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Abstract

Skeleton-based action recognition models have recently been
shown to be vulnerable to adversarial attacks. Compared to
adversarial attacks on images, perturbations to skeletons are
typically bounded to a lower dimension of approximately
100 per frame. This lower-dimensional setting makes it more
difficult to generate imperceptible perturbations. Existing at-
tacks resolve this by exploiting the temporal structure of the
skeleton motion so that the perturbation dimension increases
to thousands. In this paper, we show that adversarial attacks
can be performed on skeleton-based action recognition mod-
els, even in a significantly low-dimensional setting without
any temporal manipulation. Specifically, we restrict the per-
turbations to the lengths of the skeleton’s bones, which al-
lows an adversary to manipulate only approximately 30 ef-
fective dimensions. We conducted experiments on the NTU
RGB+D and HDM05 datasets and demonstrate that the pro-
posed attack successfully deceived models with sometimes
greater than 90% success rate by small perturbations. Further-
more, we discovered an interesting phenomenon: in our low-
dimensional setting, the adversarial training with the bone
length attack shares a similar property with data augmenta-
tion, and it not only improves the adversarial robustness but
also improves the classification accuracy on the original data.
This is an interesting counterexample of the trade-off between
adversarial robustness and clean accuracy, which has been
widely observed in studies on adversarial training in the high-
dimensional regime.

Introduction
Deep neural network models are highly vulnerable to ad-
versarial perturbations, which are small input perturbations
intentionally applied by an attacker (Szegedy et al. 2014).
This poses a security concern in the use of deep neural net-
work models in practical scenarios. Szegedy et al. (2014)
was the first to discover the adversarial attack, that is, ap-
plying small perturbations to images that are imperceptible
to a human but can fool deep neural network models. Since
then, various adversarial attack methods have been proposed
in computer vision (Goodfellow, Shlens, and Szegedy 2015;
Carlini and Wagner 2017; Madry et al. 2018). Adversarial
attacks are not limited to the image domain; they are also
possible in domains such as video classification (Wei et al.
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Figure 1: The overview of the adversarial bone length at-
tack. Only the bone length of a skeleton is perturbed (ap-
proximately 30 effective dimension). Nevertheless, the clas-
sification of the motion changes from (a) hopRLeg to (b)
jogOnPlace.

2019; Chen et al. 2021b), text classification (Fursov et al.
2021), and speaker recognition (Chen et al. 2021a).

One of the reasons underlying the current success of ad-
versarial attacks in various domains and tasks is that ad-
versarial attacks manipulate high-dimensional data (Gilmer
et al. 2018; Simon-Gabriel et al. 2019). For example,
in the image domain, even small datasets (e.g., CI-
FAR10 Krizhevsky (2009)) have hundreds or thousands of
pixels to perturb. In the video domain, more dimensions
can be perturbed by exploiting the temporal structure. Re-
cently, it was shown that adversarial attacks can succeed
even on data in moderate-dimensional settings (Su, Vargas,
and Sakurai 2019; Pony, Naeh, and Mannor 2021). In partic-
ular, (Liu, Akhtar, and Mian 2020; Zheng et al. 2020; Wang
et al. 2021; Diao et al. 2021) considered adversarial attacks
in skeleton-based action recognition. In this case, an attacker
is allowed to perturb the shape and motion of the skeleton
along frames, and a skeleton at each frame is represented
by approximately 100 parameters (two or three-dimensional
coordinates of approximately 30 joints). With constraints on
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bone connection, the effective number of parameters is even
lower. In such a case, it is difficult for attackers to design
adversarial perturbations that are sufficiently small to be im-
perceptible. In (Liu, Akhtar, and Mian 2020; Zheng et al.
2020; Wang et al. 2021; Diao et al. 2021), because the mo-
tion of the skeleton along frames also was perturbed, they
achieved a high success rate of attack with imperceptible ad-
versarial perturbations.

