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Abstract

Data augmentation is an efficient way to elevate 3D object
detection performance. In this paper, we propose a simple but
effective online crop-and-paste data augmentation pipeline
for structured 3D point cloud scenes, named CorrelaBoost.
Observing that 3D objects should have reasonable relative po-
sitions in a structured scene because of the objects’ function-
alities and natural relationships, we express this correlation as
a kind of interactive force. An energy field called Correlation
Field can be calculated correspondingly across the whole 3D
space. According to the Correlation Field, we propose two
data augmentation strategies to explore highly congruent po-
sitions that a designated object may be pasted to: 1) Category
Consistent Exchanging and 2) Energy Optimized Transfor-
mation. We conduct exhaustive experiments on various pop-
ular benchmarks with different detection frameworks and the
results illustrate that our method brings huge free-lunch im-
provement and significantly outperforms state-of-the-art ap-
proaches in terms of data augmentation. It is worth noting that
the performance of VoteNet with mAP@0.5 is improved by
7.7 on ScanNetV2 dataset and 5.0 on SUN RGB-D dataset.
Our method is simple to implement and increases few com-
putational overhead.

Introduction
3D object detection (Shi, Wang, and Li 2019; Qi et al. 2019;
Lang et al. 2019; Shi et al. 2020; Chen et al. 2020; You
et al. 2020) exploits the position and recognizes the cate-
gory of objects in a 3D scene, and has numerous applica-
tions in downstream tasks (Li et al. 2021b,a; Fang et al.
2020; Mahler et al. 2017). Although they show promising
detection results, a large amount of training data is needed to
cover volatile cases in the test set and guarantee the perfor-
mance. However, high-quality 3D data is difficult to obtain.

To tackle this problem, traditional methods such as global
transformation and noise addition are widely used by re-
searchers for better training performance (Yan, Mao, and
Li 2018; Shi, Wang, and Li 2019; Lang et al. 2019). In
recent years, instance-level crop-and-paste data augmenta-
tion methods (Fang et al. 2019; Dwibedi, Misra, and Hebert
2017) are adopted for 3D object detection gradually (Yan,
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Mao, and Li 2018; Lang et al. 2019; Shi, Wang, and Li
2019). They first crop the objects according to ground truth
bounding boxes and then paste them into a 3D scene after a
collision test. However, such process does not take the func-
tional relationships between objects into consideration when
finding a position to paste. This omission may often result
in functional inconsistency in a highly structured scene, be-
tween objects that are newly pasted in and other objects that
originally exist in the scene. (e.g. a bathtub may be pasted
next to a bed according to (Yan, Mao, and Li 2018).)

In this paper, we aim to explore highly probable locations
where a given object will naturally appear in a structured
3D scene by investigating the functional relationship be-
tween objects. We look back to the area of scene interactions
modeling, from which we get inspiration for a better-refined
positioning strategy. Previous works (Helbing and Molnar
1998; Dan, Todorovic, and Zhu 2013) abstract a force to
model the degree of attraction or repulsion between func-
tional objects in order to calculate reasonable relative posi-
tions for them. Similarly, we assume the functional relation-
ship between a pair of objects can be represented by a kind
of force, and thus an energy field will be implied between an
object pair, which we call Correlation Field. Further, these
fields can be superimposed together to reflect relationships
between multiple objects (see Fig. 1). In this aspect, a func-
tionally consistent scene is equivalent to the situation that all
the objects achieve a stable state in the Correlation Field and
the energy of the field is minimal.

With the guidance of Correlation Field, we propose a
crop-and-paste augmentation pipeline called CorrelaBoost
to explore positions that a designated object may be pasted
to coherently, including two strategies. 1) Category Consis-
tent Exchanging: Observing that objects of the same cate-
gory often share similar functional relationships and inter-
actions with others, we generate various training samples
by exchanging objects in the same category without com-
promising the stability of the Correlation Field. 2) Energy
Optimized Transformation: we define a probability map
for the cropped object on a given 3D scene and link this
to its Correlation Field, where a lower energy refers to a
higher probability to paste. To this end, by sampling loca-
tions with high probabilities, we can find proper pasting po-
sitions through the whole scene with little time consumption.

