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Abstract
Recent advances in supervised deep learning methods are
enabling remote measurements of photoplethysmography-
based physiological signals using facial videos. The perfor-
mance of these supervised methods, however, are depen-
dent on the availability of large labelled data. Contrastive
learning as a self-supervised method has recently achieved
state-of-the-art performances in learning representative data
features by maximising mutual information between differ-
ent augmented views. However, existing data augmentation
techniques for contrastive learning are not designed to learn
physiological signals from videos and often fail when there
are complicated noise and subtle and periodic colour/shape
variations between video frames. To address these problems,
we present a novel self-supervised spatiotemporal learning
framework for remote physiological signal representation
learning, where there is a lack of labelled training data.
Firstly, we propose a landmark-based spatial augmentation
that splits the face into several informative parts based on
the Shafer’s dichromatic reflection model to characterise sub-
tle skin colour fluctuations. We also formulate a sparsity-
based temporal augmentation exploiting Nyquist–Shannon
sampling theorem to effectively capture periodic temporal
changes by modelling physiological signal features. Fur-
thermore, we introduce a constrained spatiotemporal loss
which generates pseudo-labels for augmented video clips.
It is used to regulate the training process and handle com-
plicated noise. We evaluated our framework on 3 public
datasets and demonstrated superior performances than other
self-supervised methods and achieved competitive accuracy
compared to the state-of-the-art supervised methods. Code is
available at https://github.com/Dylan-H-Wang/SLF-RPM.

Introduction
Physiological signals are critical indicators for human car-
diovascular activities such as heart rate (HR), respiration fre-
quency (RF), heart rate variability (HRV) and blood pressure
(BP) (Xu, Yu, and Wang 2021). These signals are commonly
used to monitor the wellness of patients (Avram et al. 2019).
Traditionally, the Electrocardiography (ECG) and Photo-
plethysmography (PPG) are used to measure physiological
signals, and both of them rely on the availability of cuff-
based equipment which requires direct contact to human
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skin. This constrains the application of monitoring and esti-
mation process in an unobtrusive and concomitant way with
ubiquitous devices (e.g., smartphone cameras, webcams)
(McDuff et al. 2015). In recent years, non-contact video-
based remote physiological measurement (RPM) has been of
great interest. Remote photoplethysmography (rPPG), using
facial videos, has been introduced to overcome the limitation
of conventional contact-based measurement approaches. In
rPPG, signals are measured based on colour fluctuations on
human skin, which are caused by the variations of blood vol-
ume during cardiac cycle (De Haan and Jeanne 2013).

Several recent studies using supervised deep learning
methods (Yu et al. 2019; Qiu et al. 2019; Niu et al. 2020b;
Lee, Chen, and Lee 2020; Li et al. 2018) have shown promis-
ing results to remotely estimate physiological signals. They,
however, remain problematic because of their dependency
on the availability of large-scale labelled training data. The
annotation of large-scale data is costly, slow and requires
medical equipment. Researchers have employed various ap-
proaches to help solve these challenges including transfer-
ring knowledge across different domains and fine-tuning
those knowledge with a relatively smaller amount of labelled
image data. For example, Niu et al. (2020a) used a model
that was pre-trained using large labelled natural images (i.e.,
ImageNet) and fine-tuned this knowledge using rPPG facial
videos. Another approach is to create synthetic physiolog-
ical signals to increase the number of training videos (Niu
et al. 2018a; Condrea, Ivan, and Leordeanu 2020). However,
such approach is limited by the domain shift between orig-
inal and synthetic data. An alternative approach is to use
self-supervised learning (SSL) to learn and extract image
features from unlabelled data. Many recent SSL methods
commonly applied the concept of contrastive learning and
have achieved state-of-the-art (SOTA) performances in un-
supervised image/video representation learning (Ahn et al.
2020; Oord, Li, and Vinyals 2018; Han, Xie, and Zisser-
man 2019; Qian et al. 2020; Ahn, Feng, and Kim 2021).
In these approaches, videos are transformed using standard
data augmentation techniques such as frame cropping, re-
sizing, colour jittering and frame re-ordering to produce
different views. Invariant video features are then learnt by
maximising mutual information between different views in
a contrastive manner. These standard augmentation tech-
niques, however, are mainly limited to learn features for ac-
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tion recognition tasks, where large variations among the hu-
man anatomy can be modelled, and they are not designed to
capture the subtle colour fluctuations on human skin. Many
of RPM studies also transformed the video frames (3D) into
2D spatiotemporal map for subsequent 2D convolutional
neural networks (CNNs) training (Niu et al. 2020a; Qiu et al.
2019; Lee, Chen, and Lee 2020). However, this transforma-
tion potentially neglect nature information contained in orig-
inal inputs (Yu et al. 2020).

