(if available and executable) and report the results.

Implementation Settings We implement MeCoQ with
Pytorch (Paszke et al. 2019). We follow the standard eval-
uation protocol (Qiu et al. 2021; Li and van Gemert 2021)
of unsupervised deep hashing to use the VGG16 (Simonyan
and Zisserman 2015). Specifically, for shallow models, we
extract 4096-dimensional deep fc7 features as the model in-
put. For deep models, we directly use raw image pixels as in-
put and adopt the pre-trained VGG16 (convl ~ fc7) as the
backbone network. We use the data augmentation scheme
in Qiu et al. (2021) that combines random cropping, hori-
zontal flipping, image graying, and randomly applied color
jitter and blur. The default hyper-parameter settings are as
follows. (i) We set the batch size as 128 and the maximum
epoch as 50. (ii) The queue length (i.e., the memory bank
size), Naq = 384. (iii) The smoothness factor of codeword
assignment in Eq.(3), @ = 10. (iv) The codeword number of
each codebook, K = 256 such that each image is encoded
by B = M log, K = 8M bits (i.e., M bytes). (v) The pos-
itive prior, p* = 0.1 for CIFAR-10 (I and 1), p™ = 0.15

2473

—e— 16 bits —e— 32 bits —e— 64 bits

72 72
Sy AN 5700 e
Vi AMPIS e\
S(E- //,'\\\\ 5(5'68 P \)
- 68 =
3 ///ﬁ‘\,)\‘ Fos /
66 64

Q LH N b oy ™ S © > O b N}

SIS I 0&@@@

(a) Positive Prior for Debiasing, po* (b) Code Memory Size, N,
Figure 4: Sensitivities of p* and N on CIFAR-10 (I). The
dotted lines indicate the MAP results of default settings.

for Flickr25K and NUS-WIDE. (vi) The starting epoch for
the memory module are set to 5 on Flickr25K, 10 on NUS-
WIDE and 15 on CIFAR-10 (I and II).

Results and Analysis

Comparison with Existing Methods The MAP results in
Tables 1 show that MeCoQ substantially outperforms all the
compared methods. Specifically, compared with CIBHash,
a latest and strong baseline, MeCoQ achieves average MAP
increases of 3.52, 6.92, 2.24 and 1.46 on Flickr25K, CIFAR-
10 (I), (Il) and NUS-WIDE datasets, respectively. Besides,
we can get two findings from the MAP results. (i) Deep
methods do not always outperform shallow methods with

Dataset — Flickr25K CIFAR-10 (I) CIFAR-10 (IT) NUS-WIDE
Method | 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits
MeCoQ 81.31 81.71 82.68 68.20 69.74 71.06 62.88 64.09 65.07 80.18 82.16 83.24
MeCoQ w/o debiasing 80.03 80.19 80.67 66.59 67.08 68.77 60.51 62.81 62.85 79.64 80.68 82.30
MeCoQ w/o Q¢ 54.00 57.53 58.84 39.03 36.20 4275 3254 35.67 36.40 51.33 5729 61.01
MeCoQ w/o M 7877 79.50 80.76 64.82 67.64 69.36 59.78 61.22 63.80 76.70 79.13 81.43
MeCoQ feature M 78.39 79.61 80.13 6539 67.62 70.57 62.55 6332 64.84 7771 7990 81.64
MeCoQ hard code M 60.77 63.10 68.49 3395 40.65 46.76 3440 3755 4490 69.46 7223 74.95
MeCoQ w/o delaying M 79.02 78.44 78.17 66.76 67.82 69.04 59.79 6142 62.60 79.72 8139 82.67

Table 2: Mean Average Precision (MAP, %) results for different MeCoQ variants with different number of bits on Flickr25K,
CIFAR-10 (I and IT) and NUS-WIDE datasets. The subscript results are the MAP drops compared with full MeCoQ.

CNN features. For instance, DeepBit and UTH do not out-
perform PQ and OPQ with CNN features on NUS-WIDE.
It implies that without label supervision, some deep hashing
methods are less effective to take good advantage of pre-
trained CNNss. (ii) Contrastive Learning (CL) is effective to
learn deep hashing models. The two CL-based methods in
Table 1, CIBHash and MeCoQ, perform best on all datasets.
Moreover, with debiasing mechanism and code memory,
MeCoQ shows notable improvements over CIBHash.