To sum up, the contributions of this paper are as follows:
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Ground Truth Field A Field B Field A+B

Figure 1: Overview of Correlation Field. Figures from left to right are: a given scene where objects are annotated by bounding
boxes, Correlation Field from left sofa to the table, Correlation Field from right sofa to the table, and the superimposed field.
The target object is marked by purple. Colored dots refer to the strength of Correlation Field, where red denotes low and blue
denotes high.

i) we first introduce functional relationships of objects to ex-
plore proper positions for crop-and-paste 3D data augmen-
tation, ii) we design a novel physical model named Correla-
tion Field to model functional relationships between objects,
and iii) we propose an efficient data augmentation pipeline
including two strategies, interpreting data augmentation to
an optimization problem under the Correlation Field frame-
work. Comprehensive experiments are conducted on multi-
ple 3D detection benchmarks with different typical frame-
works to show that our approach can deliver improvement
across different datasets and frameworks and outperforms
state-of-the-art approaches in terms of data augmentation.
Our online data augmentation is easy to implement and in-
creases few computational overhead without using heavy
deep neural networks (Zhou, While, and Kalogerakis 2019).

Related Work
3D object detection. 3D object detection is a task to locate
and recognize objects in 3D scenes. Numerous studies have
been carried out in this field. Some researches (Chabot et al.
2017; Chen et al. 2016, 2015; Mousavian et al. 2017) try
to use 2D images to explore positions of 3D objects. These
methods only need easily accessible 2D data to work. How-
ever, because of the lack of depth information, the results are
easily affected by different forms of noise.

To this end, more detection approaches based on 3D point
cloud data are proposed to fully utilize 3D information. One
early thought for detection on 3D point cloud data is to mi-
grate 2D detection methods to 3D detection. (Chen et al.
2017; Ku et al. 2018; Yang, Luo, and Urtasun 2018; Yang,
Liang, and Urtasun 2018; Liang et al. 2018) reconstruct 2D
bird’s eye view with 3D point clouds and use 2D CNNs to
extract features for 3D bounding box generation. But these
methods are still facing information loss when constructing
bird’s eye view images or voxels.

Another way to solve this problem is directly working
on point clouds (Shi, Wang, and Li 2019; Shi et al. 2020;
Qi et al. 2019; Xie et al. 2020a; Zhang et al. 2020; Cheng
et al. 2021). VoteNet (Qi et al. 2019) uses a well-designed
deep hough voting network to estimate not only oriented 3D
bounding boxes but also semantic classes of objects directly

from point clouds. Some further research (Xie et al. 2020a;
Zhang et al. 2020; Cheng et al. 2021) enhance VoteNet with
extra modules and achieve better performance.
Instance-level data augmentation for 3D detection. Tradi-
tional 3D data augmentation on point clouds such as global
scaling/rotation and point-level random jittering are widely
used to prevent overfitting, and some research (Cheng et al.
2020) introduces the idea of AutoAugment (Cubuk et al.
2019) to automatically search for improved data augmen-
tation policies from traditional strategies.

To fully exploit the potential of data augmentation, re-
searchers (Yan, Mao, and Li 2018; Lang et al. 2019; Hu et al.
2020; Fang et al. 2021) begin to utilize instance-level labels
such as bounding boxes and instance ids for better perfor-
mance. Yan et al. (Yan, Mao, and Li 2018) create a database
of target objects from training dataset, randomly select sev-
eral ground truths from this database and introduce them into
the current training point cloud via concatenation. However,
they ignore the functional consistency between the pasted
object and the original scene.