In this paper, we present a new Self-supervised Learning
Framework for Remote Physiological Measurement (SLF-
RPM). We propose a landmark-based spatial augmentation
using Shafer’s dichromatic reflection model (Wang et al.
2017) to effectively capture the colour fluctuations on hu-
man faces. We also propose a sparsity-based temporal aug-
mentation that characterise periodic colour variations using
Nyquist–Shannon sampling theorem (Nyquist 1928) to ex-
ploit rPPG signal features. We further formulate a new loss
function using the pseudo-labels derived from our augmen-
tations. It regulates the training process of contrastive learn-
ing and handles complicated noise. We evaluated our frame-
work by comparing with other SOTA supervised and SSL
approaches using 3 public datasets and conducted ablation
studies to demonstrate the effectiveness of our SLF-RPM
framework.

Related Work
Remote Physiological Measurement
The application of analysing rPPG from camera-captured
videos was first proposed by Verkruysse et al. (2008). In
early work, many studies have manually designed hand-
crafted signal features to characterise the rPPG signals. For
example, Poh et al. (2010b; 2010a) used independent com-
ponent analysis (ICA) with RGB colour sequences to es-
timate HR signals. Similarly, some methods used chromi-
nance features reflected from the human skin (Wang, Stu-
ijk, and De Haan 2014; Wang et al. 2016). Although these
hand-crafted features have shown promising performance,
they are required to manually select region of interest (ROI),
detect and process skin-pixels signals. This is challenging
or even quixotic to be implemented in practical settings.
In recent years, deep learning methods based on CNNs
(Tulyakov et al. 2016; Hsu, Ambikapathi, and Chen 2017;
Niu et al. 2018a) have been developed to overcome such lim-
itations and they have been shown to effectively capture mi-
nor colour variations and extract rPPG signals. For example,
Niu et al. (2020a) proposed RhythmNet to transform each
video clip into a 2D feature map and fed it into a CNN to es-
timate rPPG signals. Yu et al. (2019) proposed an end-to-end
CNN model, i.e, rPPGNet to reconstruct rPPG signals from
highly-compressed videos. Lee et al. (2020) applied the con-
cept of meta-learning using 2D CNN coupled with bidirec-
tional long short-term memory to learn spatiotemporal fea-
tures and enable faster inference adaption. Moreover, Lu et
al.(2021) proposed Dual-GAN to model rPPG and noise sig-
nals to improve model robustness. The performance of these
methods, however, were dependent on the labelled training
data. Several unsupervised approaches have been proposed

to tackle this problem. Bobbia et al. (2019) introduced an
unsupervised skin selection method based on the pulsatility
feature to detect rPPG. Similarly, Condrea et al. (2020) pro-
posed an unsupervised LSTM to learn rPPG from synthetic
data.

Self-Supervised Video Representations Learning
In recent years, self-supervised video representations learn-
ing methods have achieved promising results on action
recognition task (Han, Xie, and Zisserman 2019, 2020a; Jing
and Tian 2018). For instance, Misra et al.(2016) learnt video
representations by classifying shuffled video clips. Simi-
larly, Jenni et al.(2020) generated a set of temporal trans-
formations and constructed a 3D CNN to recognise them.
The essential concept with these approaches is to use data
augmentations to learn invariant features along spatial and
temporal axes. These approaches primarily dealt with object
interactions, optical flows, synchronised audios and object
tracking. They, however, were not designed to capture the
subtle facial colour changes for estimating rPPG signals.

