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Abstract

We attempt to train deep neural networks for classification
without using any labeled data. Existing unsupervised meth-
ods, though mine useful clusters or features, require some
annotated samples to facilitate the final task-specific predic-
tions. This defeats the true purpose of unsupervised learning
and hence we envisage a paradigm of ‘true’ self-supervision,
where absolutely no annotated instances are used for train-
ing a classifier. The proposed method first pretrains a deep
network through self-supervision and performs clustering on
the learned features. A classifier layer is then appended to the
self-supervised network and is trained by matching the dis-
tribution of the predictions to that of a predefined prior. This
approach leverages the distribution of labels for supervisory
signals and consequently, no image-label pair is needed. Ex-
periments reveal that the method works on major nominal as
well as ordinal classification datasets and delivers significant
performance.

Introduction
One major reason for the practical success of deep learn-
ing is unarguably the use of large human annotated datasets.
These huge collections contain labeled data to directly serve
the fully supervised training for the task of interest. Though
this paradigm has enabled excellent performance for nearly
all problems, creating such datasets is laborious and expen-
sive. There is a mounting, but difficult requirement to in-
clude more and more diversity in datasets for better gener-
alization. Moreover, many applications deal with data that
changes rapidly, where the annotation process itself is al-
most impossible. For instance, social media data is very dy-
namic with new categories being introduced quite often and
manual supervision is challenging given the scale of oper-
ation. These issues have accentuated the need for unsuper-
vised training schemes, where the requirement of large la-
beled datasets is mitigated.

The existing approaches to unsupervised learning broadly
rely on either representation learning or clustering. There
are several methods for learning features, starting from au-
toencoders (Hinton and Salakhutdinov 2006; Vincent et al.
2008; Kingma and Welling 2013; Makhzani and Frey 2015)
∗These authors contributed equally.
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Figure 1: Comparison of related learning paradigms. Both
clustering and self-supervision methods utilize labels; for-
mer in the cluster assignment step while the latter to train
the classifier layer. Our approach does not require labels at
any stage of the training.

to recent self-supervision (Zhang, Isola, and Efros 2016;
Pathak et al. 2016; Komodakis and Gidaris 2018; Noroozi
and Favaro 2016; Kolesnikov, Zhai, and Beyer 2019). Au-
toencoders, in general, are optimized to predict back their
inputs often through a representational bottleneck, thereby
learning useful features. Self-supervision takes it further and
trains the model for some pseudo label prediction tasks,
where the labels could be easily obtained from the input.
Consider self-supervision with colorization (Zhang, Isola,
and Efros 2016; Larsson, Maire, and Shakhnarovich 2016,
2017), where the objective is to predict the color image given
its grayscale version. Note that the grayscale image is gen-
erated from the color input free of any human annotation
cost. One could formulate several tasks like solving jumbled
images (Noroozi and Favaro 2016), inpainting (Pathak et al.
2016), classifying the angle of image rotation (Komodakis
and Gidaris 2018; Feng, Xu, and Tao 2019), etc. In contrast,
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clustering methods focus on assigning data points to appro-
priate centroids. The centroids are expected to separate the
data based on high-level semantics.

Though these unsupervised methods could learn fairly
generic representations, they cannot be directly employed
for the downstream task of interest without labeled supervi-
sion. Self-supervision simply returns a feature vector for ev-
ery input, which is not useful per se for image classification.
One needs to train at least a linear layer on the feature repre-
sentations to map to the category labels. Unfortunately, this
training requires image-label pairs defeating the real purpose
of self-supervision. Similarly, clustering approaches assign
input images to one of the cluster centers. But the clusters
themselves do not have any task-specific identity and again
require labeled data to associate clusters with correspond-
ing classification labels. The final performance depends on
this labeled training stage, though one might get good re-
sults with less amount of data. As summarized in Figure 1,
existing methods have a mandatory training requirement of
labeled data.

In contrast, we propose a ‘true’ self-supervision paradigm
that do not require even a single annotated sample for train-
ing. The current focus is only on image classification tasks
and the key difference is the ability to train a fully-functional
classifier without providing any image-category label pairs.
The only information necessary, other than plenty of images,
is the approximate description of how labels are distributed
in the dataset. This statistics on the labels covers the entire
collection of given training images and is not per instance-
level. We leverage the word vectors of the classification cat-
egory names to form this label distribution and hence do not
require human supervision even here. The word vectors de-
scribe the semantic similarity between the categories and are
used to match the distribution of model predictions.

Our main contributions can be summarized as:
• The new paradigm of ‘true’ self-supervision that does not

necessitate even a single instance-level annotation, but
can work with the description of label distribution.
• The first fully-functional classifier trained without any

image-label pairs and yet provide significant classifica-
tion performance.
• A novel formulation loss for distribution matching via

the cluster-guided optimal transport objective.
• A useful extension of the proposed approach to ordinal

classification without any labels, which delivers compet-
itive performance compared to supervised works.