A similar line of related work is indoor scene synthe-
sis (Zhou, While, and Kalogerakis 2019; Fisher and Han-
rahan 2010; Li et al. 2019; Wang et al. 2018), where they re-
trieve models from a 3D database and place the furniture in
a reasonable manner. However, a manually designated po-
sition is required as precondition and then they analyze the
most likely object category to appear in the given location,
which contradicts to automatically finding a suitable past-
ing location for cropped object in crop-and-paste data aug-
mentation. Moreover, our work directly augments the point
cloud in data level and does not require 3D models of the ob-
jects, observing the deep learning architectures used in these
works are time consuming for online data augmentation.

Method
Overview
Generally, given a 3D scene S and a designated object in-
stance I , a crop-and-paste augmentation process can be de-
fined as

I
′
= T(I|S) (1)
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where function T refers to a transformation operated on I
under the given S condition. To ensure the shape invariance
of designated objects, the transformation T is usually de-
fined by a 3D affine transformation X

′

Y
′

Z
′

 = s
∏

i=z,y,x

 cos θi − sin θi 0

sin θi cos θi 0

0 0 1


 X

Y

Z

 +

 tx

ty

tz


(2)

where tx, ty , tz denote the coordinate shift in x, y, z-axis
respectively, s denotes the scale variance and θx, θy , θz de-
note the rotation around x, y, z-axis in degrees. Assuming
(x0, y0, z0) is the object’s original coordinate and (x, y, z)
is the pasted coordinate, tx, ty , tz can be calculated by
tx = x − x0, ty = y − y0, tz = z − z0. Thus, transfor-
mation T can be uniquely determined by a 7D tuple

B = (x, y, z, θx, θy, θz, s) (3)

We denote each B as a transformation configuration. Among
positioning, rotation and scaling which are three key compo-
nents of B, positioning contributes more for data augmenta-
tion as it can bring richer diversity to a scene.

To explore feasible and reasonable positions for transfor-
mation through the whole scene, an important prerequisite
is that the pasted object should be functionally consistent
with other objects. For example, a lamp should be on a desk
rather than under it. We introduce a novel insight of Cor-
relation Field to ensure this prerequisite. We first assume
that there is an interactive force acting on each pair of ob-
jects to keep them at a proper relative position, which ex-
presses as repulsive force when their distance is too close
and attractive force vice versa. We then define the Corre-
lation Field, an energy field induced by this force. With this
formulation, proper relative positions for a pair of functional
objects should be at the equilibrium points where the energy
of Correlation Field is at a low level. Specifically, since ev-
ery object is most likely to appear at its original location
in the original dataset, the relative positions in the original
dataset should be assigned as equilibrium points.

For real scenes that usually have multiple objects, the full
Correlation Field can be calculated by superimposing sub
fields between two objects. In this aspect, positions with low
energies are able to represent places which are proper for
pasting, and the position exploration problem is interpreted
into a much easier optimization problem.

Following this insight, we propose two augmentation
strategies. One is called Category Consistent Exchanging.
We exchange pairs of objects in the same category with ap-
propriate shapes and orientations. Since objects in the same
category exhibit similar natural occurrence frequency and
share similar functionality, this approach will still keep the
energy of this system at a low level. Another is Energy Opti-
mized Transformation. We sample positions with low energy
according to a probability function. Experimental results in
Sec. show the surprising effectiveness of these augmenta-
tion strategies.

In Sec. we introduce the formulation of the Correlation
Field, and the adoption of it with two augmentation strate-
gies will be detailed in Sec. and Sec. . Finally, we describe
the whole pipeline and implementation details in Sec. .

A. nightstand--bed B. bookshelf--sofa

Figure 2: Illustration of correlation origin sets and Corre-
lation Fields. Each plot illustrates a point set P(c1,c2). Dif-
ferent colors indicate relative strength of Correlation Field
in corresponding positions, where red denotes low and blue
denotes high.