Data Augmentation
Spatial augmentations1 are commonly used in both super-
vised and SSL to cover a wider and diverse data distribu-
tion, and they have shown to be effective in extracting dis-
criminative image features (Shorten and Khoshgoftaar 2019;
Han, Xie, and Zisserman 2020b; Chen et al. 2020b). How-
ever, existing RPM studies (Yu, Li, and Zhao 2019; Qiu et al.
2019; Spetlik et al. 2018; Niu et al. 2018b; Chen and McDuff
2018) did not apply spatial augmentations to frames directly,
and the most close one is proposed by Niu et al. (2020b)
which horizontally and vertically flip the processed spa-
tiotemporal map (a representation to compact the 3D video
into 2D).

Motion statistics are essential in representing video infor-
mation and play a key factor on the success of action recog-
nition (Wang et al. 2019). These video dynamics are closely
related with temporal information where each action class
has a common pattern that can be observed in subsequent
frames (Jenni, Meishvili, and Favaro 2020). For instance,
many studies (Brattoli et al. 2017; Fernando et al. 2017; Lee
et al. 2017; Xu et al. 2019; Kim, Cho, and Kweon 2019)
proposed to use image frame re-ordering or optical flows
to augment temporal data. These augmentation techniques
were, however, not designed to estimate physiological sig-
nals in facial videos.

Method
RPM Representation Learning Framework
The overview of our SLF-RPM is illustrated in Fig. 1.
Suppose we have randomly sampled N raw videos from
the dataset. We first apply our sparsity-based temporal and
landmark-based spatial augmentations to generate 2N sam-
ples in total. Two augmented clips c1

′

i , c
2′

i originated from

1We also consider appearance transformation (such as colour
distortion, Gaussian blur) as spatial augmentation.
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Figure 1: Overview of our SLF-RPM. Raw videos are transformed by the sparsity-based temporal augmentation and landmark-
based spatial augmentation to generate different views which are then used in our contrastive learning. Simultaneously, pseudo-
labels derived from our augmentations are used to constrain the learning process. Positive samples are denoted by the same
subscripts and different superscripts e.g., z1i , z

2
i .

the same video vi are then fed into the video encoder to ob-
tain corresponding video features h1i , h

2
i . Both of them are

then mapped by the projection head into the space z1i , z
2
i

where contrastive loss (Chen et al. 2020a) is applied to max-
imise mutual information. These two feature vectors are re-
garded as positive samples and rest of 2(N − 1) samples
within the same mini-batch are considered as negative sam-
ples. We then generated pseudo-labels based on applied aug-
mentations of the video vi and used two classifiers (i.e., sin-
gle fully-connected (FC) layer) trained on h1i , h

2
i to identify

the transformation {s1, r1} and {s2, r2}.

Video Encoder and Projection Head
We adopted 3D ResNet architecture (Hara, Kataoka, and
Satoh 2018) as the video encoder. The 3D architecture al-
lows to learn spatial and temporal information at the same
time. Each input was converted into a flatten feature vector
h and then fed into the projection head, which is a multi-
layer perceptron (MLP) in our experiment, to obtain the fi-
nal encoded feature vector (i.e., z in Eq. 5). The projection
head is removed during the evaluation process, and the fea-
ture vector h from the video encoder is used directly as RPM
representations to make final predictions.

Preliminary Background: Skin Reflection Model
According to Shafer’s dichromatic reflection model
(DRM) (Wang et al. 2017), light source has a constant
spectral composition with varying intensities and therefore
the variation of skin reflections over the time are measured

based on body motions (specular variations) and pulse-
induced subtle colour changes (diffuse reflection) where
only diffuse reflection contains rPPG-related information.
Using DRM, we can then define the skin reflection model
for the image sequence along the time by

