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Abstract

Physical adversarial attacks in object detection have attracted
increasing attention. However, most previous works focus on
hiding the objects from the detector by generating an indi-
vidual adversarial patch, which only covers the planar part of
the vehicle’s surface and fails to attack the detector in phys-
ical scenarios for multi-view, long-distance and partially oc-
cluded objects. To bridge the gap between digital attacks and
physical attacks, we exploit the full 3D vehicle surface to pro-
pose a robust Full-coverage Camouflage Attack (FCA) to fool
detectors. Specifically, we first try rendering the non-planar
camouflage texture over the full vehicle surface. To mimic
the real-world environment conditions, we then introduce a
transformation function to transfer the rendered camouflaged
vehicle into a photo-realistic scenario. Finally, we design an
efficient loss function to optimize the camouflage texture. Ex-
periments show that the full-coverage camouflage attack can
not only outperform state-of-the-art methods under various
test cases but also generalize to different environments, vehi-
cles, and object detectors.

Introduction
Over the past years, deep neural networks (DNNs) have
achieved tremendous success in computer vision tasks.
However, DNNs are found vulnerable to adversarial exam-
ples (Szegedy et al. 2013), which are elaborately designed to
mislead DNNs to make incorrect predictions. As a new secu-
rity issue in artificial intelligence, adversarial attacks appeal
the attraction from both academics and industry.

Adversarial attacks can be divided into two categories by
their applicable domains: 1) digital attacks directly add im-
perceptible perturbations to pixels of input images in the
digital space (Szegedy et al. 2013), while 2) physical at-
tacks modify objects in the real-world environment or phys-
ical simulators (Chen et al. 2018; Sharif et al. 2016; Kurakin
et al. 2017; Lu, Sibai, and Fabry 2017; Athalye et al. 2018)
to investigate whether the perturbations are physically real-
izable and can stay adversarial under different transforma-
tions. In this paper, we mainly concentrate on the latter as
it is a more direct threat to visual systems in the physical
world.
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Figure 1: (a) is a car without camouflage. (b) is a cam-
ouflaged car by placing a planar adversarial patch in front
of the car (Thys, Van Ranst, and Goedemé 2019). (c) is a
camouflaged car by placing an adversarial patch over the
rooftop, hood and doors (Wang et al. 2021a). (d) is a the
camouflaged car by repeating an adversarial pattern (Zhang
et al. 2018). (e) shows the camouflaged car generated by
FCA, which is undetected.

Recently, adversarial attacks on object detection have at-
tracted increasing attention, particularly in physical attacks
due to complex physically realizable constraints (e.g., non-
planar object surface) and environmental conditions (e.g.,
lighting, viewing angles, camera-to-object distances and oc-
clusions) (Elsayed et al. 2018). There are mainly two kinds
of methods to modify the visual characteristics of the real
object: patch-based and camouflage-based. Patched-based
methods try to perform physical adversarial attacks by gen-
erating adversarial patches (Brown et al. 2017), which con-
fine the noise to a small and localized patch without per-
turbation constraint. A patch is often stuck to a planar ob-
ject(e.g., STOP sign (Eykholt et al. 2018)) or placed in front
of the object(e.g., person (Thys, Van Ranst, and Goedemé
2019)) or placed in the background (Lee and Kolter 2019).

Camouflage-based method is implemented by modify-
ing the target object itself and is more challenging due to
the non-planarity of 3D objects. There are two ways to paint
the camouflage: one way is to optimize an adversarial pat-
tern and repeat the patterns as a whole camouflage to paint
on the vehicle’s surface using a physical non-differentiable
renderer (Zhang et al. 2018; Wu et al. 2020a), while another
way is to optimize the texture (Zeng et al. 2019; Wang et al.
2021a) or the shape (Xiao et al. 2019) of the 3D vehicle di-
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rectly with a differentiable neural renderer.
However, existing methods are not robust to specific phys-

ical scenarios, especially for multi-view, long-distance and
partially occluded objects. Firstly, a patch is often stuck to
a planar object, so patch-based methods are not suitable and
robust for attacking vehicle detectors over 3D vehicles as
shown in Figure 1(b). Secondly, previous camouflage-based
methods (Huang et al. 2020; Wang et al. 2021a) paint the
adversarial camouflage only on the part of the 3D vehicle
model, e.g., the rooftop or side doors, which limits the at-
tack capability in multi-view scenarios when partial adver-
sarial camouflage is not visible, as shown in Figure 1(c). Be-
sides, (Wang et al. 2021a) is not competitive for attacking
detectors because they aim to exploit the common charac-
teristic (e.g., model’s attention) among models and mainly
focus on classifiers. Thirdly, previous “full-coverage” cam-
ouflaged methods (Zhang et al. 2018; Xiao et al. 2019; Wu
et al. 2020a) generate an individual adversarial pattern and
repeat the pattern until covering all the vehicle surface (i.e.,
as shown in Figure 1(d)), which is essentially an adversarial
image patch optimization. The camouflaged vehicles with
image pattern may fail to attack the objectors for multi-view
and long-distance scenarios.