Related Works
Self-supervision: Early works in unsupervised feature
learning employ some variants of autoencoder (Hinton and
Salakhutdinov 2006; Vincent et al. 2008; Kingma and
Welling 2013; Makhzani and Frey 2015), where discrimi-
natory features are acquired by learning to predict back the
input or its enhanced version. The more successful self-
supervision methods use different pretext tasks for which
obtaining labels is trivial. They usually leverage some struc-
tural properties of the unlabeled data to formulate suit-
able pretext task. For instance, works like (Agrawal, Car-

reira, and Malik 2015; Jayaraman and Grauman 2015;
Pathak et al. 2017; Wang and Gupta 2015; Misra, Zit-
nick, and Hebert 2016) utilize the structure in the form of
motion cues and temporal information in videos to con-
struct a self-supervision objective. Other pretext tasks in-
clude predicting the angle of object rotation (Komodakis
and Gidaris 2018; Feng, Xu, and Tao 2019), colorizing a
grayscale image (Zhang, Isola, and Efros 2016; Larsson,
Maire, and Shakhnarovich 2016, 2017), inpainting miss-
ing regions (Pathak et al. 2016) and learning spatial con-
text (Noroozi and Favaro 2016; Doersch, Gupta, and Efros
2015; Nathan Mundhenk, Ho, and Chen 2018). A compre-
hensive study on these popular self-supervision methods can
be found in (Kolesnikov, Zhai, and Beyer 2019). These pre-
text tasks could introduce some bias in the acquired rep-
resentations and contrastive learning is one way forward.
Contrastive learning approaches (Chen et al. 2020a; He
et al. 2020; Dosovitskiy et al. 2014; Oord, Li, and Vinyals
2018; Bachman, Hjelm, and Buchwalter 2019a,b) enforce
consistency of learned features under various data augmen-
tations. This framework makes use of contrastive loss (Had-
sell, Chopra, and LeCun 2006; Wu et al. 2018) to minimize
the distance between the different augmentations of the same
image and maximize for other images in a latent space. The
issue of learning pretext-specific features is mitigated to a
certain extent and results in extracting more generic useful
features. However, all these pretext-based and contrastive-
based self-supervision, focus on just learning representa-
tions and requires mandatory supervised training for the fi-
nal task of classification.

Clustering: An alternate line of works use clustering for
unsupervised classification. There are many methods that
either directly learns through a clustering-like loss or ac-
quire representations that need to be post-processed using a
clustering method (Haeusser et al. 2018; Caron et al. 2018;
Chang et al. 2017; Xie, Girshick, and Farhadi 2016; Yang,
Parikh, and Batra 2016). IIC (Ji, Henriques, and Vedaldi
2019) is an unsupervised clustering method that maximizes
the mutual information between augmented versions of the
same image to form clusters. SeLa (Asano, Rupprecht, and
Vedaldi 2019), on the other hand, simultaneously evolve fea-
tures through clustering by alternating between self-labeling
and representation learning. In contrast, SCAN (Van Gans-
beke et al. 2020) decouples representation learning and clus-
tering into a multi-stage process. It utilizes a self-supervision
method such as SimCLR (Chen et al. 2020a) or MocoV2 (He
et al. 2020) to learn representations and then employs a
self-training based method to form clusters. All of these
approaches require access to instance-level labels for la-
beling clusters to enable final target class prediction. This
cluster mapping is typically done using Hungarian assign-
ment (Kuhn 1955).

Other related paradigms: A class of zero-shot learning
methods (Norouzi et al. 2013; Zhang, Gong, and Shah 2016;
Al-Halah, Tapaswi, and Stiefelhagen 2016) encodes label
descriptions into a semantic embedding space of word vec-
tors such as Word2Vec (Mikolov et al. 2013). These works
relate the semantic similarity of label descriptions of unseen
classes to seen classes for classification on unseen classes.
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Figure 2: Depiction of the distribution matching process. The prior follows certain semantic similarity relations (extracted using
word vectors of labels) across categories, which is enforced on the distribution of logits given by the classifier under training.

However, this framework requires access to the labeled set
of seen classes and aims to learn the correct mapping to the
unseen classes. We focus to completely eliminate the neces-
sity for any labeled data whatsoever.

Ordinal classification: Ordinal classification is an ac-
tively researched problem in machine learning and computer
vision communities, where there is some inherent order ev-
ident in the labels. It is commonly applied to computer vi-
sion problems such as age estimation (Liu, Wang, and Kong
2019; Diaz and Marathe 2019; Beckham and Pal 2017; Niu
et al. 2016; Liu, Kong, and Goh 2018), depth estimation (Fu
et al. 2018; Diaz and Marathe 2019), diagnosing diabetic
retinopathy (Beckham and Pal 2016, 2017) etc. Almost all
research in this area has been in the supervised setting. But
our ‘true’ self-supervision framework naturally fits for ordi-
nal classification as it can effectively leverage the inherent
structure in the label space.