Ck(t) = I(t) · (vs(t) + vd(t)) + vn(t) (1)

where Ck(t) is the k-th skin pixel of RGB values; I(t) de-
notes the light intensity level from the light source which is
regulated by specular reflection vs(t) and diffuse reflection
vd(t); vn(t) is the noise from camera sensor; t is the time
step. We can further decompose vs(t) and vd(t) by

vs(t) = us · (s0 + s(t)) (2)

where us is the unit colour vector of the light spectrum, s0
and s(t) are the stationary and varying parts of specular re-
flections, i.e., s(t) captures motions.

vd(t) = ud · d0 + up · p(t) (3)

where ud denotes the unit colour vector of the skin pixel;
d0 refers to the stationary reflection strength; up refers to
the relative signal strengths in RGB channels; p(t) refers to
the rPPG signal. Given the defined notation above, we can
rewrite the Eq. 1 using Eq. 2 and 3 by

Ck(t) = I(t)·(us·(s0+s(t))+ud·d0+up·p(t))+vn(t) (4)

where our aim is to calculate p(t) from Ck(t).
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Figure 2: Illustration of landmark-based spatial augmenta-
tion. Based on detected facial landmarks, we define 7 ROI
areas {R1, R2, R3, R4, R5, R6, R7}.

Landmark-Based Spatial Augmentation
We defined two criteria for our landmark-based spatial aug-
mentation: 1) the relationship among colour channels of
each pixel needs to be considered so that any pixel value
changes (e.g., colour jitter) are not allowed; and 2) the un-
derlying colour variations among different views are similar.
From Eq. 4, the rPPG information contained in videos can
be maximised by forcing ud to dominate the equation, and
hence the diffuse reflection vd(t) can be approximated by
skin pixel value Ck(t). As such, we selected and cropped
each frame into several facial parts according to face land-
mark locations (Bulat and Tzimiropoulos 2017) as shown
in Fig 2. The selection of ROIs considers two factors: 1)
the movements of eyes and mouth are more rapid than other
parts of face which put more weights on the specular reflec-
tion vs(t) (Li et al. 2014); and 2) facial parts in the same
video with similar skin colour Ck(t) should contain similar
signals p(t). Theoretically, removal of non-facial areas fil-
ters noise from the background which reduces the weight of
vn(t) in Eq. 4. Informative selected ROIs ensure the dom-
inance of diffusion reflections vd(t) and different ROI se-
quences from the same facial video contain similar rPPG
signals which are used as positive samples (i.e., (zi, zj) in
Eq. 5) in our contrastive learning. In this paper, we define
7 ROIs including the whole face, forehead, left top cheek,
right top cheek, left bottom cheek, right bottom cheek and
chin.

Sparsity-Based Temporal Augmentation
The main idea of sparsity-based temporal augmentation is
motivated by the physical property of signals as shown in
Fig. 3, i.e., Nyquist–Shannon sampling theorem (Nyquist
1928) such that a discrete sequence of samples can recon-
struct corresponding continuous-time signal if the band-
limit B of the signal is less than the sample rate fs, i.e.,
B < 1

2fs. In our case, the Frames Per Second (FPS) can
be treated as sampling rate, and as long as the FPS is big-
ger than the Nyquist rate (i.e., 2 times of rPPG signal band-
limit), rPPG signal can be extracted from the video clip. As
such, we can use different strides to augment each video
along the time-axis. For example, the larger strides will gen-
erate lower FPSs.

Figure 3: Illustration of signal sparsity. This is an example of
1-second length signal with sampling rate of 256. The blue
line represents original signal (i.e., stride of 1), the green
dots represent data points of stride of 10, and the red dots
represent data points of stride of 20. Note that some red
points overlap with green points.

Spatiotemporal Loss with Pseudo-labels
Specific constraints such as inductive bias during model
training can help extract representative features. It effec-
tively regulates and generalise the domain information (Ar-
gyriou, Evgeniou, and Pontil 2007). As such, we introduce
a spatiotemporal loss that regulates the training process of
contrastive learning and handles complicated noise. It first
generates pseudo-labels for augmented video clips and cre-
ates two additional auxiliary classification tasks to predict
the pseudo-labels. The pseudo-labels for each of video clip
are defined based on the corresponding data augmentations.
Suppose that we have a list of ROIs {R1, ..., Rm, ..., RM}
and a list of strides {S1, ..., Sn, ..., SN}. Then, the video clip
augmented by Rm and Sn will be labelled as (m,n) which
are used as the ground truths of auxiliary classification tasks.
According to previous work (Chen et al. 2020a), the mutual
information among different views are maximised by