To address the aforementioned problems, we propose
an end-to-end Full-coverage Camouflage Attack (FCA)
pipeline. Specifically, we first treat the adversarial camou-
flage as the texture of the 3D vehicle and utilize a neural
renderer to paint the texture onto the full surface of vehi-
cle. Then, we apply a transformation function to convert the
rendered 3D vehicle into different environment scenarios to
get photo-realistic images. And finally, we model the gener-
ation of the camouflage texture as an optimization problem
by designing an efficient loss function. With such generated
adversarial camouflage, the painted vehicle can stay adver-
sarial in physical scenarios for multi-view, long-distance and
partially occluded objects.

In summary, our main contributions list as follows.

• We bridge the gap between digital attacks and physical
attacks via a differentiable neural renderer. We overcome
the partial occluded and long-distance issues by painting
the adversarial camouflage onto the full vehicle surface.

• An end-to-end physical adversarial attack was proposed
to generate a robust adversarial camouflage.

• Extensive experiments demonstrate that our method out-
performs the existing methods and generalizes to differ-
ent environments, vehicles, and object detectors. In addi-
tion, our camouflage can be easily painted or overlaid in
the real world and seems natural to humans.

Related work
In this section, we first review the physical adversarial at-
tacks in object detection. And then we briefly introduce the
neural renderer.

Physical Adversarial Attack
According to the implementation methods, the attacks can
be briefly divided into patch-based and camouflage-based.

The patch-based attacks aim to generate an universal im-
age patch (Brown et al. 2017), and several transformations
(Huang et al. 2020) were adopted to ensure the transferabil-
ity. (Zhang et al. 2018) devised a clone network to simulate
the process of physical rendered to object predicted, they
update the camouflage patch by performing the white-box
attack on the clone network. Similarly, (Wu et al. 2020a)
proposed a query-based discrete searching algorithm to gen-
erate an adversarial patch, and then repeated and enlarged
the patches until they covered the vehicle surface. Although
these attacks achieve certain success, their attacking ability
deteriorates when applied to the complex physical world.

The camouflage-based attacks aim to modify the shape or
texture of the 3D object. In this category, (Xiao et al. 2019)
utilized a neural renderer to modify the shape and texture of
the textureless object directly, the final result is an adversar-
ial object. Recently, (Wang et al. 2021a) proposed a dual at-
tention suppress attack, which suppresses the attention map
of the target object in the detection model. To maintain the
naturalness of the camouflage (i.e., human attention eva-
sion), they constrain the perturbation only around the con-
tent seed. In this paper, we paint the texture of the 3D vehi-
cle similarly as (Wang et al. 2021a), however, we find their
adversarial camouflage is not robust for multi-view, long-
distance and partially occlusions, for which they constrained
the camouflage area to the rooftop, hood and car doors. We
solve the issue mentioned above with full-coverage (except
the glass, tire, lights) camouflage texture.

Neural Renderer
Traditional renderer is commonly used in 2D-to-3D trans-
formation, one of the applications is to wrap the texture im-
age to the 3D model, which then is rendered to the 2D image.
To make the rendering process differentiable, (Kato, Ushiku,
and Harada 2018) proposed an approximate gradient for ras-
terization to enable the integration of rendering into neural
networks, which is referred as neural renderer. Initializing
with different camera parameters (i.e., rotation and loca-
tion), one could render the 3D object model (consisting of
mesh and texture) under different view angles. (Zhang et al.
2018) and (Wu et al. 2020a) utilized the CARLA (Dosovit-
skiy et al. 2017) simulator to render the adversarial patch
onto 3D object, which is non-differentiable. (Xiao et al.
2019) used the neural renderer to modify the shape and tex-
ture of 3D objects. Following (Wang et al. 2021a), we utilize
the neural renderer to paint our adversarial camouflage onto
the vehicle surface.

