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Abstract

Acquiring the most representative examples via active learn-
ing (AL) can benefit many data-dependent computer vision
tasks by minimizing efforts of image-level or pixel-wise an-
notations. In this paper, we propose a novel Collaborative
Panoptic-Regional Active Learning framework (CPRAL) to
address the semantic segmentation task. For a small batch of
images initially sampled with pixel-wise annotations, we em-
ploy panoptic information to initially select unlabeled sam-
ples. Considering the class imbalance in the segmentation
dataset, we import a Regional Gaussian Attention module
(RGA) to achieve semantics-biased selection. The subset is
highlighted by vote entropy and then attended by Gaussian
kernels to maximize the biased regions. We also propose a
Contextual Labels Extension (CLE) to boost regional anno-
tations with contextual attention guidance. With the collab-
oration of semantics-agnostic panoptic matching and region-
biased selection and extension, our CPRAL can strike a bal-
ance between labeling efforts and performance and compro-
mise the semantics distribution. We perform extensive exper-
iments on Cityscapes and BDD10K datasets and show that
CPRAL outperforms the cutting-edge methods with impres-
sive results and less labeling proportion.

Introduction
Active learning frameworks (Cohn, Ghahramani, and Jordan
1996) resort to well-designed acquiring functions to gradu-
ally capture representative samples from the dataset, and the
generalized model can benefit from the final low-cost an-
notations with comparable performance. Many active learn-
ing algorithms have been developed to mitigate the depen-
dency of deep-learning-based models on the finely annotated
dataset. Although active learning has contributed greatly to
image classification (Beluch et al. 2018; Long, Hua, and
Kapoor 2013; Hua et al. 2013; Li and Guo 2013; Long and
Hua 2015; Long, Hua, and Kapoor 2016; Hua et al. 2018;
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Figure 1: Red streams-model training, blue streams-samples
selection, black streams-sampled images annotation.

Sinha, Ebrahimi, and Darrell 2019; Choi et al. 2021; Cara-
malau, Bhattarai, and Kim 2021), there is a further margin
for exploring incremental annotations, especially for pixel-
wise computer vision tasks, like semantic segmentation.

Some active learning algorithms have been developed
to alleviate the data dependency in semantic segmenta-
tion (Górriz et al. 2017; Yang et al. 2017; Mackowiak et al.
2018; Cai et al. 2021). According to the different granularity
of sample annotations, active learning-based semantic seg-
mentation can be divided into panoptic labels guided meth-
ods (Dai et al. 2020; Yoo and Kweon 2019; Sinha, Ebrahimi,
and Darrell 2019; Kim et al. 2021) and regional informa-
tion supervised ones (Mackowiak et al. 2018; Casanova
et al. 2019; Colling et al. 2021). The former provides the
whole images for oracles, and each annotation increment is
based on the image size, while regional annotations consider
region-based label boosting. Flexible shape or size variety
can contribute to the region-based selection. Thus the perfor-
mance of regional selections usually has an advantage over
image-based annotations. However, more regional selections
require enormous acquisition execution and slow down the
annotation time for the entire active learning framework.

To design an active learning model that can handle large-
scale semantic segmentation datasets with compatible accu-
racy and sampling cost, we observe that an initial panoptic
selection is feasible to narrow the acquisition to relatively
few regions. A distillation module after the panoptic selec-
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tion is also necessary to select representative regions from
the narrowed subset. Besides, there are essential contextual
associations between regions, and existing region-based se-
lection methods ignore the similarity of context-related im-
age areas. If some appropriate guidance is investigated, re-
gional annotations can be extended to related contexts.

In this paper, we propose a collaborative panoptic-
regional active learning framework (CPRAL) to strike a bal-
ance between labor efforts and prediction performance. With
panoptic information as initial selection, some images can
represent the general distribution of the dataset. Then Re-
gional Gaussian Attention (RGA) can consolidate discrete
pixels and decide semantics-biased regions, which can alle-
viate the class imbalance between different semantic distri-
butions. The final queried selection is provided for annota-
tors to label different labels, and then we move them from
unlabeled pool to labeled set. Considering the relevance of
regional space, we import the Contextual Labels Extension
module (CLE) to extend region-based annotations. Such a
cycle can populate the number of labeled examples and im-
prove the performance of the segmentation network. We re-
peat the cycle until the budget is exceeded (Fig. 1).