In this study, we consider an extremely low-dimensional
adversarial attack on skeleton-based action recognition,
where only the lengths of the skeleton’s bones can be per-
turbed, as shown in Fig. 1. The proposed attack has access
to only approximately 30 dimensions, which is significantly
lower than existing attacks. Despite the restrictiveness of our
new attack setting, we experimentally observed that such an
extremely low-dimensional attack can succeed. Our bone
length attack only requires people to change the apparent
bone lengths, e.g., by covering some parts of the body with
clothes or attaching a fake extension to arms. In contrast, ex-
isting skeleton-based methods require people to move all the
joint positions adversarially, which is almost infeasible be-
cause perfect body coordination is required all along the mo-
tion. Our experiments were conducted on two datasets, the
NTU RGB+D (Shahroudy et al. 2016) and HDM05 (Müller
et al. 2007) datasets, and two models, the spatial-temporal
graph convolutional network (ST-GCN; Yan, Xiong, and Lin
(2018)) and semantics-guided neural network (SGN; Zhang
et al. (2020)). In such settings, we saw that with a small per-
turbation, our attack successfully fooled the models with a
20% success rate, reaching 90% in some cases. We also in-
vestigated which parts of a skeleton are more susceptible to
our bone length adversarial attack and discovered that per-
turbing the bones that are long and close to the root joint
(base of spine) is effective. Another interesting observation
is that adversarial training improves not only the robustness
against our attack but also the accuracy of the original data.
In the literature (Zhang et al. 2019), it has been established
that adversarial training improves the robustness against ad-
versarial examples at the cost of accuracy in original data.
Our observations provide a counterexample of this. Based
on our experimental results, we consider this to be because
in our low-dimensional setting, data augmentation and ad-
versarial examples have similar properties.

Due to the broad and important downstream applications
of skeleton-based action recognition, it is crucial to consider
the potential vulnerability of skeleton-based action recogni-
tion against adversarial attacks. In particular, our adversarial
bone length attack seems more realistic than others because
it only requires deception of a skeleton extractor to wrongly
measure the length of bones, whereas other attacks require
perturbation of all positions of joints as well as their time
evolution along frames.

Our contributions can be summarized as follows:
• We propose the first adversarial attack that only perturbs

the lengths of bones to fool skeleton-based action recog-
nition models. Unlike existing adversarial attacks, our at-
tack works in an extremely low-dimensional setting (ap-
proximately 30 dimensions and no temporal perturba-
tion).

• Through extensive experiments, we demonstrate the ef-
fectiveness of our bone length attack. We also discovered
that bones that are long and close to the base of the spine
are significantly more susceptible to the attack than other
bones.

• We discovered that adversarial training using the pro-
posed attack improves not only the adversarial robust-
ness against this attack but also the accuracy against the
original data. We also observed that data augmentation
improves both the clean accuracy and adversarial robust-
ness. This implies that a low-dimensional adversarial at-
tack may have distinct characteristics from other adver-
sarial attacks in high-dimensional settings.

Related Work
Skeleton-based action recognition. Skeleton-based ac-
tion recognition has attracted significant attention in recent
years. There are many advantages to using skeleton data for
action recognition. Skeleton data are considered to be ro-
bust to lighting, subject clothing, and background (Sun et al.
2020; Wang et al. 2021). They are also superior to RGB
data in terms of computational cost. Due to these advantages
and the progress of sensors (Zhang 2012) and pose estima-
tion models (Wandt et al. 2021; Xu and Takano 2021), vari-
ous models have been proposed (Yan, Xiong, and Lin 2018;
Zhang et al. 2020; Cheng et al. 2021; Kong, Deng, and Jiang
2021).

Adversarial attacks on skeletons. Adversarial attacks in
skeleton-based action recognition have been proposed very
recently (Liu, Akhtar, and Mian 2020; Zheng et al. 2020;
Wang et al. 2021; Diao et al. 2021). Liu, Akhtar, and Mian
(2020) was the first to propose an attack on this task. Their
proposed attack generates natural motions satisfying multi-
ple physical constraints by fixing the bone length, limiting
the perturbation magnitude and joint acceleration, and using
a generative adversarial network (Goodfellow et al. 2014).
They also showed that adversarial examples remain adver-
sarial even after being converted from skeleton to RGB data
and then from RGB to skeleton data. Zheng et al. (2020)
proposed an attack by restricting the change in angle be-
tween bones. They also proposed a defense method. Wang
et al. (2021) conducted user studies to show that their at-
tack is highly imperceptible to humans. They also argued
that joints with high velocity and acceleration are vulnerable
features. These attacks assume that the attacker has complete
knowledge of the model being attacked, such as its parame-
ters and structure, and are called white box attacks. In con-
trast, Diao et al. (2021) proposed a black box attack, which
assumes complete ignorance of the information about an at-
tacked model. Most of the aforementioned adversarial at-
tacks increase the effective dimensions of the attack to a few
thousand by using degrees of freedom in the temporal direc-
tion. In contrast, we propose an adversarial attack that has
no freedom in the temporal direction. This restriction makes
this study largely different from previous studies.