Method
In this section, we first introduce the preliminaries. Then we
describe the proposed end-to-end physical camouflage ad-
versarial attack in detail.

Preliminaries
Given a vehicle training set (X,Y, θc) where X, Y and θc are
the sampled images, ground truth labels of the target vehicle
and the corresponding camera parameters (i.e., transforma-
tion and location) respectively, a 3D vehicle model with a
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Figure 2: The overview of FCA. Our training set contains the images sampled from the photo-realistic simulator under different
simulation settings. We first utilize a pretrained image segmentation network to fetch the target vehicle and binary it as a mask.
Meanwhile, we render the camouflage texture onto the surface of the vehicle with the same simulation setting and obtain
the camouflaged 2D vehicle. Next, we utilize a transformation function to transfer the camouflaged vehicle into the different
physical scenarios with the corresponding mask. Finally, we update the adversarial camouflage through backpropagation with
our devised loss function.

mesh M and a texture T, we use a renderer R with cam-
era parameter θc to obtain the rendered 2D vehicle image
O = R(M,T; θc),O ∈ RH×W×3. To mimic the phys-
ical real world, we devise a transformation function Φ to
transfer the rendered vehicle image to different environment
scenarios, and then obtain the input image I ∈ RH×W×3

of the detector. Now, we can obtain the detection result
b = F(I; θf ) = (bx, by, bw, bh, bobj , bcls), where F is the
object detector with parameters θf , bx and by are the cen-
ter coordinates of the prediction bounding box (i.e., bbox),
bh and bw indicates the height and width of the prediction
bbox, bobj is confidence score that the bbox contains an ob-
ject, bcls is the class probability distribution of the object in
the bbox, bcls ∈ [1, 80] in COCO (Lin et al. 2014).

Our attack scheme is to generate the adversarial camou-
flage texture, which can be painted on the surface of the 3D
vehicle model. The target vehicle category we select is “car”
due to the real-time vehicle surveillance is widely used in
daily life. Note that our attack target object is only one spe-
cific car in the scenario. To realize the adversarial camou-
flage attack, we replace the origin texture T with adversarial
texture Tadv , and obtain the corresponding adversarial im-
age Iadv with transformation function Φ. We aim to hide the
target vehicle under the detector F . We treat the adversar-
ial texture generation as an optimization problem, and our
objective function is expressed as follows

T∗
adv = arg max

Tadv

J(F(Φ(R(M,Tadv; θc)); θf ),Y) (1)

where T∗
adv is the final adversarial texture, J(·, ·) is the

loss function. By solving the above optimization problem,
i.e., Eq 1, we can obtain the ultimately adversarial camou-
flage texture.

Generating Adversarial Camouflage
To generate full-coverage adversarial camouflage, we pro-
pose an adversarial camouflage texture generation frame-
work with a differentiate neural renderer, which can render
the customized texture onto the 3D vehicle model directly.

The overall framework of FCA is illustrated in Figure 2, our
goal is to generate a robust camouflage texture through the
backpropagation of loss.

To this end, the loss function plays a vital role in optimiz-
ing. In this work, we devise the loss function considering
two key aspects: adversarial loss to guarantee the attacking
ability. smooth loss to make the digital-physical difference
caused by camouflage more natural. We will discuss these
losses in the following sections.

Adversarial Loss In this work, we use YOLO-V3 as the
target detection model F , in other words, we train the ad-
versarial texture with a known model under white-box at-
tack setting. It’s well known that YOLO-V3 is a single-stage
detector, which makes classify and regression in a single
step with dense sampling. Thus it is necessary to take ac-
count of attacking both regression and classification simul-
taneously. After analyzing the loss function of YOLO-V3,
we use the following three-loss terms: Liou

adv,L
obj
adv,Lcls

adv . To
make the detector incorrectly detected or undetected, we first
reduce the intersection over union (IoU) between the predic-
tion bbox and ground truth bbox to suppress the region of the
target prediction bbox, which is denoted as Liou

adv . Then we
reduce the objectness score that indicates whether the pre-
diction bbox contains an object by minimizing the object-
ness confidence. We denote this loss as Lobj

adv . Finally, to at-
tack the classification, we select the probability of the target
object and minimize it, which is denoted as Lcls

adv . Therefore,
our final adversarial loss Ladv is constructed as follow

Ladv = αLiou
adv + βLobj

adv + γLcls
adv (2)

where α, β, γ are the weights to balance the contribution
of each loss term. Then we will exhaustively introduce each
loss term of adversarial loss in the following.
• IoU loss Liou