Correlation Field
Functional objects affect each other in a particular scene
which can be regarded as a kind of interactive force. We
generalize Correlation Field based on this force to determine
how well the target object fits with others when placed in any
position in the 3D scene.

Correlation Origin Set Before we define the Correlation
Field, the abstracted interactive force which ensures func-
tional objects at proper relative positions are necessary to be
first defined. Observing the property that the force should
attract objects to those proper positions, we formulate the
force as gravitational effects with gravitational centers at
these positions. We name these gravitational centers as cor-
relation origins p, as these positions show the inherent cor-
relation of two objects.

In this paper, we assume that objects in the same category
share similar functionality, and mainly focus on the category
to identify a correlation origin set P for each category pair
(c1, c2). Considering objects appear at its original location
naturally in the original training dataset, positions of c2 ob-
jects in the c1 object coordinate system can represent corre-
lation origins.

To this end, a correlation origin set P for (c1, c2) can be
represented by

P(c1,c2) = {p =
−−−−→
CIjCIi |Ii ∈ c1, Ij ∈ c2} (4)

where CIk refers to the geometric center (a.k.a. center of
the bounding box) of object Ik (k = i, j). By traversing
all objects in category c1 and c2 through all scenes in the
training set, we can obtain P(c1,c2) including all correlation
origins, which represents a statistical distribution of poten-
tial gravitational centers. Following such a process above,
we can get correlation origin set P(ci,cj) for each category
pair (ci, cj). Fig. 2 visualizes several correlation origin sets
of some typical pairs, where the beginnings of all vectors are
set at the coordinate origin. Figure A reveals a strong relation
that the nightstand is often near the front of the bed. For pair
bookshelf–sofa in figure B, they do not have such a strong
correlation and thus the points nearly randomly distribute in
the space.
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A. shape discrepancy B. orientation inconsistent

Figure 3: Special cases for Category Consistent Exchanging.
Figure A demonstrates a shape discrepancy case between the
sofas in green boxes and the sofa in brown box. Figure B
demonstrates an orientation inconsistent case among chairs
in green boxes. The illustration is from (Qi et al. 2019).

Correlation Field After obtaining correlation origins, we
then define the Correlation Field. Given a particle set of
weights {M1, ...,Mn}, the gravitational field in physical
world is defined as

E(x) = −
n∑
i=1

GMi

Ri
(5)

where G is a constant and Ri is the distance from position
x to particle i. Draw on this expression, Correlation Field
between category pair (c1, c2) can be formulated as

E(x,c2|c1) = −
∑

p∈P(c1,c2)

G(c1,c2)

Rγp + k
(6)

whereRp denotes the distance from position x to correlation
origin p, γ denotes a distance attenuation index for the whole
dataset,G(c1,c2) is a category correlation index which is con-
stant for each category pair, and k is a constant to balance the
value when R → +0. Now, given an object in a certain cat-
egory c, various Correlation Field E(x,·|c) centered on this
object can be formed accordingly. Note that a Correlation
Field between (c1, c2) is directional, where we name objects
in c1 as initiators ans c2 as receptors.

Under this formulation, the Correlation Field has three
key properties:

• Superimposable. Multiple individual Correlation Field
on a single receptor can be superimposed together by a
symmetric function.

• Optimal initial state. A scene in the original dataset
without any augmentation is at a low energy level.

• Category oriented. The dependent variables of Correla-
tion Field are object categories and distance.

Based on these three properties, we derive two different
data augmentation strategies on Correlation Field.

Category Consistent Exchanging
Based on the category oriented and optimal initial state prop-
erty, exchanging objects in the same category will keep the
energy of full Correlation Field still at a low level. However,
random pairwise exchanges may fail in some special cases.

As shown in Fig. 3, sofas in figure A illustrate shape dis-
crepancy between objects of the same kind while chairs in
figure B depict an inconsistent problem in orientation.