L[i,j] = − log
exp (sim(zi, zj)/τ)∑2N

k=0 1k 6=i exp (sim(zi, zk)/τ)
(5)

where (i, j) is a pair of positive samples, 1k 6=i ∈ {0, 1}
is an indicator function which equals to 1 iff k 6= i (i.e.,
not the feature vector itself) and τ is the temperature hyper-
parameter. Additionally, we generalise this learning by in-
troducing

La(ya, ŷa) = −
CM∑
i=1

yia log(ŷ
i
a) (6)

where ya is the predicted ROIs, ŷa is the target ROIs and
CM is the number of classes, and

Lb(yb, ŷb) = −
CN∑
i=1

yib log(ŷ
i
b) (7)

where yb is the predicted strides, ŷb is the target strides and
CN is the number of classes. Our spatiotemporal loss is the
sum of all losses as follows:

Li = L[i,j] + La + Lb (8)
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Strategy Method Dataset HR (bpm)
SD MAE RMSE R

Self-
Supervised

DPC

MAHNOB-HCI

11.76 9.16 14.54 -0.35
MemDPC 10.83 8.23 12.14 0.45

SeCo 9.48 7.03 10.21 0.67
SLF-RPM (ours) 4.58 3.60 4.67 0.92

DPC

VIPL-HR-V2

18.56 14.07 19.20 -0.45
MemDPC 18.03 13.65 18.12 0.13

SeCo 16.56 13.32 16.58 0.23
SLF-RPM (ours) 16.60 12.56 16.59 0.32

DPC

UBFC-rPPG

11.62 10.60 11.92 -0.32
MemDPC 12.42 10.85 12.81 0.25

SeCo 9.74 9.83 10.62 0.58
SLF-RPM(ours) 9.60 8.39 9.70 0.70

Supervised
Learning

DeepPhys (Chen and McDuff 2018)

MAHNOB-HCI

- 4.57 - -
STVEN + rPPGNet (Yu et al. 2019) 5.57 4.03 5.93 0.88

AutoHR (Yu et al. 2020) 4.73 3.78 5.10 0.86
Meta-rPPG (Proto+synth) (Lee, Chen, and Lee 2020) 4.90 3.01 3.68 0.85

Supervised Baseline (3D ResNet-18) 9.81 7.34 9.76 0.56
RePSS Team 1 (Li et al. 2020)

VIPL-HR-V2
- 8.50 - -

RePSS Team 5 (Li et al. 2020) - 12.00 - -
Supervised Baseline (3D ResNet-18) 16.69 12.03 16.68 0.37

POS (Wang et al. 2016)

UBFC-rPPG

10.40 4.12 10.5 -
3D CNN (Bousefsaf, Pruski, and Maaoui 2019) 8.55 5.45 8.64 -

Meta-rPPG (Proto+synth) (Lee, Chen, and Lee 2020) 7.12 5.97 7.42 0.53
Supervised Baseline (3D ResNet-18) 9.68 8.08 9.81 0.53

Table 1: Linear Evaluation and Supervised Results. The upper section of Table shows the results of SOTA SSL methods and our
SLF-RPM on three datasets. The best performing results for each dataset are underlined. The bottom section of Table shows
the results of SOTA supervised HR estimation methods and the supervised baseline (i.e., 3D ResNet-18). The best performing
results from each dataset are in bold.

Experiment Setup
Datasets We evaluated our RPM framework on HR
estimation task by three widely used public datasets:
MAHNOB-HCI (Soleymani et al. 2012), VIPL-HR-V2 (Li
et al. 2020) and UBFC-rPPG (Bobbia et al. 2019). All videos
were re-sampled into 30 FPS and frames were resized into
64 × 64, and the length of each clip was constrained into 5
seconds.