adv represents the overlap area between the
ground truth label and the prediction result of the rendered
images. One can obtain a high IoU value with a trained de-
tector at the inference stage. By minimizing the Liou

adv , we
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can suppress the prediction bbox of the target region. Con-
sequently, the target object is filtered by the detector as the
IoU below the threshold. Thus, our Liou

adv is formulated as
follows

Liou
adv =

N∑
i

IoU(bi, bigt) (3)

where N denotes the multi-scale (i.e., N=3) output predic-
tion result of the YOLO-V3, bi and bigt is the i-th scale pre-
diction result and corresponding ground truth bbox of our
attack target, respectively.
• Objectness loss Lobj

adv represents the confidence score
whether the detection box contains an object. We follow
(Thys, Van Ranst, and Goedemé 2019; Wang et al. 2021b)
and choose the object confidence score to as our Lobj

adv .
• Classification loss Lcls

adv represents the classification
probability of the target class, i.e., car. Specifically, we select
the i-th scale probability of the target class t in the detection
result, denoting it as biclst . Finally, the classification loss can
be expressed as

Lcls
adv =

N∑
i

biclst (4)

Smooth Loss To ensure the naturalness of the generated
adversarial camouflage, we follow (Sharif et al. 2016) to
utilize the smooth loss that introduced by (Mahendran and
Vedaldi 2015) to reduce the inconsistent among adjacent
pixels. For a rendered vehicle image painted with adversar-
ial camouflage Iadv , the calculation of smooth loss can be
written as
Lsmooth =

∑
i,j

(xi,j − xi+1,j)
2 + (xi,j − xi,j+1)2 (5)

where xi,j is the pixel value of Iadv at coordinate (i, j).

Physical Transformation
Previous work (Wang et al. 2021a) painted the camouflage
on the vehicle through tensor addition, i.e., the rendered
camouflaged vehicle image pixels are directly added to the
sampled image containing the original vehicle, which makes
it difficult to get convergence during training. Instead, we in-
troduce a simple but efficient approach to substitute the ten-
sor addition. Specifically, we use a segmentation network
U to crop the background from the original photo-realistic
image and obtain a binary mask m ∈ RH×W×1 where the
target vehicle areas are set to 1, the background areas are set
to 0. With such a mask, we can obtain the adversarial exam-
ple Iadv by transferring the rendered vehicle image O into
photo-realistic environment scenario. The transformation Φ
can be expressed as follow

Iadv = Φ(O) = m ·O + (1−m) · I (6)
where · denotes the pixel-wise multiplication. Note that, we
preserve the location and rotation information during the
sampling stage of the photo-realistic images, thus the ren-
dered vehicle has the identical orientation as the vehicle in
the sampled image.

Algorithm 1: Full-coverage Camouflage Attack (FCA)
Input: training set (X,Y, θc), 3D model (M, T), neural ren-
dererR, object detector F , segmentation network U
Output: adversarial texture Tadv

1: Initial Tadv with random noise
2: for the max epochs do
3: select the minibatch sample from training set

(X,Y, θc)
4: m← U(X)
5: O←R((M,Tadv); θc)
6: Iadv ←m ·O + (1 - m) · I
7: b←F(Tadv; θf )
8: calculate L by Eq 7
9: update Tadv with gradient backpropagation

10: end for

Optimization Process
Overall, we obtain the adversarial camouflage texture by
jointly minimizing the adversarial lossLadv and smooth loss
Lsmooth. Consequently, our optimization objective can be
summarized as

Ltotal = Ladv + µLsmooth (7)
Algorithm 1 summarize the overall training scheme of the

presented approach.

Experiments
In this section, we first describe the experimental settings.
Then we empirically show the effectiveness of the proposed
full-coverage camouflage by providing thorough evaluations
in different simulation environments.

Experimental Settings
Datasets To bridge the gap between digital attacks and
physical attacks, we utilize the photo-realistic datasets to
perform the experiments. To this end, we select the simu-
lator CARLA (Dosovitskiy et al. 2017), a prevalent open-
source simulator for autonomous driving research, as our
3D simulator. The CARLA simulator provides a variety of
high-fidelity digital scenarios (e.g., modern urban) based on
Unreal Engine 4. To compare with previous works, we use
the same datasets provided by (Wang et al. 2021a) directly,
the training set consists of 12,500 high-resolution images,
while the testing set has 3,000 high-resolution images. The
datasets contain images that are sampled from different view
angles and distances.