Low-dimensional adversarial attacks. Our proposed at-
tack perturbs only approximately 30 dimensions. There exist
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Figure 2: The skeleton of the NTU RGB+D dataset. This
skeleton consists of 24 bones, and each joint is indexed. We
define the base of the spine (joint 1) as the root joint. Our
adversarial bone length attack perturbs the scale parameter
{βi,j}.

several related attacks. In the image classification domain,
Su, Vargas, and Sakurai (2019) proposed a one-pixel attack,
which perturbs only a single pixel. However, attackers can
select the target pixel (three channels) from a large num-
ber of pixels; thus, the effective dimension is still higher
than ours. In addition, a one-pixel attack is relatively eas-
ily noticeable. In the video classification domain, the attack
proposed by (Pony, Naeh, and Mannor 2021) does not use
any spatial information, and thus the available dimensions
are low. However, the available dimensions in our attack are
less than those in their attack. Moreover, neither Su, Vargas,
and Sakurai (2019) nor Pony, Naeh, and Mannor (2021) ex-
plored the effect of adversarial training, while we observed
an interesting result through adversarial training.

Method
In this section, we explain how to attack skeleton-based ac-
tion recognition models by perturbing the bone length only.

Notations
We consider L-class skeleton-based action recognition. An
action (sequence of skeletons) is represented by X =
{qi(t) | i = 1, . . . ,M, t = 0, . . . , T − 1}, where T and M
denote the numbers of frames and joints, respectively, and
qi(t) ∈ R3 denotes the 3D coordinates of the i-th joint of
the skeleton at frame t. A classifier f receives an action X
and outputs an L-dimensional confidence vector, whose k-th
entry, denoted by f(X)k, represents the confidence for the
k-th class. A class label is encoded in a one-hot representa-
tion as y = (y1, . . . , yL)

>.

Bone Length Parameters
Our attack perturbs the lengths of bones. The length of the
(i, j)-th bone, which connects the i-th and j-th joints, is as-
sociated with a scale parameter βi,j , as shown in Fig. 2. Note

Algorithm 1: Pseudocode of adversarial bone length attack
Input: Original sequence of skeleton X , ground truth label
y, trained classifier f
Parameter: Step size α, maximum iteration number N ,
bound ε
Output: Adversarial example X̃

1: β(0) ← 1
2: for n← 0 to N − 1 do
3: X̃ ← SetParam

(
β(n), X

)
. SetParam(·, ·) outputs an adversarial example X̃
consisting of q̃j(t) defined using β(n) in Eq. (1).

4: z ← f(X̃)
. z is the confidence vector, which is output by f that
received X̃ .

5: ypred ← Predict(z)
. Predict(·) outputs the class label predicted by the
classifier f .

6: if ypred 6= y then
7: break
8: end if
9: β(n+1) ← UpdateParam

(
β(n)

)
. UpdateParam(·) outputs updated bone length pa-
rameters via Eq. (3).

10: if n = N − 1 then
11: X̃ ← SetParam

(
β(N), X

)
12: end if
13: end for
14: return X̃

that simply perturbing the length scale of each bone does not
directly yield a valid skeleton. Therefore, the length scales
{βi,j} of bones are perturbed from the root joint sequen-
tially as follows. First, we define the base of the spine as the
root joint qroot(t). Then, starting from the root joint, the po-
sition of each joint is set sequentially. Specifically, when a
joint qi(t) is perturbed to q̃i(t), each of its child joints (say,
qj(t)) is perturbed as follows:

q̃j(t) = βi,j(qj(t)− qi(t)) + q̃i(t). (1)

Note that the root is fixed, i.e., q̃root(t) = qroot(t). As
can be seen in Eq. (1), the value of βi,j is the ratio be-
tween the length of the (i, j)-th bone before and after the
adversarial perturbation. After the positional rearrangement
by Eq. (1), the final adversarial example of X is given by
X̃ = {q̃i(t) | i = 1, . . . ,M, t = 0, . . . , T − 1}.