The contributions of this paper are three-folds:
• We propose a Collaborative Panoptic-Regional Active

Learning framework to achieve partial-annotated seman-
tic segmentation. Panoptic information can select the ini-
tial subset with limited budgets, and regional acquisition
can decide representative semantic-biased regions.
• Considering the semantics-agnostic essence of data se-

lection, we employ the Regional Gaussian Attention
(RGA) to mitigate the class imbalance of sample distri-
bution. We also propose a Contextual Labels Extension
module (CLE) to boost regional annotations to related
context, further enlarging the labeling proportion.
• We perform extensive experiments to demonstrate the

performance of CPRAL, and our model outperforms
state-of-the-art methods on Cityscapes and BDD100K.
We also design an interactive GUI tool to support pixel-
wise semantic annotations and verify our CPRAL.

Related Work
Active Learning (AL). Except for some synthesized-based
query methods (Mahapatra et al. 2018; Mayer and Timofte
2020), most AL researches focus on selecting informative
samples from the unlabeled pool, including three major ac-
quisition functions: uncertainty, representation and their in-
tegration. Uncertainty-based methods (Ebrahimi et al. 2019;
Kapoor et al. 2007; Wang and Ye 2015) explore Gaussian,
entropy or decision to estimate uncertainty and are always
struggled in the dataset scale. Monte Carlo Dropout (MC
Dropout) architecture is introduced in (Gal and Ghahra-
mani 2016) with a Bayesian approximation. Many follow-
up approaches (Gal, Islam, and Ghahramani 2017; Kirsch,
Van Amersfoort, and Gal 2019) incorporate MC Dropout
into their algorithms to refine active learning. (Kuo et al.
2018; Beluch et al. 2018) employ ensembles to regress un-
certainty attributes, which may influence the class diver-
sity (Melville and Mooney 2004). The representation-based

methods (Sener and Savarese 2018; Jain and Grauman 2016)
consider categories for selection, and the computations may
explode as the number of classes increases.

Graph Convolutional Network (GCN) for active learning
is first imported in (Kipf and Welling 2017), and later (Wu
et al. 2019; Caramalau, Bhattarai, and Kim 2021) also en-
code features as graph nodes to bridge correlations. Recent
variational autoencoders (VAE) attract a lot of attention in
active learning. The learned features in VAE-based meth-
ods (Sinha, Ebrahimi, and Darrell 2019; Choi et al. 2021;
Kim et al. 2021; Zhang et al. 2020) can describe the uncer-
tainty and representation simultaneously. They can all pre-
dict competent results with additional training efforts and
time as sacrifices. There are also AL researches focusing on
other computer vision tasks, like object detection (Yuan et al.
2021; Aghdam et al. 2019), person re-Identification (Liu
et al. 2019), image matting (Yang et al. 2018, 2020) and 3D
segmentation (Siddiqui, Valentin, and Nießner 2020).
Semantic Segmentation. Many of the methods derived
from (Lin et al. 2017; Chen et al. 2017) are used for se-
mantic segmentation, and high-accuracy annotations are re-
quired by them to provide essential supervision. Many other
computer vision tasks (Mei et al. 2020, 2021; Liu et al.
2021; Qiao et al. 2020) also require high-precision anno-
tation. However, pixel-wise adaptions are expensive and in-
tractable, especially for some areas of expertise, like medi-
cal segmentation. Some researchers (Ahn and Kwak 2018;
Lee et al. 2019) exploit weakly supervised solutions to miti-
gate the dependency of dense annotations, which always re-
quire additional labels and are vulnerable to the scale of the
dataset. There are also many approaches developed based
on active learning to release the cost of labeling efforts. AL-
based methods can effectively select representative samples
and alleviate the disturbance of redundant images.
Semantic Segmentation and Active Learning. Active
learning-based methods mainly fall into two major cate-
gories, panoptic-guided and region-supervised methods, ac-
cording to different annotation types. The former queries
the next batch in the images unit (Dai et al. 2020; Sinha,
Ebrahimi, and Darrell 2019; Yang et al. 2017). Although
the selection of images is heuristic and firsthand, they will
sample many redundant pixels. Region-supervised meth-
ods (Casanova et al. 2019; Colling et al. 2021; Mackowiak
et al. 2018; Cai et al. 2021) annotate regions for model
training, which can provide more effective labels at the ex-
pense of regional execution time. These region-supervised
approaches are implemented without consideration of the
class imbalance in local patches. Besides, the context cor-
relations are also ignored in the regional annotations.