Evaluation Metrics We aim to generate false negatives
and hide the target vehicle from the detector. To this end,
the first evaluation metric that we select is the Attack Suc-
cess Rate (ASR) (Wu et al. 2020b), which is defined as the
percentage of the target vehicles detected before perturba-
tion and not detected or false detected after perturbation. In
addition, we adopt the P@0.5 following (Zhang et al. 2018;
Wang et al. 2021a) as our second evaluation metric, which
is defined as the percentage of the correct detected when the
detection IoU threshold is set to 0.5.
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Method P@0.5(%)
YOLO-V5 Faster RCNN SSD Mask RCNN

Raw 92.07 86.04 81.54 89.24
MeshAdv 72.45 71.84 66.44 80.84
CAMOU 74.01 69.64 73.81 76.44

UPC 82.41 76.94 74.58 81.97
DAS 72.58 62.11 68.81 70.21

DAS-full 60.52 51.43 49.93 52.07
Ours 32.07 34.00 28.67 30.80

Table 1: The comparison result of adversarial attacks in the
digital space.

Implementation details We choose a widely used de-
tector, YOLO-V3 (Redmon et al. 2016), as our white-box
model to train the adversarial camouflage texture. And we
evaluate the transferring attack performances (black-box at-
tack) on the following prevalence object detection models:
YOLO-V5 (Jocher et al. 2021), SSD (Liu et al. 2016), Faster
R-CNN (Ren et al. 2015), and Mask R-CNN (He et al.
2017). These models are all pretrained on COCO dataset
(Lin et al. 2014). Note that, in our experiments, these models
are the official implementation version provided by PyTorch
(Paszke et al. 2019) except SSD 1.

The adversarial camouflage texture is initialized as ran-
dom noise, and the Adam with default parameter is adopted
as the optimizer. The hyperparameters are set as follows, the
learning rate is 0.01, the max epoch is 5. For α, β, γ, we use
the default value 0.05, 1.0, 0.5, respectively, provided by the
YOLO-V3 implementation. We follow (Wang et al. 2021a)
to set the µ to 1.0. Note that, we also find that hyperparam-
eter α, β, γ, µ has a limited impact on our performance in
our preliminary experiment. The segmentation network used
to extract the background from the photo-realistic image is
U2-Net (Qin et al. 2020). We conduct the experiment on a
NVIDIA RTX 3090 24GB GPU cluster.

Digital Adversarial Attack
In this section, we evaluate the performance of adversarial
camouflage in the digital space. We report the P@0.5 for the
detection of the target vehicle.

We compare the proposed attacks with several current ad-
vanced adversarial camouflage attacks, including MeshAdv
(Xiao et al. 2019), CAMOU (Zhang et al. 2018), UPC
(Huang et al. 2020), DAS (Wang et al. 2021a). In order to
fairly compare our attack with DAS attack, we reimplement
the DAS attack with full-coverage camouflage, which de-
notes as “DAS-full”.

The comparison results are listed in Table 1. Note that, we
adopt the results reported in (Wang et al. 2021a) because our
test set and detectors are identical. As illustrated in Table 1,
our adversarial camouflage significantly outperforms other
methods over all the detectors. Specifically, on the one side,
the maximum drop of P@0.5 by 60% on YOLO-V5, the
minimum drop of P@0.5 by 52.04% on Faster RCNN, the
average drop is 56.02%, which demonstrate that our attack
could successfully paralyze the vehicle detection system. On

1https://github.com/lufficc/SSD
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Figure 3: The detection result of the vehicle under different
view angles before and after our attack. After being painted
with our camouflage, the target “car” turns to be incorrectly
detected or undetected.

the other side, in our experiments, Faster RCNN shows bet-
ter robustness (i.e., lower performance decline) than other
baseline detectors, probably due to some modules in Faster
RCNN that are robust to the appearance change of the ob-
ject. Finally, despite DAS use a similar full-coverage camou-
flage (i.e., DAS-full), our attack still outperforms the DAS,
which suggests that our proposed loss function is more suit-
able for attacking object detection.

We provide some adversarial camouflage vehicle exam-
ples in different scenarios. As illustrated in Figure 3, the
vehicle before painted with adversarial camouflage is de-
tected as a car with high detection confidence. However, af-
ter painted with our adversarial camouflage texture, the ve-
hicle is detected as other categories, even “disappear” un-
der the detector. To show the effectiveness of our adversarial
camouflage in realizable applications, we provide more di-
verse examples here2.