Adversarial Bone Length Attack
Our attack is based on the following optimization with re-
spect to the bone length parameters {βi,j}. Let β be a vector
that lists the elements of {βi,j}. Then, the adversarial scales
of bones are obtained through the following cross-entropy
loss maximization:

max
β
L(β) = −

L∑
k=1

yk log f(X̃)k, s.t. ‖β − β(0)‖∞ ≤ ε,

(2)
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Figure 3: Success rates of the adversarial bone length at-
tack on the ST-GCN and SGN models according to attack
strength ε: (a) NTU RGB+D; two configurations of the train-
ing sets, cross-subject (CS) and cross-view (CV), were con-
sidered. Similar results were observed across models and
datasets. The SGN model was slightly more vulnerable than
the ST-GCN model. (b) HDM05; The ST-GCN model was
extremely vulnerable, even for small perturbations.

ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.5
ES 51.3% 50.6% 50.4% 50.4% 50.4%
FR 74.6% 81.4% 83.3% 83.1% 82.9%

Table 1: Average of the confidence scores given by the ST-
GCN model for misclassified adversarial examples on the
HDM05 dataset. The average confidence in early-stopping
case (ES) was low, while it was high in full-run case (FR).

where f is the target classifier that we attempt to attack.
The initial value of β is set to an all-one vector, i.e.,
β(0) = 1. The magnitude of the perturbation is bounded by
ε. We optimize β using projected gradient descent (PGD)
(Eq. (3)) (Madry et al. 2018). The parameter β is iteratively
updated by

β(n+1) = Clip(β(0),ε)

[
β(n) + α · sign(∇β(n)L

(
β(n)

)
)
]
,

(3)

where α > 0 is the step size, and β(n) is the β obtained
after n iterations. Clip(β(0),ε)[·] is an operator that clips each
entry of a given vector to [1− ε, 1 + ε], and sign(·) denotes
the sign function, which maps each element of the argument
vector to ±1 according to its sign.

The pseudo code of our attack is given in Algorithm 1.
First, the bone scale parameter β and adversarial example
X̃ are initialized as the all-one vector and X , respectively.
Then, the following procedure is repeated.

1. X̃ is input to the target classifier. If the target classifier
misclassifies, the attack terminates; otherwise, β is up-
dated according to Eq. (3).

2. The action X̃ is updated according to Eq. (1).
This termination condition of the attack is according to the
official code provided by (Wang et al. 2021). In the exper-
iments, we also restricted our attack to a subset of bones
to examine which part of skeleton is the most sensitive to
the perturbation. In this case, only the subset of {βi,j} was
considered in Eq. (3). We also attacked the classifier using

Adam (Kingma and Ba 2015) optimizer instead of PGD, as
was used in other studies for attacking skeleton-based ac-
tion recognition models (Liu, Akhtar, and Mian 2020; Wang
et al. 2021). In this case, the update rule in Eq. (3) was re-
placed with that of Adam.

Experiments and Results
We first introduce our experimental settings. Then, we
present the results of our proposed attack. Finally, we at-
tempt to defend against our attack.

Experimental Settings
Datasets We used the NTU RGB+D (Shahroudy et al.
2016) and HDM05 (Müller et al. 2007) datasets, which are
3D skeleton action datasets. The NTU RGB+D dataset con-
sists of 56,880 motion data of a skeleton with 24 bones.
This dataset has 60 classes and was created from 40 sub-
jects. There are two ways to split the training and test data:
cross-subject (CS) and cross-view (CV). In CS, the dataset
is divided so that the numbers of subjects included in the
training and test data are both 20. The numbers of samples
are 40,320 and 16,560, respectively. CV divides the train-
ing and test data according to the camera’s viewpoint. The
numbers of samples in these training and test datasets are
37,920 and 18,960, respectively. The HDM05 dataset con-
sists of 2,337 data of a skeleton with 30 bones. The number
of classes is 130. At the prepossessing stage, we adopted
a smoothing filter, translation, and so on. This reduced the
number of classes to 65. We randomly divided samples of
each class into a training set (80%), validation set (10%),
and testing set (10%). Please refer to the supplementary ma-
terial for this preprocess.