Our Approach
Distribution of Labels
We aim to train a classifier with zero annotated images. But
realizing such a system is hard as some supervisory signal
should exist for connecting the learned features or clusters to
the category labels. This is thought to be an essentially un-
avoidable bottleneck in unsupervised learning. Interestingly,
we tackle this issue by deriving supervisory signals from a
measure of mismatch between the distribution of model pre-
dictions with the prior structure of the labels. We exploit the
preexisting structure in labels by enforcing the relationships
of the labels in a representational label space onto the classi-
fier space. This relationship is formed using a semantic word
embedding of the label names.

Observe that the predictions of trained classifier follow
certain semantic characteristics. A model assigning higher
confidence to ‘dog’ for a given image, is expected to label
‘cat’ as the next best category rather than ‘car’. In fact, one
could specify a ranking or ordinal relations among labels in
terms of similarity. This semantic similarity can be easily
computed with the word vector of the category labels. For

instance, the term ‘dog’ is closer to ‘cat’ than ‘car’ or ‘car’
is nearer to ‘ship’ compared to ‘bird’. The high-level seman-
tic ordering from word vectors might not always correspond
to visual similarity. But since typical image classifiers are
trained on categories that have significant associations with
each other, the correspondence holds in practice.

We construct a distribution over labels using the ordinal
relationships of word vector similarity of label names. Let
c be the total number of target classes for the classifier. For
each label li, we obtain its word vector vi and compute co-
sine similarity to other word vectors {vj}j∈L. Here L is the
label index set defined as L = {1, 2, ...c}. Now the category
labels are ranked according to its similarity to category li.
This ranking is specified by vector ri, where each element
rij indicates the index of the jth similar category to label li.

Since the classifier outputs are real-valued, we transform
the obtained rank vector ri to a vector ti in the logit space.
The elements of ti are fixed conforming to ri. We set the en-
try for the target class as ti[ri1] = 1 and fix others relative to
it. As far as the target class discrimination is considered, the
relations towards the most similar (ri2) and the most dissim-
ilar (ric) categories matter the most. As observed from the
logits, categories typically have a unique signature in terms
of the neighbouring classes in the logit space. For instance,
one could say ‘cat’ is that category which closer to ‘dog’ and
‘deer’, but far away from ‘truck’ (see Figure 2). The most far
away class gives valuable information in a negative discrim-
inatory sense, while remaining categories do not provide
much characterization to the target class. With this intent,
we set the values for most similar classes as ti[ri2] = 0.5
and ti[ri3] = 0.2. The most dissimilar one ti[ric] is fixed to
−0.5. Other entries are set such that it forms an arithmetic
series from ti[ri4] to ti[ric]. Finally, we unit normalize ti to
get t̂i. The exact magnitude of values does not seem to have
any significant effect, but the rank order matters.

We form a prior P over the logits using the vector set
T = {t̂0, t̂1, ...t̂c}. If the dataset is class-balanced, then P
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Figure 3: Training stages: I. A backbone network fBB is trained to extract features using self-supervision, II. Features from
fBB are clustered together and III. The classifier layer fC is updated through the cluster-guided distribution matching process.

reduces to a uniform distribution as,

P ∼ U(T ); Pr(t̂i) = αi =
1

c
. (1)

Appropriate non-uniform distributions are chosen for unbal-
anced datasets with αi set according to class size. Given this
prior distribution on the labels, a classifier could be trained
by enforcing the predicted logits to follow the prior. The er-
ror signal is derived from a measure of how well the predic-
tion distribution conforms with the prior constructed from
the word vectors. This matching process is illustrated in Fig-
ure 2. To further enforce the importance of most discrimina-
tory classes (most similar and most dissimilar), we define
weight vector wi corresponding to the ith label as,

wi = [wi1, ..wic]; wij =
{
e−rij if rij < b c2c
erij−c otherwise.

(2)

This exponential nature of the weights gives prominence to
the characterizing categories, when used to compute dis-
tance between logit vectors.

Distribution Matching with Sinkhorn Loss
We have two distributions of vectors: one from the prior P
and other formed by the logit predictions of the classifier un-
der training, denoted by fC . Our distributions are in the form
of empirical measures (an array of samples), for which a
measure of how close the underlying statistics that generated
these samples needs to be defined. Optimal transport (OT)
framework suits such scenarios and the distance is related to
the amount of probability mass that should be transported to
make the distributions similar. The standard Earth Mover’s
Distance (EMD) (Rubner, Tomasi, and Guibas 2000) can be
used here, but is not differential as such. However, Cuturi et
al. (Cuturi 2013) formulates the Sinkhorn distance between

two empirical measures to be an upper bound for EMD and
more importantly enables differentiability, while being com-
putationally tractable.