In this paper, we incorporate panoptic selection and re-
gional annotations as an integration. Panoptic sampling
can decide some representative images and regional sam-
pling can eliminate redundant pixels from the panoptic sub-
set. Considering labeling efforts and semantics complete-
ness (Mackowiak et al. 2018), we employ regular regions as
samples for annotations instead of superpixels. Besides, re-
gional Gaussian attention is introduced to mitigate the class
imbalance in local patches, and contextual labels extension
is proposed to generalize annotations in adjacent areas.
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Figure 2: The diagram outlines our CPRAL pipeline. Red streams-training, blue and green streams-subset acquiring, gray
streams-annotating. The initial labeled set can roughly train the segmentation network, and the next batch of images is predicted
from the unlabeled pool according to the panoptic and regional selection.

Methodology
Panoptic and Regional Motivation Statement
Let define some descriptors first, (x, y)-images and ground
truths in the labeled pool, (x̃, ỹ)-unlabeled pairs, corre-
sponding to the labeled pool D and unlabeled pool D̃. At
each iteration t, the acquisition function R can collect a
potential subset C and then move the samples from D to
D̃. Then according to KL divergence, we can formulate the
active learning optimization during samples selection (Gu-
dovskiy et al. 2020):

Ropt(t, C) = arg min
R(t,C)

DKL(D||D̃), (1)

If the distribution difference betweenD and D̃ is smaller, the
trained model onD can fully represent the complete training
dataset and predict competent results on the validation set.
Considering the parameters attributes of deep learning mod-
els and the optimization of the training procedure, Eqn. 1 is
equivalent to optimize:

DKL(D||D̃) ≈ DKL(Px,y(θ)||Px̃,ỹ(θ)), (2)
where θ is the model parameters, P (·) describes the sample
distribution on the learned model. The approximate distribu-
tion of D and D̃ means given parameters θ they share com-
parable model performance. Vice versa, for a deep learning
model, the close panoptic feature attributes can suggest ap-
proximate distribution for different data pools.

For the regional selection, due to the inevitable class im-
balance of semantic segmentation (road, vegetation vs. per-
son, motorcycle), few classes may occupy most regions.
Thus the acquisition of xr, yr should maintain the diversity
to cover all potential semantics in D̃ and validation set. Then
the semantic segmentation can summarize different classes:

L(yi, ŷi) =
∑
L(yri , ŷ

r
i ), (3)

here i means different classes.

Overall Pipeline

The pipeline of the proposed active learning framework is
unfolded in (Fig. 2), and the initial D is fixed. The pur-
ple, green and gray stages correspond to the panoptic se-
lection, regional selection and annotation phase. There are
four phases in an iteration to finish the samples selection and
annotation process. (1): Take unlabeled examples as input
and extract multi-scale features to regress a matching rating.
(2) Regional Gaussian Attention (RGA): Perform vote en-
tropy, kernel filter, and non-maximum suppression (NMS)
on panoptic samples to decide semantics-biased regions. (3)
Oracle or our designed label tool can annotate the selected
subset with high accuracy and then move them to the labeled
pool. (4) Contextual Labels Extension (CLE): Take images,
regional labels and masks as input, extract patches to boost
annotations with contextual attention as guidance. We adopt
MobileNet (Sandler et al. 2018) and DRN (Yu, Koltun, and
Funkhouser 2017) as two different segmentation encoders.
The former has impressive efficiency, while the latter shows
high performance. The ASPP module and decoder phase are
implemented referring DeepLab (Chen et al. 2017).