Target models We used two skeleton-based action recog-
nition models as our target models to attack: the ST-
GCN (Yan, Xiong, and Lin 2018) and SGN (Zhang et al.
2020) models. When the NTU RGB+D dataset was used,
we used pretrained weights provided by the authors of each
model12. When the HDM05 dataset was used, we trained the
two models with the official code provided by the authors.
To guarantee the convergence, we ran at least 300 epochs
for the ST-GCN model and 200 epochs for the SGN model
and adopted early stopping for both models. The data aug-
mentation for each model was the same as when the model
was trained on the NTU RGB+D dataset. After training, the
test accuracies on the ST-GCN and SGN models were 86.1%
and 96.1%, respectively.

Evaluation metrics and others Following (Wang et al.
2021), we attacked the test data that were correctly classified
by the target model. Then, the attacks were evaluated based
on their success rate. In this paper, we used PGD (Eq. 3). We
leave the results using Adam in the supplementary material.
The maximum number of iterations of the PGD was set to
50. The step size was set to α = 0.01, as in (Liu, Akhtar,
and Mian 2020). All experiments were conducted using an
Intel Core i7-6850K CPU and TITAN RTX GPU.

1https://github.com/yysijie/st-gcn
2https://github.com/microsoft/SGN
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 throwStanding(99.7%) −→ sitDownChair(93.7%)

attacked

(a) ES :

(b) FR :

(c) ES :

(d) FR :

time

time

time

time

original

punchRSide(89.3%) −→ clap(44.8%) 

 punchRSide(89.3%) −→ clap(72.4%)

throwStanding(99.7%) −→ sitDownChair(43.3%) 

Figure 4: Motion of skeletons before and after adversarial perturbations (blue and red, respectively) when we attacked the ST-
GCN model using the HDM05 dataset. In the early-stopping (ES) case, we terminated the iteration in attack once the adversarial
example succeeded in fooling the model. In the full-run (FR) case, the adversarial example was updated for a fixed number of 50
iterations. (a, b) the original motion punchRSide turned into adversarial motion clap. With ES, there is almost no visible change
in the skeleton but the prediction confidence remains moderate, whereas with FR, the change becomes slightly more visible and
the prediction confidence is high. (c, d) the original motion throwStanding turned into adversarial motion sitDownChair. The
results are similar to those observed in (a,b).

Attack Results
To investigate the effectiveness and imperceptibility of our
attack, we attacked two models. In Fig. 3 (a), we show the
results of the attack using the NTU RGB+D dataset. As a
result of the attack on the ST-GCN model, the success rates
for the PDG attack with ε = 0.1 and ε = 0.2 exceeded 10%
and 20%, respectively. Note that this success rate is not as
high as those achieved in other studies; this is because the
dimensionality of the input data used for the attack in these
studies was much higher (e.g., thousands of dimensions),
whereas in our setting, the dimensionality is only approxi-
mately 30. Nevertheless, our attack achieved moderate suc-
cess rates that were nonnegligible for practical use. When
we set ε = 0.5, we can see that the attack became more suc-
cessful (greater than 50% success). For the HDM05 dataset,
the success rate was even higher (Fig. 3 (b)). We observed
that the success rate of the attack on the ST-GCN model ex-
ceeded 70% when ε = 0.1. With ε = 0.2, the success rate
was over 90%.