To solve these defects, we propose a category consis-
tent similarity s(Ia, Ib) to measure the shape and orientation
similarity between two objects in the same class, which can
be written as

s(Ia, Ib) = λs cos(
−→
S a,
−→
S b) + λo cos(

−−→
CGa,

−−→
CGb) (7)

where shape vector
−→
S = (l, w, h) represents the shape of

bounding box (length, width and height respectively); C de-
notes the geometric center (center of the bounding box), and
G denotes the gravity center (center of point cloud) of object
I; λs, λo are importance weights for shape and orientation.
In this manner, we use

−→
S and

−−→
CG to indicate the shape and

orientation of an object respectively, and the category con-
sistent similarity scores the consistency of two objects in a
same class.

Then we assign a mapping function f(·) to map the cat-
egory consistent similarity to the probability of exchanging
the object, written as

f(s) = log(s) (8)

As a weighted choice instead of random selection is applied,
our method will show a tendency to exchange objects with
similar shape and orientation.

Energy Optimized Transformation
Former exchanging strategy provides extensive different
permutations of objects, but it actually exploits only a small
part of Correlation Field and fails to explore extra reason-
able positions. In this section, we propose a complementary
strategy called Energy Optimized Transformation to fill this
gap, and show the most essential capability of our proposed
Correlation Field.

Following Sec. , Correlation Fields E(x,·|·) between any
pair of categories can be first calculated and saved when pre-
processing. In the process of data augmentation, after giving
a scene S and object I of category c, an overall Correlation
Field E for I can be superimposed by

E(x|S, I) =
∑

I′∈S,I′ 6=I

E(x,c|c′) (9)

where c′ is the category of object I ′.
Then we generate a 3D probability map on it by a map-

ping function g(·) which should be negative correlated. In
our implementation, it is formulated as

g(E) = log(−E) (10)

After values in the probability map are normalized, we sam-
ple candidate positions for pasting via Monte Carlo method.
Finally, we introduce a collision test to adjust the position in
a small neighborhood. Such operation on Correlation Field
explores a large number of potential positions for pasting
and brings huge diversity for data augmentation.
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Framework Method ScanNet SUN RGB-D
mAP@0.25 mAP@0.5 mAP@0.25 mAP@0.5

VoteNet

vanilla 58.6 33.5 57.7 32.7
exchanging 59.4 36.9 58.9 35.1

transformation 60.1 38.8 59.8 36.3
full 61.0 41.2 61.0 37.7
4 ↑ 2.4 7.7 3.3 5.0

MLCVNet

vanilla 64.5 41.4 59.8 36.3
exchanging 65.0 44.6 60.5 37.4

transformation 65.4 45.9 61.1 37.8
full 65.8 47.0 61.7 38.4
4 ↑ 1.3 5.6 1.9 2.1

H3DNet
w/o refine

vanilla 60.2 37.3 58.5 34.2
exchanging 61.4 39.7 59.1 35.6

transformation 62.3 40.8 59.5 36.4
full 63.4 42.3 59.9 37.1
4 ↑ 3.2 5.0 1.4 2.9

H3DNet
w/ refine

vanilla 67.2 48.1 60.1 39.0
exchanging 67.6 48.7 60.5 39.9

transformation 67.8 48.8 60.8 40.6
full 68.1 49.3 61.0 41.1
4 ↑ 0.9 1.2 0.9 2.1

Table 1: Boosted 3D object detection results on both ScanNetV2 and SUN RGB-D dataset, evaluated with mAP@0.25 IoU and
mAP@0.5 IoU. vanilla denotes the original framework, exchanging denotes Category Consistent Exchanging, transformation
denotes Energy Optimized Transformation and full denotes the full pipeline of CorrelaBoost.