We sample logit vectors by passing B images through the
classifier. The resultant set of logit vectors, denoted with SC ,
acts as empirical measures from the underlying distribution
that the classifier has learned. Let SP stand for samples ran-
domly drawn the prior P . The Sinkhorn matching is per-
formed between SC and SP , which essentially tries to match
the underlying distributions. Now consider a transport plan
R, where the ijth entry indicate the likelihood of assigning
ith logit in SC to the jth sample in SP . Every valid assign-
ment R has a corresponding cost M defined as,

Mij = wj � (SCi − SPj )2, (3)

where the weight vector wj (computed as in equation 2)
gives more consideration to the most discriminatory cate-
gories. The transport cost is simply specified as the Frobe-
nius inner product 〈R,M〉F ; closer the two distribution un-
der consideration, lower would be this cost. The Sinkhorn
loss Lsk is formulated as the cost incurred for the best trans-
port plan with an additional regularization term. Mathemat-
ically,

Lsk(SC , SP ) = argminR 〈R,M〉F −
1
βE(R),

s.t. R1 = 1
B1

RT1 = 1
B1,

(4)
whereE(R) is the entropy associated with R and β is a reg-
ularization constant. More details on the general formulation
is available in (Cuturi 2013). So updating the classifier pa-
rameters by minimizing Lsk, transforms the distribution of
the predicted logits to resemble the prior.
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Method Labels CIFAR-10 STL-10 CIFAR100-20 ImageNet-10
SimCLR (Chen et al. 2020a) 3 91.4∗ 83.8∗ 76.1∗ 91.1⊥

DeepCluster (Caron et al. 2018) 3 37.4 33.4 18.9 -
ADC (Haeusser et al. 2018) 3 32.5 53.0 16.0 -
IIC (Ji, Henriques, and Vedaldi 2019) 3 57.6 ± 5.0 59.8 ± 0.8 25.5 ± 0.5 -
SCAN (Van Gansbeke et al. 2020) 3 87.6 ± 0.4 76.7 ± 1.9 45.9 ± 2.7 -
Random (self-supervised fBB & random fC) 7 11.2 12.8 4.5 6.6
Ours (ZERO labels) 7 42.1 ± 5.5 36.5 ± 3.3 13.6 ± 3.2 47.3 ± 8.6

Table 1: Percentage accuracy on various nominal classification datasets. Our approach performs significantly better over base-
lines not using labels and fares competitive to earlier methods requiring annotated data. * denotes our implementation and ⊥

indicates use of MocoV2 (He et al. 2020).

Self-supervision and Clustering
In Figure 3, the complete training pipeline of our method
is illustrated. There are three parts, of which the first stage
is self-supervised feature learning (SFL), where discrimina-
tory features are extracted. We employ the SimCLR (Chen
et al. 2020a) framework for training the backbone network
fBB . SimCLR uses a contrastive learning approach of learn-
ing representations that are close for augmented versions of
the same image, but far apart for others. It extracts features
that are agnostic to a variety of augmentations, thereby ob-
taining more object discriminative representations. We use
ResNet50 (He et al. 2016) as our backbone network fBB and
train the model parameters till saturation under contrastive
self-supervision.

The second stage runs feature clustering (FC) on the rep-
resentations obtained from self-supervision inorder to be
used as an additional guiding signal for Lsk. We utilize opti-
mal transport to minimize the distance between the features
obtained from fBB and the cluster centers (zis). The number
of cluster centers is set to the number of target classes. From
the obtained cluster centers and the corresponding transport
plan, we computeAij which represents if image i belongs to
jth cluster or not (value 1 asserts the assignment, otherwise
0). Note that the FC step is completely unsupervised and
the cluster centers need not correspond to the target classes.
The cluster assignments in A are not to the actual target cat-
egories. At this point, unsupervised clustering works gen-
erally utilize labeled data to map the clusters to target cate-
gories, but is not plausible in our scenario. Hence, the cluster
assignments are simply leveraged for better supervision via
Lsk.

Cluster Guided Distribution Matching
Given the pretrained backbone network fBB and the cluster
labels A, we append a linear classifier layer fC to fBB . The
prediction logits are taken from fC to obtain the final clas-
sification scores. In the third stage, the fBB is frozen, and
only fC is open for training. We modify the Lsk loss to take
advantage of the signals from the cluster labels.

Since clusters are formed using fBB trained in a self-
supervised manner, the clustered samples share semantic
characteristics. Samples in a cluster might not belong to a
single category, but can have visual similarity. We infuse
this semantic affinity to the optimal transport plan. The ma-

trix AAT captures the relationships among the given sam-
ple set in terms of the cluster affinity. Now if R∗ stand for
the optimal transport plan obtained from the optimization in
equation 4, then the cluster-guided Sinkhorn loss Lcgsk is
formulated as,

Lcgsk(SC , SP ) =
〈
AATR∗,M

〉
F
. (5)

By applying the cluster correlation matrix AAT on the op-
timal transport plan, a solution that regards both the trans-
portation probabilities and feature semantics evolves.

We emphasize that our final loss Lcgsk is devoid of any
requirement of image-label pairs. For training, a batch of
images is sampled from the dataset to form the predicted
logit set SC and ordinal relationships are sampled from the
prior SP . The Lcgsk is computed and backpropagated to up-
date the classifier layer weights. The value of the loss is
monitored for saturation and the training is continued till
the mean loss over a window improves. No labeled data is
employed even to validate and complete the training. After
training, the final classification accuracy on the test set is
evaluated with the best model selected based on Lcgsk.