Physical Adversarial Attack
In this section, we evaluate the performance of adversarial
camouflage in the physical space. We report the P@0.5 for
the detection of the target vehicle.

For simplicity, we compare one partially camouflage at-
tack(i.e., DAS) and two full-coverage camouflage attacks
(i.e., CAMOU and DAS-full). Due to the limitation of
founds and conditions, we follow (Wang et al. 2021a) to
print our adversarial camouflages by an HP Color Laser
MFP 179fnw printer and crop the camouflage part, then stick
them on a toy car with different backgrounds to mimic the
real car painting in the physical world. To show the effi-
ciency of our adversarial camouflage under different scenar-
ios, we capture 144 pictures of the painted car on different
settings (i.e., 8 directions ( 45◦ / 360◦), 3 distances long,
middle, and short distance, 3 different surroundings) with a
Redmi K20 Pro phone.

The evaluation results are list in Table 2. Compared
with other methods, the FCA can transfer to the physical
world well, we get 65.28% on YOLO-V5, 24.31% on SSD,

2https://idrl-lab.github.io/Full-coverage-camouflage-
adversarial-attack/
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Method P@0.5(%)
YOLO-V5 Faster RCNN SSD Mask RCNN

Raw 100 88.89 78.47 96.53
CAMOU 72.22 44.44 40.97 53.48

DAS 100 65.28 52.08 68.06
DAS-full 94.44 43.06 43.75 45.83

Ours 65.28 24.31 29.17 29.17

Table 2: The comparison result of adversarial attacks in the
physical space.

Figure 4: The results of attacking toy cars.

29.17% on Faster RCNN, 29.17% on Mask RCNN, respec-
tively. That indicates that FCA can pose more potential risks
for the detection systems in the real world. Moreover, all
the full-coverage adversarial camouflages are better than the
partial coverage adversarial camouflage, which is consistent
with our analysis that the performance of existing adversar-
ial camouflage attacks degrades due to multi-view or par-
tially occlusion scenarios. However, the Mask RCNN shows
the worst robustness (maximum drop in P@0.5). While
the YOLO-V5 shows the best robustness against adversar-
ial camouflage, which may be attributed to the special de-
sign that makes it more suitable for real-world application.
Despite this strong model, our FCA method can also de-
grade the detection performance in a large marginal, which
demonstrated that our adversarial camouflage has a strong
transferable attacking ability in the physical world. In ad-
dition, we provide the generated adversarial camouflages in
Figure 4.

Multi-view Robust Attack
Robustness of Long Distance To demonstrate the ro-
bustness of our adversarial camouflage in multi-view and
long-distance scenarios, we conduct extensive experiments.
Specifically, in the experiment, the camera distance we used
includes [1.5, 3, 5, 10, 15, 20], the camera elevation we used
includes [0, 10, 20, 30, 40, 50] (0 indicates that the camera
and the vehicle are parallel). We sample an image every 3◦

a time in 360◦. For a fixed combination of camera distance
and elevation, we obtain 120 images, and collect 4320 test
images in total. To better illustrate the result, we regroup
the rendered image test set in terms of azimuth ranges (i.e.,
every 45◦ azimuth) and camera distances, then every group
has 90 test samples with various camera elevation, in other
words, every item in Table 3 is conducted on different 90

Azimuth (◦) Distance
1.5 3 5 10 15 20

0 ∼ 45 100 100 84.27 68.6 80.85 100
45 ∼ 90 95.83 93.33 88.89 81.82 90.2 100
90 ∼ 135 100 100 88.31 87.5 94.92 100
135 ∼ 180 100 100 84.44 71.11 78.57 87.5
180 ∼ 225 100 100 95.51 92.22 88.24 100
225 ∼ 270 100 100 98.65 88.57 95.65 100
270 ∼ 315 100 100 92.96 86.96 95.65 100
315 ∼ 360 100 100 94.44 74.44 83.33 100

Table 3: The ASR (%) performance for multi-view and
multi-distance attack.

Occlusion Distance
1.5 3 5 10

small 100 100 62.22 62.68
middle 98 92.05 78.89 77.14
large 96 97.62 72.86 78.57

Table 4: The ASR performance for partially occluded ob-
jects for different distances.

test images. Note that to better evaluate the view angles and
distances without considering different background environ-
ments, we use the rendered images O (pure background) di-
rectly for simple implementation. We use YOLO-V5 to eval-
uate the test images as other detectors exhibit similar trends.