Metrics The model performance on HR estimation
(downstream task of RPM) was measured by comparing
metrics of standard deviation (SD), the mean absolute error
(MAE), the root mean square error (RMSE) and the Pear-
son’s correlation coefficient (R). During the evaluation pro-
cess, we adopt subject-exclusive test (Niu et al. 2020a), i.e.,
subjects in the training set will not appear in the testing set
for fair comparisons.

Linear Classification To evaluate the quality of extracted
rPPG representations, we followed the common linear clas-
sification protocol (Chen et al. 2020a; He et al. 2020) which
freezes the weights of self-supervised video encoder layers
and trains a subsequent FC layer on the global average pool-
ing features of the video encoder. This evaluation is also
used in our ablation studies.

Transfer Learning We firstly pre-trained SLF-RPM with-
out labels, and then fine-tuned the weights of video encoder
layers and a linear classifier with labels. We compared our

method with 3D ResNet-18 pre-trained using Kinetics-700
(Smaira et al. 2020) and VIPL-HR-V2 (i.e., largest among
three datasets) for supervised pre-training.

Augmentation Details Each video was first augmented
into two clips using the stride number randomly sam-
pled from the list {1, 2, 3, 4, 5}, and each augmented clip
was constrained to have length of 30-frame. Therefore, the
longest clip (i.e., stride of 5) contained 5-second informa-
tion, while the shortest clip (i.e., stride of 1) had 1-second
information. Frames of each clip were then cropped based
on a specific ROI by randomly selecting one from 7 pre-
defined facial areas as described in Fig. 2.

We used Adam optimiser (Kingma and Ba 2015) with de-
fault settings to update the model weights.

Results and Discussions
Linear Classification Evaluation
The results of linear classification experiment are shown
in Table 1. We re-implemented three SOTA video SSL
methods including DPC (Han, Xie, and Zisserman 2019),
MemDPC (Han, Xie, and Zisserman 2020a) and SeCo (Yao
et al. 2020). Our method had the best accuracies relative
to other SSL methods on all datasets. SeCo was the clos-
est to our method achieving MAE of 7.03 on MAHNOB-
HCI, 13.32 on VIPL-HR-V2 and 9.83 on UBFC-rPPG. We
attribute this difference to our augmentation schemes that
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Strategy Method Pre-training Dataset Fine-tuning Dataset HR (bpm)
SD MAE RMSE R

Transfer
Learning

Supervised-Pre-Training
Kinetics-700

MAHNOB-HCI 11.89 8.98 13.03 -0.07
VIPL-HR-V2 16.82 12.28 16.86 0.35
UBFC-rPPG 11.44 9.77 11.79 0.52

VIPL-HR-V2 MAHNOB-HCI 10.89 8.06 11.90 0.72
UBFC-rPPG 10.87 8.32 10.87 0.61

SLF-RPM VIPL-HR-V2
MAHNOB-HCI 10.19 6.23 10.35 0.56
VIPL-HR-V2 15.55 11.59 15.60 0.46
UBFC-rPPG 10.19 7.35 10.53 0.63

Table 2: Transfer Learning Results. This table shows model performances under different pre-training strategies. The transfer
abilities of learned representations are evaluated on three datasets. The best performing results from each dataset are in bold.

effectively captured subtle colour fluctuations on facial skin,
whereas other SSL methods are limited to learn only from
apparent motions of the objects.

Performance comparisons to the supervised methods are
also shown in Table 1. Our method on MAHNOB-HCI had a
better performance (MAE of 3.60) with a large margin than
the Supervised Baseline (MAE of 7.34) and had superior
accuracy than previous SOTA Deephys (Chen and McDuff
2018) (MAE of 4.57) and rPPGNet (Yu et al. 2019) (MAE of
4.03). The best performing supervised approach was Meta-
rPPG (Lee, Chen, and Lee 2020) (MAE of 3.01) which
used unlabelled testing samples for training (i.e., transduc-
tive meta-learning). Our method showed a competitive re-
sult with Meta-rPPG by using training samples only and
achieved higher SD of 4.58 and R of 0.92, suggesting that
our method had more consistent predictions and stronger
linear correlation between ground truth and predictions. We
suggest that our distinctive performance on MAHNOB-HCI
over supervised methods is subject to the limitations of the
dataset where: 1. number of participants in MAHNOB-HCI
is limited (i.e., 27 subjects in total); 2. videos are highly
compressed, losing subtle details that human eyes cannot
see. This was also reported from other similar work (Yu
et al. 2019). Nevertheless, our method implicitly modelled
compression-corrupted information patterns and learned ro-
bust rPPG signals in a self-supervised manner.