Method ScanNet SUN RGB-D
mAP@0.25 mAP@0.5 mAP@0.25 mAP@0.5

vanilla 58.6 33.5 57.7 32.7
SECOND 59.2 35.9 58.3 34.2

SGN 59.4 36.2 58.4 34.5
*PointContrast 59.2 38.0 57.5 34.8
CorrelaBoost 61.0 41.2 61.0 37.7

Table 2: Comparison with baselines on ScanNetV2 and SUN
RGB-D dataset on VoteNet. vanilla denotes the original
framework.

Pipeline and Implementation Details
Our online data augmentation approach can be implemented
in an efficient manner. We first pre-compute the Correlation
Field for each category pair. In the training process, both
strategies are incorporated into the dataloader, after com-
mon online augmentation methods such as global rotation
and flipping (facebookresearch 2019). We assign PE and
PT to denote probabilities whether an object should perform
category consistent exchanging and energy optimized trans-
formation respectively. Then, we traverse all the objects in
the scene and apply both strategies according to the proba-
bilities. Finally, we introduce a collision test (Yan, Mao, and
Li 2018) and fine-tune the transformation configuration to
achieve better spatial coherence if a collision happens. We
fill the empty area caused by crop operation with a hole-
filling algorithm (Lucas 2019).

In our implementation, augmentation probabilities PE
and PT are set as 0.5 and 0.3 respectively. For exchanging

strategy, λs = λo = 0.5. For Correlation Field in transfor-
mation strategy, we treat γ as 2, k as 0.2 and G(c1,c2) as 1
for all category pairs for simplification.

Experiments
Datasets, Frameworks and Baselines
Datasets Performance of 3D detection models has been
tested on two popular datasets, including ScanNetV2 (Dai
et al. 2017) and SUN RGB-D (Song, Lichtenberg, and Xiao
2015). Experiments on these datasets prove that Correla-
Boost is effective to exploit functional relationships in struc-
tured scenes.
Frameworks We implement our augmentation method on
three different 3D detection frameworks. VoteNet (Qi et al.
2019) is a classic 3D object detection pipeline with deep
Hough voting, and MLCVNet (Xie et al. 2020a) im-
proves it with three hierarchical context modules. Recently,
H3DNet (Zhang et al. 2020) further push the performance
with better representations and refinement modules.
Baselines We compare with previous augmentation meth-
ods, as well as an unsupervised learning baseline PointCon-
trast (Xie et al. 2020b).
SECOND (Yan, Mao, and Li 2018). The data augmenta-
tion in SECOND is a classic one and has been widely used
in 3D detection frameworks. This approach includes three
elements: sample ground truths from the database, object
noise, and global rotation and scaling.
SGN (Zhou, While, and Kalogerakis 2019). Scene Graph
Net is a state-of-the-art approach which introduces graph
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neural networks to augment an input 3D indoor scene with
new objects matching their surroundings. Note that SGN is
an only scene augmentation approach rather than data aug-
mentation approach, as it requires a manually designated po-
sition as input. Here, we sample several positions without
collision as input for SGN to generalize it into a data aug-
mentation method.
*PointContrast (Xie et al. 2020b). PointContrast is a state-
of-the-art unsupervised learning approach to boost the per-
formance of 3D detection frameworks, which is a much
stronger baseline than approaches above. PointContrast in-
troduces plenty of extra data to pre-train the models with
a contrastive loss. Since it is not a data augmentation ap-
proach, we mark it with *.