Component Analysis We set 6 MeCoQ variants to anal-
yse the contributions of components: (i) MeCoQ w/o debiasing
removes debiasing mechanism by setting p™ = 0 in Eq.(7)
and (13); (ii) MeCoQ y/ o, removes codeword regulariza-
tion, Q¢; (iii) MeCoQ v/, A4 removes the code memory, M;
(iv) MeCoQ feaure M Teplaces soft code memory by feature
memory; (v) MeCoQ hard code M Teplaces soft code mem-
ory by hard code memory; (vi) MeCoQ w/o delaying M bEZINS
memory-augmented training at the very start of the learning.
We can make the following summaries based on the Table 2.

Debiasing improves performance. MeCoQ outperforms
MeCoQ y/o debiasing by 1.60, 2.19, 1.96 and 0.99 of average
MAPs on Flickr25K, CIFAR-10 (I), (II) and NUS-WIDE,
which shows that correcting the sampling bias can improve
model training. Figure 4(a) shows that the optimal p* on
CIFAR-10 (I) is about 0.1, which means that we may ran-
domly drop a false-negative sample from the training set
with a 10% probability. It is consistent with the property of
CIFAR-10 (I) that each category accounts for 10%.

The codeword diversity regularization avoids model
degeneration. MeCoQ outperforms MeCoQ w00, by
25.11, 30.34, 29.14 and 25.32 of average MAPs on 4
datasets. It demonstrates the importance of regularization.

Soft code memory is effective and efficient to enhance
contrastive learning. MeCoQ outperforms MeCoQ /o A
by 2.22,2.39, 2.41 and 2.77 of average MAPs on 4 datasets,
which verifies the worth of using M. Besides, Figure 4(b)
shows that enlarging memory to cache more negatives im-
proves MeCoQ, while the improvement tends to drop as
memory size exceeds a certain range. The reason is that the
low feature drift phenomenon only holds within a limited
period. We can also learn that fewer bits with larger quan-
tization errors allow a slightly larger memory because the
quantization error can partially offset the feature drift. More-
over, as shown in Table 3, using code memory is efficient in
GPU memory and computation. It can achieve better results

2474

Method #Neg. Time/Ep. GPUMem. MAP
N=128, w/o M 128 528s 5925MB 67.64
N=256, wlo M 256 550s 10927MB 68.66
N=128, N\=128 256 536s 5927MB 68.39
N=128, N\=384 512 547s 5933MB 69.74
N=128, N\=896 1024 563s 5947MB 69.17

Table 3: Model profiling results on CIFAR-10 (I) dataset,
including the number of negative samples per training query,
average training time per epoch in seconds, GPU memory
demand in megabytes and MAP for 32 bits, under different
batch size (V) and memory size (/N) settings.

with much less GPU memory than enlarging batch size. The
marginal increase of time is caused by similarity computa-
tions between training queries and cached negatives.

Soft code memory is better than feature memory and
hard code memory. MeCoQ outperforms MeCoQ feature M
by 2.52, 1.81, 0.44 and 2.11 of average MAPs on 4 datasets,
because the soft code memory has lower feature drift than
feature memory. Surprisingly, MeCoQ hard code M fails. It
seems that reconstructed features from hard codes become
adverse noises rather than valid negatives because the large
error of hard quantization leads to an over-large feature drift.

It is better to delay the usage of memory in the learn-
ing process. MeCoQ outperforms MeCoQ wyo delaying M DY
3.36, 1.79, 2.74 and 0.6 of average MAPs on 4 datasets. It
implies that using code memory from the very beginning
leads to sub-optimal solutions because reusing unstable rep-
resentations in initial training stage is not recommended.

Conclusions

In this paper, we propose Contrastive Quantization with
Code Memory (MeCoQ) for unsupervised deep quanti-
zation. Different from existing reconstruction-based unsu-
pervised deep hashing methods, MeCoQ learns quantiza-
tion by contrastive learning. To avoid model degeneration
when optimizing MeCoQ, we introduce a codeword diver-
sity regularization. We further improve the memory-based
contrastive learning by designing a novel quantization code
memory, which shows lower feature drift than existing fea-
ture memories without using momentum encoder. Extensive
experiments show the superiority of MeCoQ over the state-
of-the-art methods.