Experiments
Implementation Details
We utilize ResNet-50 (He et al. 2016) as the base network
fBB for running all our experiments. For the self-supervised
feature learning (SFL), a projection head maps average
pooled features from fBB as in SimCLR (Chen et al. 2020a).
We use the Adam (Kingma and Ba 2014) optimizer with
learning rate of 10−3 and a batch size of 128 for all datasets
except CIFAR100-20 (Krizhevsky, Hinton et al. 2009). We
use a batch size of 512 for CIFAR100-20. For ImageNet-10,
we use MocoV2 (Chen et al. 2020b; He et al. 2020) because
of its superior performance than SimCLR. After SFL, the
projection head is dropped and clustering is performed on
features obtained from fBB . Here the sinkhorn clustering
employs Adam optimizer with learning rate of 0.1 for a to-
tal of 5K steps. For obtaining Word2Vec embeddings, we
utilize publicly available spaCy 1 library.

Since the loss defined in equation 5 is unbounded, we ap-
ply gradient clipping so as to fix the magnitude of the gra-
dients. We clip the gradient norms above the value of 100.

1https://github.com/explosion/spaCy
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Method Label Adience Aesthetic DR
Niu et al. (Niu et al. 2016) 3 56.7 ± 6.0 68.96 -
CNN-POR (Liu, Kong, and Goh 2018) 3 57.4 ± 5.8 70.05 -
SORD (Diaz and Marathe 2019) 3 59.6 ± 3.6 72.03 -
SimCLR (Chen et al. 2020a) 3 49.7 ± 2.7 69.87 74.3
Beckham et al.(Beckham and Pal 2017) 3 55.0 - 77.0
Random (self-supervised fBB & random fC) 7 13.2 10.73 39.8
Ours (ZERO labels) 7 32.5 ± 8.1 57.93 57.7

Table 2: Classification accuracy (%) on ordinal classification datasets. Our approach has better accuracy than unsupervised
baselines and stands comparable to methods using labeled data.

To stabilize the training, the learning rate is set to 10−5. For
distribution matching, we use a batch size of 500, entropy
regularization constant β as 0.01 and training step as 10K.
The three most negative classes are also randomly shuffled
while sampling from the prior P .

We find that initialization strategy of fC directly influ-
ences the performance of distribution matching. Specifi-
cally, random initialization results in too much variance
across different runs. This variance is reduced by a data-
dependent initialization strategy developed by (Coates and
Ng 2012). It utilizes spherical K-means (Buchta et al. 2012)
to avoid degeneracy or empty clusters as is common with
K-means based initialization. On the other hand, we just use
cluster centers (zi) obtained in feature clustering (FC) stage
using sinkhorn clustering which also avoids degenerate so-
lutions. Moreover, a clustering based initialization has the
added advantage of capturing the modes of the dataset and
hence reduces degeneracy or mode collapse in the classifier
space.

Nominal Classification
Datasets: We evaluate our approach on standard classi-
fication datasets employed by the unsupervised learning
community. First is the CIFAR-10 (Krizhevsky, Hinton
et al. 2009) dataset, which comprises of 10 classes. STL-
10 (Coates, Ng, and Lee 2011) is another dataset with 5K
labeled training images and an additional 100K unlabeled
images, both of which are used for training. CIFAR-100-
20 (Krizhevsky, Hinton et al. 2009) dataset is adapted from
CIFAR-100 (Krizhevsky, Hinton et al. 2009) by grouping
together 100 classes into 20 superclasses. We also test our
approach on ImageNet (Krizhevsky, Sutskever, and Hinton
2012), by forming 10 superclasses from the 1000 classes
present in ImageNet. We denote the resulting dataset as
ImageNet-10.

The performance of our approach along with the baselines
is reported in Table 1. We extensively evaluate the method
through 50 training runs, each initialized with a different
seed. To the best of our knowledge, there are no existing
completely unsupervised methods. Due to the lack of any
competing method, we consider the random accuracy as our
baseline (Random). Random accuracy is computed by us-
ing self-supervised fBB backbone with a random fC layer.
We observe that our approach performs considerably better
than the baseline. The performance scores for unsupervised

clustering works are taken from (Ji, Henriques, and Vedaldi
2019). It is important to note that they are not directly com-
parable to our approach since they utilize instance-level la-
bels at some stage in the training or testing. Interestingly, the
performance is competent with earlier unsupervised cluster-
ing based works like DeepCluster (Caron et al. 2018) and
ADC (Haeusser et al. 2018) and even outperforms them on
CIFAR-10, without using any label whatsoever.