The results are listed in Table 3. We can observe that we
achieve 100% ASR in a majority of cases where the dis-
tance is among 1.5, 3 and 20. Meanwhile, we find that along
with the distance increase, the ASR first prone to decrease
at the distance of 10, after that the trend of ASR prone to in-
crease. By contrast, the images sampled at distance of 5, 10
and 15 are hard to attack, which demonstrates the detector is
more robust for such settings. Nevertheless, our adversarial
camouflage can achieve nearly perfect performance without
retrained on the rendered images O, which demonstrate that
the generated adversarial camouflage has well transferability
across different domain datasets.

Robustness of Partial Occlusion We also investigate the
robustness of our attack when the adversarial camouflage is
partially occluded. According to the area of the occluded
camouflage, we group the partial occlusion into small occlu-
sion, middle occlusion and large occlusion. Specifically, we
define the large, middle and small partial occlusion as the
≥ 70%, 30% ∼ 70%,≤ 30% of car body is occluded, re-
spectively. In this experiment, We only use the [1.5, 3, 5, 10]
camera distances due to the occluded rendered object is too
small when the camera distance exceeds 10. For each group
and a given camera distance, we collect 90 test images, and
totally collect 1080 test images .We use the YOLO-V5 as
our evaluation model.

Results are listed in Table 4. As we can see the generated
camouflage works well at 1.5 and 3 camera distances, partic-
ularly in a small occlusion (ASR achieve 100%), which is at-
tributed to the ratio of rendered images as well as the camou-
flages are relatively large. On the other hand, when the cam-
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Figure 5: The case of occlusion vehicle before and after our
attack. After being painted with our camouflage, the detector
incorrectly detected or not detected the “car”.

era distance exceeds 5, the performance degrades sharply,
the possible reason is that the rendered object in images
is a very small object and the camouflage being occluded
further leads to performance decreasing. We provide some
partial occlusion cases in Figure 5, which demonstrated our
adversarial camouflage works well for most partial occlu-
sion scenarios. Our camouflage is more robust for occlusion
when the camera distance is less than 3, while the robust-
ness trends to degrade when the camera distance increases.
In conclusion, our generated adversarial camouflage is ro-
bust to different levels of partial occlusions.

Enhance the Transferability
It has been proved that transferability of adversarial exam-
ples can benefit from hard examples (Liu et al. 2020; Xie
et al. 2019). Thus, we argue that the transferability of our
camouflage can be further enhanced with hard examples.
To this end, we define the attack failure examples as hard
examples, then we collect them across the different detec-
tors, and utilize the YOLO-V3 to fine-tune the adversarial
camouflage texture on hard examples. Note that, the ratio of
hard examples for YOLO-V5, Faster RCNN, Mask-RCNN,
SSD is 17.1%, 29.43%, 27.71%, 17.38%, respectively. And
the number of the enhanced dataset is 4932.

The updated results are listed in Table 5, the row indi-
cates the detector that used to generate failure examples and
the column indicates the re-evaluated results with fine-tuned
hard examples. The diagonal entries of the table indicate the
detector used to collect failure examples and re-evaluate is
identical. From the table, we can observe that hard exam-
ples can enhance the transferability of the adversarial cam-
ouflage, we obtain 2.43% gain for YOLO-V5 itself. How-
ever, we also notice that the hard examples are not always
effective, the ASR on Faster RCNN and Mask RCNN of all
fine-tuning adversarial textures even degrades compared to
unenhanced results. To explain this phenomenon, we analy-
sis the collected hard examples, and find the union of these
hard examples achieves 41.1% of the training set, while the
intersection of these hard examples is nearly 0%. The rea-
son may attribute to the different architecture of the detec-
tor, some failure examples collected by four detectors may
still successfully attack YOLO-V3 during fine-tuning, which

Method ASR(%)
YOLO-V5 Faster RCNN SSD Mask RCNN

unenhanced 87.67 72.11 78.42 75.16
YOLO-V5 90.1 71.35 79.17 73.99

Faster RCNN 88.92 70.8 79.65 74.06
SSD 86.97 70.04 78.06 73.17

Mask RCNN 89.8 70.44 79.43 74.13

Table 5: The ASR on four detectors where we retrain the
camouflage texture on different hard examples extracted by
various detectors. The diagonal entries indicate retrained and
evaluated on the same detector, while the off-diagonal en-
tries indicate the transfer attack.

means such hard examples are helpless for improving trans-
ferability.