Acknowledgments

This work is supported in part by the National Key
Research and Development Program of China under
Grant 2018YFB1800204, the National Natural Sci-
ence Foundation of China under Grant 61771273 and
62171248, the R&D Program of Shenzhen under Grant
JCYJ20180508152204044, and the PCNL KEY project
(PCL2021A07).

References

Caron, M.; Misra, L.; Mairal, J.; Goyal, P.; Bojanowski, P.;
and Joulin, A. 2020. Unsupervised Learning of Visual Fea-
tures by Contrasting Cluster Assignments. In NeurIPS.

Charikar, M. S. 2002. Similarity estimation techniques from
rounding algorithms. In STOC, 380-388.

Chen, J.; Cheung, W. K.; and Wang, A. 2018. Learning Deep
Unsupervised Binary Codes for Image Retrieval. In IJCAI,
613-619.

Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020.
A simple framework for contrastive learning of visual repre-
sentations. In ICML, 1597-1607. PMLR.

Chua, T.-S.; Tang, J.; Hong, R.; Li, H.; Luo, Z.; and Zheng,
Y. 2009. Nus-wide: a real-world web image database from
national university of singapore. In Proceedings of the ACM
international conference on image and video retrieval, 1-9.
Chuang, C.-Y.; Robinson, J.; Lin, Y.-C.; Torralba, A.; and
Jegelka, S. 2020. Debiased Contrastive Learning. In
NeurlIPS, volume 33, 8765-8775.

Dai, B.; Guo, R.; Kumar, S.; He, N.; and Song, L. 2017.
Stochastic generative hashing. In /ICML, 913-922. PMLR.
Dizaji, K. G.; Zheng, F.; Sadoughi, N.; Yang, Y.; Deng, C.;
and Huang, H. 2018. Unsupervised deep generative adver-
sarial hashing network. In CVPR, 3664-3673.

Do, T.-T.; Le Tan, D.-K.; Pham, T. T.; and Cheung, N.-M.
2017. Simultaneous feature aggregating and hashing for
large-scale image search. In CVPR, 6618-6627.

Duan, Y.; Lu, J.; Wang, Z.; Feng, J.; and Zhou, J. 2017.
Learning deep binary descriptor with multi-quantization. In
CVPR, 1183-1192.

Ge, T.; He, K.; Ke, Q.; and Sun, J. 2013. Optimized product
quantization for approximate nearest neighbor search. In
CVPR, 2946-2953.

Gong, Y.; Lazebnik, S.; Gordo, A.; and Perronnin, F. 2012.
Iterative quantization: A procrustean approach to learning
binary codes for large-scale image retrieval. TPAMI, 35(12):
2916-2929.

Hadsell, R.; Chopra, S.; and LeCun, Y. 2006. Dimension-
ality reduction by learning an invariant mapping. In CVPR,
volume 2, 1735-1742. IEEE.

He, K.; Fan, H.; Wu, Y,; Xie, S.; and Girshick, R. 2020.
Momentum contrast for unsupervised visual representation
learning. In CVPR, 9729-9738.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR, 770-778.

2475

Heo, J.-P;; Lee, Y.; He, J.; Chang, S.-F.; and Yoon, S.-E.
2012. Spherical hashing. In CVPR, 2957-2964. IEEE.

Huang, S.; Xiong, Y.; Zhang, Y.; and Wang, J. 2017. Un-
supervised triplet hashing for fast image retrieval. In ACM
MM Workshops, 84-92.

Huiskes, M. J.; and Lew, M. S. 2008. The mir flickr retrieval
evaluation. In Proceedings of the 1st ACM international
conference on Multimedia information retrieval, 39—43.

Jegou, H.; Douze, M.; and Schmid, C. 2010. Product quanti-
zation for nearest neighbor search. TPAMI, 33(1): 117-128.

Krizhevsky, A.; and Hinton, G. 2009. Learning multiple lay-
ers of features from tiny images. Technical report, Univer-
sity of Toronto, Toronto, Ontario.

Krizhevsky, A.; Sutskever, 1.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. In NeurIPS, volume 25, 1097-1105.

Li, J.; Zhou, P; Xiong, C.; and Hoi, S. 2021. Prototypical
Contrastive Learning of Unsupervised Representations. In
ICLR.