Our SLF-RPM on UBFC-rPPG achieved MAE of 8.39.
Supervised methods on UBFC-rPPG had better perfor-
mances than other SSL methods.This is mainly attributed
to less noise on UBFC-rPPG (uncompressed video data),
which improved overall supervised learning outcomes. Nev-
ertheless, SLF-RPM reduced the performance gap with Su-
pervised Baseline (MAE of 8.08) to MAE of 0.31.

The performances of all the methods on VIPL-HR-V2
were reduced in comparison to other two datasets. This
is because VIPL-HR-V2 has more complex video condi-
tions. Nonetheless, our method (MAE of 12.56) success-
fully closed the performance gap with the best supervised
approach RePSS Team 1 (Li et al. 2020) (MAE of 8.5) and
had competitive accuracy with Supervised Baseline (MAE
of 12.03).

Transfer Learning
We evaluated the transferable ability of rPPG features ex-
tracted by SLF-RPM. The results of the transfer learning are

shown in Table 2. Our results indicate that the SLF-RPM
improved the estimation of HR when it was used to pre-
train CNNs for subsequent supervised fine-tuning. When the
available dataset is limited, SLF-RPM can be used as the
self-pre-training strategy (i.e., pre-train and fine-tune on the
same dataset). This enabled faster adaption for rPPG feature
extraction such that MAE was reduced to 11.59 on VIPL-
HR-V2 dataset. Moreover, it was most effective when SLF-
RPM was applied to pre-train using the largest VIPL-HR-V2
dataset. The performance of Supervised Baseline was im-
proved from MAE of 7.34 to 6.23 on MAHNOB-HCI and
from MAE of 8.08 to 7.35 on UBFC-rPPG dataset.We sug-
gest that our self-supervised pre-training acted as an initial-
isation point for effective supervised fine-tuning, which im-
proved the feature representation of rPPG signals.

In contrast, model pre-trained on Kinetics-700 bench-
mark, commonly used in action recognition task, degraded
HR estimation performance (MAE of 8.98 on MAHNOB-
HCI, 12.28 on VIPL-HR-V2 and 9.77 on UBFC-rPPG)
compared with the baseline model due to the hard domain
shift between tasks. Moreover, we evaluated the model pre-
trained with labels using VIPL-HR-V2 and achieved MAE
of 8.06 on MAHNOB-HCI and 8.32 on UBFC-rPPG. This
demonstrates that our self-supervised pre-training strategy
was better at characterising the RPM features than that of
supervised pre-training methods.

Ablation Studies
Landmark-based Spatial Augmentation We compared
our landmark-based spatial augmentation with 5 other com-
mon data augmentation techniques. We applied these tech-
niques to the whole face area (i.e.,R1 of the pre-defined ROI
list) and used stride of 1 to avoid temporal augmentation ef-
fects. As shown in Table 3, our landmark-based spatial aug-
mentation had the best MAE score of 5.12. Our results show
that the whole face ROI (R1) was effective in model training,
which improved MAE from 7.98 to 5.12. Among the stan-
dard augmentation techniques, Random Crop and Resize had
the best result with MAE of 6.74. Random Grayscale had
the worst performance with MAE of 10.66. The combina-
tion of all 5 techniques (standard paradigm in simCLR(Chen
et al. 2020a)), in fact, reduced the performance giving MAE
of 9.54. One possible reason is that although appearance
transformations prevent the model from using colour his-
togram shortcut (Chen et al. 2020a) to distinguish different
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Method HR (bpm)
MAE