Ordinal Classification
Datasets: We utilize datasets from common applications of
ordinal classification or regression in age estimation, im-
age quality estimation and diagnosing diabetic retinopathy.
The Adience (Eidinger, Enbar, and Hassner 2014) dataset
is a real-world dataset of facial images collected for age
and gender classification. It sources 26K phone clicked pho-
tos from Flickr with 2.2K unique faces. The images vary
drastically in terms of lighting conditions, appearance, pose,
etc. Age annotations are grouped into 8 ordinal classes: 0-
2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53 and 60+ years old.
The ordinal nature of the label set is clear and directly fixes
the rank indices rijs. We report the performance using the
cross-validation splits released with the data. The Aesthet-
ics (Schifanella, Redi, and Aiello 2015) dataset is collection
of 15K Flickr images along with annotated aesthetic scores.
All images are assigned an aesthetic score ranging from 1-5,
with higher the score, the more aesthetically pleasing it is.
We split the dataset into training and testing set in an 80-20
ratio. EyePACS-Kaggle Diabetic Retinopathy (Cuadros and
Bresnick 2009) dataset, collected by EyePACS, is a set of
35K fundus images (i.e. retinal images) along with annota-
tions for diagnosing the extent of diabetic retinopathy. The
images provided are of high-resolution and are taken under a
variety of lighting conditions. All images are labeled as one
of No DR, Mild DR, Moderate DR, Severe DR and Prolifer-
ative DR categories. Following (Beckham and Pal 2017), we
process the dataset using (Graham 2015), divide the dataset
into training and validation images (using a 90-10 split) and
report the results on the validation split.

The performance of our approach on ordinal classifica-
tion datasets is reported in Table 2. As in the case of nomi-
nal classification, we consider random accuracy as our base-
line in the absence of any unsupervised methods. Our ap-
proach performs considerably better. We borrow the perfor-
mance numbers for ordinal classification/regression works
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Figure 4: A. Visualizing alignment between fC and prior P logits: categories similar to target class under consideration (each
row) are colored orange, while the dissimilar ones with blue. B. Action of cluster-guided distribution matching shown for two
clusters: Lcgsk more effectively forces samples of one cluster to classify to the same target category than Lsk.

Method Accuracy
(A) No SFL, No FC Stage 9.9 ± 0.5
(B) No FC Stage (Lsk) 9.8 ± 0.2
(C) No FC Stage, No Cluster Init 10.5 ± 1.9
(D) All Stages, No Cluster Init 39.4 ± 14.3
(E) All Stages 42.1 ± 5.5

Table 3: Architectural ablations on CIFAR-10. All stages
(SFL→ FC→ Distribution Matching) are necessary.

from (Diaz and Marathe 2019). Since we consider the prob-
lem as ordinal classification and not regression as fC di-
rectly returns the predicted class, we omit using mean-
absolute-error (MAE) to measure performance. Since the
backbone fBB is trained using SimCLR, linear training on
SimCLR using labels is an upper bound for our approach.
Our approach performs well and successfully avoids degen-
erate solutions for datasets with high imbalance like Aes-
thetic and DR.

Architecture Ablations
We evaluate the effectiveness of various components of our
approach and report the results on CIFAR-10 dataset in Ta-
ble 3. We train fC layer by obtaining features from a random
fBB network (denoted by (A)) and observe degraded perfor-
mance as expected. This highlights the importance of self-
supervised learning for training the backbone fBB . (B) and
(C) refer to ablations where the FC stage is skipped (i.e. us-
ing only Lsk). For (C), we randomly initialize fC without
the cluster-based initialization strategy. All the components
are seen to directly improve the classification performance.
We also independently test the cluster initialization scheme
and demonstrate its usefulness, denoted by (D). Random ini-
tialization performs slightly worse than cluster-based initial-
ization on average with a high variance in the obtained re-
sults. Moreover, it sometimes results in models that do not
predict certain classes (i.e. degeneracy). Cluster-based ini-
tialization strategy avoids degeneracy and enables learning
all the categories for any seed value.

Analysis of Distribution Matching
We study the degree of alignment between Word2Vec prior
P and the logit distribution of fC . For this, the logit
vectors from fC corresponding to images in CIFAR-10
dataset are collected and a mean logit vector is computed
for each category using the ground truth label. The mean
vectors are examined to extract the similarity ranks (rijs)
with respect to other categories. A vector sampled from
prior P is considered to be a match with that of an fC
mean vector if both contain a common class in the most
similar set (i.e. {ri2, ri3}) and in the most dissimilar set
(i.e. {ric, ri,c−1}). This scheme is chosen since the proposed
matching method is mostly sensitive to these extreme cat-
egories. As shown in Figure 4, we observe this necessary
alignment between the two distributions, supporting our as-
sumptions.

We further analyze the effect of cluster-guided distribu-
tion matching by studying the cluster assignments for Lsk
and Lcgsk in Figure 4. After selecting samples from a par-
ticular cluster obtained from the clustering step, the classifi-
cation predictions for these samples for a model trained with
Lsk and Lcgsk are analyzed. We find that using Lcgsk forces
more samples in a cluster to classify to the same target, thus
demonstrating the effectiveness of the cluster-guided loss.