Li, Y.; and van Gemert, J. 2021. Deep Unsupervised Image
Hashing by Maximizing Bit Entropy. In AAAL

Lin, K.; Lu, J.; Chen, C.-S.; and Zhou, J. 2016. Learning
compact binary descriptors with unsupervised deep neural
networks. In CVPR, 1183-1192.

Liu, H.; Wang, R.; Shan, S.; and Chen, X. 2016. Deep super-
vised hashing for fast image retrieval. In CVPR, 2064-2072.

Misra, I.; and Maaten, L. v. d. 2020. Self-supervised learning
of pretext-invariant representations. In CVPR, 6707-6717.

Oord, A. v. d.; Li, Y.; and Vinyals, O. 2018. Representation
learning with contrastive predictive coding. arXiv preprint
arXiv:1807.03748.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. PyTorch: An imperative style, high-performance
deep learning library. In NeurIPS, 8024-8035.

Qiu, Z.; Su, Q.; Ou, Z.; Yu, J.; and Chen, C. 2021. Unsuper-

vised Hashing with Contrastive Information Bottleneck. In
IJCAL

Robinson, J. D.; Chuang, C.-Y.; Sra, S.; and Jegelka, S.
2021. Contrastive Learning with Hard Negative Samples.
In ICLR.

Salakhutdinov, R.; and Hinton, G. 2009. Semantic hash-
ing. International Journal of Approximate Reasoning, 50(7):

969-978.

Shen, F.; Xu, Y.; Liu, L.; Yang, Y.; Huang, Z.; and Shen,
H. T. 2018. Unsupervised deep hashing with similarity-
adaptive and discrete optimization. TPAMI, 40(12): 3034—
3044.

Shen, Y.; Liu, L.; and Shao, L. 2019. Unsupervised bi-
nary representation learning with deep variational networks.
1JCV, 127(11): 1614-1628.

Shen, Y.; Qin, J.; Chen, J.; Yu, M.; Liu, L.; Zhu, F.; Shen, F;
and Shao, L. 2020. Auto-encoding twin-bottleneck hashing.
In CVPR, 2818-2827.

Simonyan, K.; and Zisserman, A. 2015. Very Deep Convo-
lutional Networks for Large-Scale Image Recognition. In
ICLR.

Song, J.; He, T.; Gao, L.; Xu, X.; Hanjalic, A.; and Shen,
H. T. 2018. Binary generative adversarial networks for im-
age retrieval. In AAAL

Su, S.; Zhang, C.; Han, K.; and Tian, Y. 2018. Greedy hash:
Towards fast optimization for accurate hash coding in cnn.
In NeurIPS, 806-815.

Tu, R.-C.; Mao, X.-L.; and Wei, W. 2020. MLS3RDUH:
Deep Unsupervised Hashing via Manifold based Local Se-
mantic Similarity Structure Reconstructing. In IJCAI, 3466—
3472.

Wang, J.; Zhang, T.; Sebe, N.; Shen, H. T.; et al. 2017. A
survey on learning to hash. TPAMI, 40(4): 769-790.

Wang, X.; Zhang, H.; Huang, W.; and Scott, M. R. 2020.
Cross-batch memory for embedding learning. In CVPR,
6388-6397.

Weiss, Y.; Torralba, A.; and Fergus, R. 2008. Spectral hash-
ing. In NeurIPS, 1753-1760.

Wu, Z.; Xiong, Y.; Yu, S. X.; and Lin, D. 2018. Unsuper-
vised feature learning via non-parametric instance discrimi-
nation. In CVPR, 3733-3742.

Yang, E.; Deng, C.; Liu, T.; Liu, W.; and Tao, D. 2018. Se-
mantic structure-based unsupervised deep hashing. In 1J-
CAI, 1064-1070.

Yang, E.; Liu, T.; Deng, C.; Liu, W.; and Tao, D. 2019. Dis-
tillhash: Unsupervised deep hashing by distilling data pairs.
In CVPR, 2946-2955.

Yuan, L.; Wang, T.; Zhang, X.; Tay, F. E.; Jie, Z.; Liu, W.;
and Feng, J. 2020. Central similarity quantization for effi-
cient image and video retrieval. In CVPR, 3083-3092.
Zieba, M.; Semberecki, P.; El-Gaaly, T.; and Trzcinski, T.
2018. BinGAN: learning compact binary descriptors with a
regularized GAN. In NeurIPS, 3612-3622.

2476