Substantial Improvement
CorrelaBoost is evaluated on both ScanNetV2 and SUN
RGB-D dataset for all three frameworks with mAP@0.25
IoU and mAP@0.5 IoU as evaluation metrics. Experimental
results are in Tab. 1.
VoteNet. The performance of VoteNet could be further el-
evated with CorrelaBoost. In detail, we achieve 2.4 and 7.7
improvement on ScanNetV2 dataset, as well as 3.3 and 5.0
improvement on SUN RGB-D dataset for two metrics. It is
worth noting that our proposed augmentation methods bring
a huge boost on the more stringent metric.
MLCVNet. Similar as VoteNet, CorrelaBoost also brings
amazing free-lunch improvement on both datasets. Consid-
ering MLCVNet is a much stronger network to capture im-
plicit features of the training set, the relative lifts brought by
CorrelaBoost have a reasonably narrowing comparing with
VoteNet.
H3DNet. Refinement modules are used in H3DNet to fine-
tune object bounding boxes locally at object-level. Since our
augmentation approach operates at scene-level globally and
does not change the object itself, CorrelaBoost is ineffec-
tive for the refinement module. For H3DNet without refine-
ment, great improvement is achieved. After applying the re-
finement module, our approach can still achieve substantial
improvement, which proves that our data augmentation is
complementary with the refinement process and can be used
together for better performance.

Comparison with Augmentation Baselines
In order to show the superior performance of CorrelaBoost
in terms of data augmentation, we compare our method with
several representative baselines, including previous state-of-
the-art. Results are given in Tab. 2. It shows that our data
augmentation approach can achieve better performance on
both datasets and both metrics.

Further, our method also greatly outperforms PointCon-
trast (Xie et al. 2020b), an unsupervised learning approach,
in the case of boosting 3D detection performance. It is worth
noting that PointContrast requires extra training data for
unsupervised learning, while our method can provide free-
lunch improvement without introducing any other informa-
tion to the dataset.
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Figure 4: Visualization of 3D objects augmented by Cor-
relaBoost, where the top row illustrates the original scenes
and the bottom row illustrates augmented scenes. The left
sample is operated by Category Consistent Exchanging and
others are operated by Energy Optimized Transformation.
Target objects are marked by bounding boxes.

Ground Truth VoteNet (vanilla) VoteNet (ours)

Figure 5: 3D Detection results of vanilla VoteNet (Qi et al.
2019) vs. VoteNet trained with CorrelaBoost. Ground truths
and detection results are annotated by red bounding boxes.
CorrelaBoost makes progress in both recall and precision.

Qualitative Results.
Augmented Scenes. Fig. 4 visualizes several augmented
samples with CorrelaBoost. The left two samples are aug-
mented by Category Consistent Exchanging strategy and the
right two samples are operated by Energy Optimized Trans-
formation strategy. These cases prove that our approach with
Correlation Field can leverage functional relations between
objects, and consequently generate diverse and realistic re-
sults.
Detection results after Augmentation. We visualize some
of the detection results of vanilla VoteNet and Correla-
Boosted VoteNet (see in Fig. 5). The visualization results
indicate that CorrelaBoost makes progress in higher re-
call and precision. For cases in the first and second row,
augmented VoteNet gives more accurate regression results
and is able to remove erroneously detected objects in the
vanilla framework. Case in the bottom row indicates that
augmented framework can identify previously unrecognized
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Method ScanNet SUN RGB-D
AP25 AP50 AP25 AP50

vanilla 58.6 33.5 57.7 32.7
Random Paste 58.9 34.2 57.9 33.6
transformation 60.1 38.8 59.8 36.3
CorrelaBoost 61.0 41.2 61.0 37.7

Table 3: Comparison with random paste on ScanNetV2 and
SUN RGB-D dataset on VoteNet.

λs 0 1 0.7 0.5 0.3 0
λo 0 0 0.3 0.5 0.7 1
AP25 59.0 59.2 59.3 59.4 59.3 59.1
AP50 35.5 36.3 36.7 36.9 36.6 36.1

Table 4: Analysis for category consistent exchanging on
ScanNetV2 dataset. The reported results are from VoteNet
boosted only by our exchanging strategy.

γ 2 2 1 3
k 0.20 0.10 0.15 0.25 0.20

AP25 60.1 59.8 60.0 60.0 60.0 59.8
AP50 38.8 38.4 38.6 38.7 38.6 38.3

Table 5: Sensitive analysis for Correlation Field on Scan-
NetV2 dataset on VoteNet. The reported results are from
VoteNet boosted only by our transformation strategy.