The results indicate that the proposed attack is very ef-
fective for some models and datasets. In Fig. 4 (a), we pro-
vide an adversarial example generated with ε = 0.1 when

we attacked the ST-GCN model using the HDM05 dataset.
One can see that the predicted classes are different although
the skeletons appear very similar before and after the at-
tack (blue and red, respectively). The same result was ob-
served for ε = 0.2 (Fig. 4 (c)). To summarize, the ST-GCN
model trained by the HDM05 dataset was very vulnerable
to our bone length attack on the skeleton. However, the con-
fidences on the adversarial motions in Figs. 4 (a) and (c)
are relatively low, because we employ early-stopping (ES);
the proposed attack terminates once the adversarial exam-
ple fools the target model (Wang et al. 2021). To make the
confidences higher, we can increase the number of iterations
in the PGD attack. Hence we attacked the model with 50 it-
erations, which is the maximum number of iterations in the
PGD attack. We call the termination condition the full-run
(FR) case. Table 1 shows that the average confidence scores
in the ES and FR cases for misclassified adversarial exam-
ples and that the confidence scores in the FR case are higher
than those in the ES case. In Figs. 4 (b) and (d), we demon-
strate the FR attacks using the same original data in Figs. 4
(a) and (c), respectively. From Figs. 4, one can see the FR at-
tacks cause bigger changes than the ES attacks. These results
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(a) ST-GCN (b) SGN

Figure 5: Success rates of the adversarial bone length attack
for the (a) ST-GCN and (b) SGN models on the HDM05
dataset with and without data augmentation.

Model w/o aug. w/ aug.
ST-GCN 86.1% 89.8%

SGN 95.3% 96.1%

Table 2: Classification accuracy of models trained with the
HDM05 dataset with and without data augmentation (w/ aug
and w/o aug, respectively). One can see that data augmenta-
tion improved the accuracy for both models.

come from that there is a trade-off between high confidence
and imperceptibility.

As we can see the results for the HDM05 dataset shown
in Fig. 3(b), attacks on the two models resulted in sig-
nificantly different success rates; the ST-GCN model was
highly vulnerable to the attack, while the SGN model was
more adversary-robust. We believe the reason underlying
the adversarial robustness of the ST-GCN model lies in the
data augmentation process. When we trained the ST-GCN
and SGN models with the HDM05 dataset, we followed
the training protocol with the NTU RGB+D dataset from
the corresponding papers of the two models. Therefore, we
did not use data augmentation when the ST-GCN model
was trained with the NTU RGB+D dataset, but we did for
the SGN model. To observe the effect of data augmenta-
tion on adversarial robustness, we trained the models on the
HDM05 dataset with and without data augmentation and at-
tacked them. The data augmentation during training of the
SGN model was performed by randomly rotating the skele-
ton. We adopted this augmentation for the ST-GCN model
as well because we did not want the results to depend on
the quality of the data augmentation. As shown in Table 2,
the classification accuracy of both models for original data
was improved by data augmentation. Interestingly, as shown
in Fig. 5, data augmentation also improved the adversarial
robustness (lower success rates). In particular, the improve-
ment in adversarial robustness for the ST-GCN model was
significant (approximately 20% improvement at ε = 0.1).
Therefore, the adversarial robustness exhibited by the ST-
GCN model in Fig. 3(b) can be attributed to the presence of
data augmentation.

In image classification, some data augmentation meth-
ods were proposed to improve adversarial robustness (Zhang
et al. 2018; Yun et al. 2019). However, in white box set-
ting, these methods are effective only for non-iterative attack

Figure 6: Grouping of bones. The skeleton bones were di-
vided into seven symmetrical parts.

Part ε = 0.1 ε = 0.2 ε = 0.3
Part 1 0.51% 1.70% 2.20%
Part 2 12.6% 28.9% 40.7%
Part 3 9.34% 25.1% 41.4%
Part 4 2.38% 5.94% 11.9%
Part 5 0.00% 0.51% 0.85%
Part 6 34.1% 67.2% 75.8%
Part 7 0.00% 0.68% 1.35%

Table 3: Success rates of adversarial bone length attack on
the ST-GCN model with the HDM05 dataset restricted to
different parts. The sensitivity to the attack was strongly de-
pendent on the parts. In particular, Part 6 was the most sen-
sitive to perturbations.