Conclusion
In this work, we presented a novel method to train an image
classifier without using any instance-level labeled data. The
key idea is to derive supervisory signal by matching the dis-
tribution of logit predictions to that of a prior formed from
the word vector similarity of the target labels. The classi-
fication accuracy delivered by the approach is significant,
considering the fact that not even a single image-label pair
is required, making it highly useful for annotation intensive
practical settings. However, there is a performance gap com-
pared to fully supervised models, which should be addressed
in future works. Another direction is to scale up the tech-
nique to classifiers with a large number of categories. De-
spite these shortcomings, our work substantiates that ‘true’
self-supervision could be realized and needs to be actively
explored further.

2168



Acknowledgements
This work was supported by Uchhatar Avishkar Yojana
(UAY) project (IISC 010), Ministry of Human Resource De-
velopment (MHRD), Government of India.

References
Agrawal, P.; Carreira, J.; and Malik, J. 2015. Learning to
see by moving. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV).
Al-Halah, Z.; Tapaswi, M.; and Stiefelhagen, R. 2016. Re-
covering the missing link: Predicting class-attribute associa-
tions for unsupervised zero-shot learning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition.
Asano, Y. M.; Rupprecht, C.; and Vedaldi, A. 2019. Self-
labelling via simultaneous clustering and representation
learning. arXiv preprint arXiv:1911.05371.
Bachman, P.; Hjelm, R. D.; and Buchwalter, W. 2019a.
Learning Representations by Maximizing Mutual Informa-
tion Across Views. In Advances in Neural Information Pro-
cessing Systems.
Bachman, P.; Hjelm, R. D.; and Buchwalter, W. 2019b.
Learning representations by maximizing mutual information
across views. In Advances in Neural Information Processing
Systems.
Beckham, C.; and Pal, C. 2016. A simple squared-error
reformulation for ordinal classification. arXiv preprint
arXiv:1612.00775.
Beckham, C.; and Pal, C. 2017. Unimodal Probability Dis-
tributions for Deep Ordinal Classification. In International
Conference on Machine Learning.
Buchta, C.; Kober, M.; Feinerer, I.; and Hornik, K. 2012.
Spherical k-means clustering. Journal of Statistical Soft-
ware.
Caron, M.; Bojanowski, P.; Joulin, A.; and Douze, M. 2018.
Deep clustering for unsupervised learning of visual features.
In Proceedings of the European Conference on Computer
Vision.
Chang, J.; Wang, L.; Meng, G.; Xiang, S.; and Pan, C. 2017.
Deep adaptive image clustering. In Proceedings of the IEEE
international conference on computer vision.
Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020a.
A Simple Framework for Contrastive Learning of Visual
Representations. arXiv preprint arXiv:2002.05709.
Chen, X.; Fan, H.; Girshick, R.; and He, K. 2020b. Improved
baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297.
Coates, A.; Ng, A.; and Lee, H. 2011. An analysis of single-
layer networks in unsupervised feature learning. In Proceed-
ings of the fourteenth international conference on artificial
intelligence and statistics.
Coates, A.; and Ng, A. Y. 2012. Learning feature representa-
tions with k-means. In Neural networks: Tricks of the trade.
Springer.

Cuadros, J.; and Bresnick, G. 2009. EyePACS: an adapt-
able telemedicine system for diabetic retinopathy screening.
Journal of diabetes science and technology.
Cuturi, M. 2013. Sinkhorn distances: Lightspeed computa-
tion of optimal transport. In Advances in Neural Information
Processing Systems.
Diaz, R.; and Marathe, A. 2019. Soft labels for ordinal re-
gression. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition.
Doersch, C.; Gupta, A.; and Efros, A. A. 2015. Unsuper-
vised visual representation learning by context prediction. In
Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV).
Dosovitskiy, A.; Springenberg, J. T.; Riedmiller, M.; and
Brox, T. 2014. Discriminative unsupervised feature learning
with convolutional neural networks. In Advances in neural
information processing systems.
Eidinger, E.; Enbar, R.; and Hassner, T. 2014. Age and gen-
der estimation of unfiltered faces. IEEE Transactions on
Information Forensics and Security.
Feng, Z.; Xu, C.; and Tao, D. 2019. Self-supervised repre-
sentation learning by rotation feature decoupling. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition.
Fu, H.; Gong, M.; Wang, C.; Batmanghelich, K.; and Tao,
D. 2018. Deep ordinal regression network for monocular
depth estimation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition.
Graham, B. 2015. Kaggle diabetic retinopathy detection
competition report. University of Warwick.
Hadsell, R.; Chopra, S.; and LeCun, Y. 2006. Dimension-
ality reduction by learning an invariant mapping. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition.
Haeusser, P.; Plapp, J.; Golkov, V.; Aljalbout, E.; and Cre-
mers, D. 2018. Associative deep clustering: Training a clas-
sification network with no labels. In German Conference on
Pattern Recognition. Springer.
He, K.; Fan, H.; Wu, Y.; Xie, S.; and Girshick, R. 2020.
Momentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition.
Hinton, G. E.; and Salakhutdinov, R. R. 2006. Reducing the
dimensionality of data with neural networks. Science.
Jayaraman, D.; and Grauman, K. 2015. Learning image rep-
resentations tied to ego-motion. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV).
Ji, X.; Henriques, J. F.; and Vedaldi, A. 2019. Invariant in-
formation clustering for unsupervised image classification
and segmentation. In Proceedings of the IEEE International
Conference on Computer Vision.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