Interpretability of the Adversarial Camouflage
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Figure 6: The attention map of the vehicle before and after
our attack. After painting our full-coverage camouflage, the
attention of the vehicle is dispersed in the image.

In this section, we try to explain why the detector fails
on our generated adversarial camouflage. Following (Wang
et al. 2021a), we choose the commonly used interpretability
technique, i.e. Grad-CAM (Selvaraju et al. 2017). We use
ResNet50(He et al. 2016) that pretrained on ImageNet as the
base model to extract the attention map of the target vehicle
category, the results are illustrated in Figure 6. We can see
the model’s attention on the target category is dispersed after
painting our camouflage, which suggested that the decision
evidence of the model has been changed. Therefore, the de-
tector makes incorrect inference on adversarial examples.

Ablation Studies
In this section, we investigate the influence of the loss func-
tion items and the initialization ways of the camouflage tex-
ture.

Effectiveness of the combination of loss terms. Differ-
ent loss items have different effects. In this part, we conduct
the following two-fold studies: the first fold compares Lcls

adv ,
Lobj
adv ,Liou

adv ,Lcls+obj
adv , which all contain the smooth loss. The

second fold investigates the influence of smooth loss in our
method, we denote the loss containing only adversarial loss
as Ladv . Ltotal denotes a combination of both adversarial
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Method ASR (%)
YOLO-V5 Faster RCNN SSD Mask RCNN

Lcls
adv 82.83 65.25 73.20 67.97
Lobj

adv 46.16 49.69 61.87 42.83
Liou

adv 90.96 55.84 71.19 54.87
Lcls+obj

adv 84.49 68.16 76.05 71.99
Ladv 88.59 73.54 79.38 75.60
Ltotal 87.67 72.11 78.42 75.16

Table 6: The comparison results of different loss schemes.

Method ASR (%)
YOLO-V5 Faster RCNN SSD Mask RCNN

basic 84.56 68.41 80.65 69.44
random 87.67 72.11 78.42 75.16

zero 89.9 74.37 79.79 75.81

Table 7: The comparison result of different texture initializa-
tion.

loss and smooth loss. We optimize the adversarial camou-
flage with different loss term schemes, and evaluate the ASR
performance on different detectors. The experiment results
are shown in Table 6.

As we can observe from Table 6, on the first fold, we
obtain the highest ASR in YOLO-V5 with Liou

adv , exceed-
ing 90%. On the contrary, the ASR of other three models is
relatively low. We conclude that the Liou

adv has significant im-
pact on the ASR in particular detectors. On the second fold,
the ASR without smooth loss is higher than that with smooth
loss for all models, while smooth loss makes the camouflage
more natural to humans. In summary, the devised Ltotal bal-
ances the attack performance and the naturalness of the ad-
versarial camouflage, and the Lcls

adv and Liou
adv make consid-

erable contributions to the attack.

Effectiveness of different initialization. Initialization
plays an important role in deep learning, we investigate the
influence on the initialization of adversarial camouflage in
this part. We mainly compare three different initialization
ways: the original basic texture of the 3D model, random
noise and zero. As shown in Table 7, we can observe that
the performance of the zero initialization is superior over the
other two ways, giving the highest ASR 89.9% over YOLO-
V5, the performance of the original 3D model texture is
worse than other two ways on attack Faster RCNN and Mask
RCNN, which is less than 70% (68.41% for Faster RCNN,
69.44% for Mask RCNN). This phenomenon may be at-
tributed to that we adopt the gradient descent algorithm to
guide the adversarial camouflage update, the random noise
initialization gives a prior knowledge that may directly mis-
lead the detector, resulting in wrong optimization directions.
In conclusion, the initialization has limit influence on the at-
tack performance, and thus we select the random initializa-
tion for balancing the attack and naturalness.

Conclusion
In this paper, we propose an end-to-end attack method to
generate a full-coverage adversarial camouflage in the phys-

ical world. Specifically, we first utilize a neural renderer to
render our camouflage texture into a 3D vehicle model. Then
we devise a transformation function to transfer the rendered
vehicle into the photo-realistic simulation scenarios to sim-
ulate the complex real-world environmental conditions. Fi-
nally, we devise an adversarial loss functions to guide the op-
timization of camouflage with a gradient descent algorithm.
Extensive experiments demonstrated that our FCA outper-
forms other advanced attacks, and achieves higher attack
performance on both digital and physical attacks. Therefore,
our method can bridge the gap between digital attacks and
physical attacks as much as possible. We hope the proposed
FCA could provide an interesting direction of physical at-
tack for future work.
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