Part ε = 0.1 ε = 0.2 ε = 0.3
Part3+Part4+Part5 14.4% 39.0% 59.6%

Table 4: Success rates of adversarial bone length attack on
the ST-GCN model with the HDM05 dataset by restricted
to the union of Parts 3, 4, and 5, which contains more total
number of bones as Part 6. The sensitivity to the attack in
this region was lower than that in Part 6 (Table 3).

e.g., FGSM (Goodfellow, Shlens, and Szegedy 2015). To the
best of our knowledge, the literature has not previously re-
ported data augmentation significantly improving adversar-
ial robustness against iterative attack. In (Rice, Wong, and
Kolter 2020) and (Gowal et al. 2020), adversarial training
was combined with various data augmentations, but no par-
ticular improvement in adversarial robustness was observed.
We hypothesize that in the low-dimensional setting of this
study, adversarial examples and augmented data are much
more similar than in a high-dimensional setting, where ad-
versarial examples are usually considered. We show promis-
ing empirical results regarding this hypothesis in the next
subsection.

Next, we investigated which subsets of bones were more
vulnerable to perturbations. For this, we used the ST-GCN
model and the HDM05 dataset. The skeleton was divided
into seven parts (Fig. 6), and adversarial perturbation was
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only applied to one of them. The results are summarized in
Table 3. One can see that attacks on Parts 1, 4, 5, and 7 (head,
wrists, hands, and feet, respectively) almost completely
failed, whereas attacks on Parts 2, 3, and 6 (body, shoul-
ders, and legs, respectively) were successful. In particular,
the success rate for Part 6 was significant compared to those
for the other parts. Thus, the legs are more susceptible to
attacks. Part 6 has more bones than the other parts. To de-
termine if the number of bones causes the vulnerability, we
considered a joint attack on Parts 3, 4, and 5, which have
more total bones than Part 6 alone. The results are presented
in Table 4. It can be seen that the attack adding perturbations
to Parts 3, 4, and 5 resulted in a much lower success rate. As
such, the vulnerability of Part 6 is not due to its number of
bones.

Based on the above results, we found two tendencies.
First, the closer the perturbed bones are to the root joint, the
more successful the attack is likely to be. We believe that
because a change in bone length can move the positions of
the bones of their descendants, a change in bones closer to
the root joint can have a greater impact on the entire skele-
ton. Second, the longer the perturbed bones are, the more
likely the attack will be successful. The ε in this attack is
proportional to the original bone. Therefore, for the same
ε, the longer the perturbed bone is, the greater the amount
of bone change is allowed. These results differ from those
of (Wang et al. 2021). They stated that joints with greater
velocity and acceleration are more useful for attacks. In con-
trast, our results show that attacks that perturb the torso are
more successful than those that perturb the hands and arms.
Therefore, we can see that our attack has different character-
istics to theirs.

Adversarial Training
Next, we attempt to defend against our attack by perform-
ing adversarial training (Madry et al. 2018) on the HDM05
dataset. We used our attack with ε = 0.1 in adversarial train-
ing. The results are shown in Fig. 7. One can see that the ST-
GCN and SGN models with adversarial training were more
robust than that trained using the original data. By adver-
sarial training, the ST-GCN model acquired the same level
of robustness against our attack as the SGN model, and the
SGN model provided only a low success rate even for large
perturbation ε. These results suggest that the proposed at-
tack can be prevented to some extent by adversarial training.
Notably, we can also see that adversarial training increased
the accuracy on the original data, as shown in Table 5. The
clean accuracy of the ST-GCN model was 86.1% with stan-
dard training and 89.8% with adversarial training. This phe-
nomenon is a counterexample of the following widely seen
observation in the literature: adversarial training gains ad-
versarial robustness at the cost of reduced clean accuracy.
We speculate that there may be a relationship between our
attack and data augmentation as a factor in this phenomenon.
As shown in Fig. 5, we achieved some adversarial robustness
against our attack by data augmentation. Data augmentation
was used to increase the accuracy of the model, similar to
our results as shown in Table. 2, and adversarial training
with our attack also increased the accuracy. In other words,
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Figure 7: Success rates of the adversarial bone length attack
on models with standard training (ST) and adversarial train-
ing (AT).

Model ST AT
ST-GCN 86.1% 89.8%

SGN 96.1% 95.5%

Table 5: Clean accuracy of models trained with standard
training (ST) and adversarial training (AT) on the HDM05
dataset.

adversarial training with our attack has similar properties to
data augmentation. The details of this will be the subject of
future work.