Random Crop and Resize 6.74
Random Horizontal Flip 6.99

Colour Jitter 8.11
Random Grayscale 10.66

Gaussian Blur 9.81
Combined Above 5 Augmentations 9.54
{R2, R3, R4, R5, R6, R7} 7.98
{R1, R3, R4, R5, R6, R7} 6.51
{R1, R2, R4, R5, R6, R7} 7.03
{R1, R2, R3, R5, R6, R7} 7.15
{R1, R2, R3, R4, R6, R7} 6.45
{R1, R2, R3, R4, R5, R7} 5.82
{R1, R2, R3, R4, R5, R6} 6.72
{R1, R2, R3, R4, R5, R6, R7} 5.12

Table 3: Ablation on spatial augmentation. We compared
different spatial augmentations and evaluated the impact of
each ROI. The best result is in bold.

views, signal-related information contained in colour chan-
nels can be also distorted. Another reason could be that geo-
metric transformations cannot guarantee augmented inputs
are valuable. They may introduce signal noise by includ-
ing non-facial areas (Li et al. 2014). Overall, our landmark-
based spatial augmentation outperformed standard spatial
augmentation techniques by a large margin for the task of
HR estimation.

Sparsity-based Temporal Augmentation We evaluated
the effectiveness of our sparsity-based temporal augmenta-
tion compared to different standard temporal augmentation
techniques(Qian et al. 2020; Jenni, Meishvili, and Favaro
2020), and use whole face R1 to avoid spatial augmentation
effects. As shown in the bottom part of Table 4, our sparsity-
based temporal augmentation follows the Nyquist-Shannon
sampling theorem and showed the larger sparsity ranges had
under-sampling issue that negatively affect the learning out-
come since sparsity range {1,2,3,4,5,6} had worse MAE of
5.92 than the best performing range {1,2,3,4,5} with MAE
of 5.28. However, we also noted that we need some enough
sparsity (e.g., {1,2,3,4,5}) to have stronger data transforma-
tion compared with smaller range {1,2,3,4} achieving MAE
of 6.21.

Nevertheless, the proposed sparsity-based temporal aug-
mentation generally outperformed other augmentation tech-
niques. Among these four standard temporal augmentations,
Random Temporal Interval had the best result with MAE of
5.74 and we attribute this to its ability to characterise the
periodic cycle of blood volume changes on facial skin. Pe-
riodic had the worst MAE score of 7.31 due to the distorted
rPPG signals.

Effect of Spatiotemporal Loss with Pseudo-labels To
validate the effectiveness of our spatiotemporal loss, we
compared the model performance under two different sce-
narios, i.e., with and without pseudo-labels integration.
From Table 5, our model, by additionally assigning two clas-
sification tasks, improved the overall performance achieving

Method HR (bpm)
MAE

Random Temporal Interval 5.74
Random Permutation 7.18

Periodic 7.31
Warp 7.22

Sparsity range from {1, 2, 3, 4} 6.21
Sparsity range from {1, 2, 3, 4, 5} 5.28

Sparsity range from {1, 2, 3, 4, 5, 6} 5.92

Table 4: Ablation on temporal augmentation. We compared
with 4 standard temporal augmentation techniques. The best
result is in bold.

Method HR (bpm)
MAE

SLF-RPM without pseudo-labels 4.25
SLF-RPM with pseudo-labels 3.6

Table 5: Ablation on spatiotemporal loss with pseudo-labels.
We compared model performance with and without pseudo-
labels integration. The best result is in bold.

the MAE of 3.6. We suggest that this is because pseudo-
labels enabled better characterisation of complicated ROIs
and subtle temporal changes (i.e., noise).

Conclusion
We present a SSL framework for RPM by introducing novel
landmark-based spatial augmentation, sparsity-based tem-
poral augmentation and spatiotemporal loss. Our results
showed that the SLF-RPM significantly outperformed other
SSL methods and achieved a competitive accuracy com-
pared to other supervised methods on HR estimation task.
The superior transfer ability of learnt RPM representations
using SLF-RPM demonstrates that it can be used as an ef-
fective pre-training strategy for many facial video analysis
tasks.
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