Method workers vanilla CorrelaBoost Dec.

VoteNet
4 0.79 0.90 14%
8 0.78 0.83 6%

16 0.78 0.83 6%

MLCVNet
4 0.74 0.86 16%
8 0.74 0.81 9%

16 0.74 0.80 8%

Table 6: Speed comparison on different detection frame-
works. Column vanilla and CorrelaBoost record the time for
training one epoch by vanilla framework and CorrelaBoost
augmented framework in minute. workers denotes the num-
ber of workers for dataloader and Dec. denotes the deaccler-
ation ratio after applying CorrelaBoost to the framework.

objects in vanilla framework, which shows a better recall.
These cases also prove that our augmentation method im-
proves the model’s immunity to incomplete point clouds and
background noise.

Analysis
Contribution of Two Strategies. Tab. 1 also exhibits the
contribution of both strategies. When either strategy is ap-
plied alone, notable improvement is still achieved. The En-
ergy Optimized Transformation strategy contributes more
since it fully exploits reasonable pasted positions through
the whole scene and brings more diversity.

Comparison with Random Paste. Random paste is a most
basic crop-and-paste augmentation that first crops an object
and then pastes it to a random position on ground planes
without collision, and it ignores the functional relationships
between objects. In order to figure out that the guidance of
Correlation Field on pasted positions is effective, we com-
pare our method with a random paste strategy. Tab. 3 shows
that a random paste method brings a little improvement for
the performance. After applying Correlation Field to ensure
the functional consistency between objects, promising im-
provement can be achieved.
Analysis for Category Consistent Exchanging. To demon-
strate the effectiveness of category consistent exchanging,
we compare with a random pair exchanging baseline (with-
out category consistent similarity as λs = λo = 0). Re-
sults in Tab. 4 show that the performance improves when
the exchanging is guided by our proposed similarity. Fur-
ther, a sensitive analysis for the similarity is also conducted
in Tab. 4, which shows the weights of shape and orientation
are not sensitive in the non-extreme range.
Sensitive Analysis for Correlation Field. We analyze both
constant k and attenuation index γ in the Correlation Field
to show how they influence the performance of our transfor-
mation strategy. Results are in Tab. 5. The performance is
stable when k and γ are in a proper range. As k goes pretty
small or γ goes large, highly probable pasted positions con-
centrate near Correlation Origins which harms the diversity
of our transformation strategy. Note that our transformation
strategy will degenerate into random paste as k goes super
large or γ goes super small.
Online Speed Analysis. We discuss the time efficiency of
CorrelaBoost in this paragraph. We train VoteNet and ML-
CVNet on ScanNetV2 dataset with batchsize 8 on RTX
2080Ti. Note that our data augmentation is online and in-
tegrated into the dataloader, we compare the time in one
epoch for simplicity. Results are shown in Tab. 6, where both
frameworks exhibit a similar trend in speed when the num-
ber of workers grows. With only 8 workers which is eas-
ily affordable for most cpus, the deceleration of time caused
by our data augmentation can be reduced to only 6% for
VoteNet.

Conclusion

This paper studies an instance-level crop-and-paste data
augmentation method for better 3D detection performance.
We propose a novel pipeline called CorrelaBoost to explore
positions with high natural occurrence frequency of desig-
nated objects and scenes. To guarantee reasonable functional
relationships among different objects, we design the Cor-
relation Field and two augmentation strategies correspond-
ingly. Exhaustive experiments illustrate that our method
brings huge free-lunch improvement and surpasses previ-
ous data augmentation approaches. Our online augmentation
can be easily implemented into existing frameworks with lit-
tle cpu overhead. Currently, our approach has limitations on
cluttered scenes where objects do not show significant func-
tional relationships. We will improve this as our future work.
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