2169



Kingma, D. P.; and Welling, M. 2013. Auto-encoding varia-
tional bayes. In Proceedings of the International Conference
on Learning Representations.
Kolesnikov, A.; Zhai, X.; and Beyer, L. 2019. Revisiting
self-supervised visual representation learning. In Proceed-
ings of the IEEE conference on Computer Vision and Pattern
Recognition.
Komodakis, N.; and Gidaris, S. 2018. Unsupervised repre-
sentation learning by predicting image rotations. In Interna-
tional Conference on Learning Representations (ICLR).
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images. Citeseer.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems.
Kuhn, H. W. 1955. The Hungarian method for the assign-
ment problem. Naval research logistics quarterly.
Larsson, G.; Maire, M.; and Shakhnarovich, G. 2016. Learn-
ing representations for automatic colorization. In Proceed-
ings of the European Conference on Computer Vision.
Larsson, G.; Maire, M.; and Shakhnarovich, G. 2017. Col-
orization as a proxy task for visual understanding. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition.
Liu, Y.; Kong, A. W. K.; and Goh, C. K. 2018. A Con-
strained Deep Neural Network for Ordinal Regression. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition.
Liu, Y.; Wang, F.; and Kong, A. W. K. 2019. Probabilistic
Deep Ordinal Regression Based on Gaussian Processes. In
Proceedings of the IEEE International Conference on Com-
puter Vision.
Makhzani, A.; and Frey, B. J. 2015. Winner-take-all autoen-
coders. In Advances in Neural Information Processing Sys-
tems.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in neural
information processing systems.
Misra, I.; Zitnick, C. L.; and Hebert, M. 2016. Shuffle and
learn: unsupervised learning using temporal order verifica-
tion. In Proceedings of the European Conference on Com-
puter Vision (ECCV).
Nathan Mundhenk, T.; Ho, D.; and Chen, B. Y. 2018. Im-
provements to context based self-supervised learning. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).
Niu, Z.; Zhou, M.; Wang, L.; Gao, X.; and Hua, G. 2016.
Ordinal Regression With Multiple Output CNN for Age Es-
timation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition.
Noroozi, M.; and Favaro, P. 2016. Unsupervised learning
of visual representations by solving jigsaw puzzles. In Pro-
ceedings of the European Conference on Computer Vision.

Norouzi, M.; Mikolov, T.; Bengio, S.; Singer, Y.; Shlens, J.;
Frome, A.; Corrado, G. S.; and Dean, J. 2013. Zero-shot
learning by convex combination of semantic embeddings.
arXiv preprint arXiv:1312.5650.
Oord, A. v. d.; Li, Y.; and Vinyals, O. 2018. Representation
learning with contrastive predictive coding. arXiv preprint
arXiv:1807.03748.
Pathak, D.; Girshick, R.; Dollár, P.; Darrell, T.; and Hariha-
ran, B. 2017. Learning features by watching objects move.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition.
Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; and
Efros, A. A. 2016. Context encoders: Feature learning by
inpainting. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition.
Rubner, Y.; Tomasi, C.; and Guibas, L. J. 2000. The earth
mover’s distance as a metric for image retrieval. Interna-
tional journal of computer vision.
Schifanella, R.; Redi, M.; and Aiello, L. 2015. An image is
worth more than a thousand favorites: Surfacing the hidden
beauty of flickr pictures. arXiv preprint arXiv:1505.03358.
Van Gansbeke, W.; Vandenhende, S.; Georgoulis, S.; Proes-
mans, M.; and Van Gool, L. 2020. Scan: Learning to classify
images without labels. In Proceedings of the European Con-
ference on Computer Vision.
Vincent, P.; Larochelle, H.; Bengio, Y.; and Manzagol, P.-A.
2008. Extracting and composing robust features with de-
noising autoencoders. In Proceedings of the International
Conference on Machine Learning.
Wang, X.; and Gupta, A. 2015. Unsupervised learning of
visual representations using videos. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV).
Wu, Z.; Xiong, Y.; Yu, S. X.; and Lin, D. 2018. Unsuper-
vised feature learning via non-parametric instance discrimi-
nation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.
Xie, J.; Girshick, R.; and Farhadi, A. 2016. Unsupervised
deep embedding for clustering analysis. In International
conference on machine learning.
Yang, J.; Parikh, D.; and Batra, D. 2016. Joint unsupervised
learning of deep representations and image clusters. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition.
Zhang, R.; Isola, P.; and Efros, A. A. 2016. Colorful image
colorization. In Proceedings of the European Conference on
Computer Vision.
Zhang, Y.; Gong, B.; and Shah, M. 2016. Fast zero-shot
image tagging. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition.

2170