Conclusion
In this paper, we proposed the first bone length adversar-
ial attack on a skeleton-based action recognition models in
an extremely low-dimensional setting. Unlike existing at-
tacks, the proposed attack does not manipulate the motion
of skeletons and only perturbs the lengths of the skeleton’s
bones, the number of which is approximately 30. Neverthe-
less, for some datasets and settings, it was possible to fool
models with small perturbations at a success rate of over
90%. The skeletons before and after the attack appeared very
similar, which makes our attack difficult to notice. We also
found that perturbing the bones that were longer and closer
to the root joint was more effective. Furthermore, we ob-
served some interesting properties, which are considered to
be a characteristic of our low-dimensional setting: (i) data
augmentation improved both clean accuracy and adversar-
ial robustness, and (ii) adversarial training using our attack
also improved both of them. To the best of our knowledge,
neither of these results have been reported in the standard
high-dimensional setting; thus, we consider that our study
opens a new direction for adversarial attacks.

Acknowledgements
This work was supported by JSPS KAKENHI Grant Num-
ber JP19K12039.

References
Carlini, N.; and Wagner, D. 2017. Towards Evaluating the
Robustness of Neural Networks. In IEEE Symposium on
Security and Privacy (SP), 39–57.

2341



Chen, G.; Chenb, S.; Fan, L.; Du, X.; Zhao, Z.; Song, F.;
and Liu, Y. 2021a. Who is Real Bob? Adversarial Attacks
on Speaker Recognition Systems. In IEEE Symposium on
Security and Privacy (SP), 694–711.
Chen, Z.; Xie, L.; Pang, S.; He, Y.; and Tian, Q. 2021b. Ap-
pending Adversarial Frames for Universal Video Attack. In
IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), 3199–3208.
Cheng, K.; Zhang, Y.; He, X.; Cheng, J.; and Lu, H. 2021.
Extremely Lightweight Skeleton-Based Action Recognition
With ShiftGCN++. IEEE Transactions on Image Process-
ing, 30: 7333–7348.
Diao, Y.; Shao, T.; Yang, Y.-L.; Zhou, K.; and Wang, H.
2021. BASAR:Black-Box Attack on Skeletal Action Recog-
nition. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 7597–7607.
Fursov, I.; Zaytsev, A.; Burnyshev, P.; Dmitrieva, E.;
Klyuchnikov, N.; Kravchenko, A.; Artemova, E.; and Bur-
naev, E. 2021. A Differentiable Language Model Adversar-
ial Attack on Text Classifiers. arXiv:2107.11275.
Gilmer, J.; Metz, L.; Faghri, F.; Schoenholz, S. S.; Raghu,
M.; Wattenberg, M.; and Goodfellow, I. 2018. Adversarial
Spheres. arXiv:1801.02774.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative Adversarial Nets. In Advances in Neural
Information Processing Systems (NeurIPS), volume 27.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2015. Explain-
ing and Harnessing Adversarial Examples. In International
Conference on Learning Representations (ICLR).
Gowal, S.; Qin, C.; Uesato, J.; Mann, T.; and Kohli, P.
2020. Uncovering the Limits of Adversarial Training against
Norm-Bounded Adversarial Examples. arXiv:2010.03593.
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In International Conference on
Learning Representations(ICLR).
Kong, J.; Deng, H.; and Jiang, M. 2021. Symmetrical En-
hanced Fusion Network for Skeleton-Based Action Recog-
nition. IEEE Transactions on Circuits and Systems for Video
Technology, 31(11): 4394–4408.
Krizhevsky, A. 2009. Learning multiple layers of features
from tiny images. Technical report, University of Toronto.
Liu, J.; Akhtar, N.; and Mian, A. 2020. Adversarial At-
tack on Skeleton-Based Human Action Recognition. IEEE
Transactions on Neural Networks and Learning Systems, 1–
14.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2018. Towards Deep Learning Models Resis-
tant to Adversarial Attacks. In International Conference on
Learning Representations (ICLR).
Müller, M.; Röder, T.; Clausen, M.; Eberhardt, B.; Krüger,
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