According to the above analysis, we first use panoptic in-
formation to compare the subset from D̃ with initialD. Here
we modify the loss prediction in (Yoo and Kweon 2019) to
achieve a matching rating. The features from 6 different en-
coder stages are involved and averagely pooled to C× 1× 1
to regress a panoptic rating. The expanded features can bet-
ter capture the distribution variation on the learned model,
and for the images share the approximate distribution and
similar panoptic information, Px,y(θ) and Px̃,ỹ(θ) will pre-
dict an equivalent rating. Therefore, we select the samples in
reverse order to enrich the diversity and representation ofD.

After panoptic selection, we import Regional Gaussian
Attention module (RGA) to decide semantics-biased re-
gions. Although the panoptic information can capture abun-
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Figure 3: Selection of top-K biased regions and labels extension with contextual guidance. For a logical output with Sc classes,
we can generate an entropy map. Then an s-steps cumulative Gaussian distribution can produce a w2 kernel to perform a
region-wise filter on the entropy map, and we select the top-K regions to provide labels. Finally, we split images, labels, and
masks into patches and perform contextual extension with region annotations as attention guidance to boost labels.

Interface Input Image Our Annotation

Figure 4: The visualization of our label tool.

dant feature attributions, the final rating is essentially a
semantics-agnostic regression, and the average pooling op-
eration will ignore the non-dominant classes. Such class im-
balance can result in the absence of critical information in
semantic segmentation, like persons. The RGA module can
pay attention to discrete semantics in local areas and in-
crease the class variety. The final selected regions are dis-
played for oracle to provide pixel-wise annotations. We also
design an interactive label tool for novice users to achieve
high-quality annotations. Considering the context correla-
tions between adjacent regions, contextual semantics can
also influence the model training. Thus we propose a Con-
textual Labels Extension module (CLE) to extend regional
annotations with contextual attention guidance.

Regional Gaussian Attention
To maintain the semantic attributes for all pixel locations, we
take the panoptic subset as input pool and convert the out-
put of segmentation model with n classes-channels into 1-
channel entropy map with the same resolution (Mackowiak
et al. 2018). The generation formula of entropy map is:

EM =
∑
i∈C

−
∑
ỹi
m
· log

∑
ỹi
m

, (4)

where i is different classes and m describes the number of
model iterations and set as 20 in our framework. The nega-
tive accumulation of Eqn. 4 can select the semantics that oc-
cupies fewer areas. However, the dominant labels (road, veg-
etable) may dramatically influence the model convergence

direction in the initial training phase and mislead the gradi-
ents for rare classes. Therefore we import Gaussian atten-
tion instead of a direct convolution layer to filter redundant
semantics and distill representative ones:

K = sqrt(
N 2(s, σ)∑
N 2(s, σ)

) · s, (5)

σ is 2 in our experiments and s equals the region size-w.
The entropy map can be refined by Gaussian kernel K by a
convolution filter: EM = EM ⊗ K. Then we can vectorize
the entropy map and decide the highest pixel index by non-
maximum suppression (NMS):

Zhigh = arg max
z

V ector(EM ), (6)

With the highest entropy pixel index as center coordinates,
we can crop a target region with size w2 from unlabeled im-
ages. The final regions are suggested by entropy map and s2
Gaussian kernels, both can highlight the semantics-biased
areas. The biased regions will obtain their semantic annota-
tions after oracle or our label tool.

Contextual Labels Extension
The contextual attention has been explored in (Yu et al.
2018) to integrate attributes from relative context. After or-
acle or tool labeling for each iteration, some regions can ob-
tain exact annotations, while others in the panoptic subset
remain unlabeled. Adjacent image patches have strong con-
text relations and the labeled regions can provide critical ref-
erences for unlabeled ones. Therefore, we separate the im-
ages in the panoptic subset into patches and take contextual
attention as guidance to extend regional annotations. For the
image Ĩ and label L̃ in the panoptic subset, we can generate
mask M̃ for labeled regions and divide them into patches.
We can define regional attention score as follow:

S =
∑
Conv(I,ΩIk)� ΩMk

, (7)
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(a) Cityscapes&MobileNet (b) Cityscapes&DRN (c) BDD100K&MobileNet (d) BDD100K&DRN

Figure 5: The quantitative performance compared with SOTA on Cityscapes (Cordts et al. 2016) and BDD100K (Yu et al. 2020)
datasets with different backbones. “p90” represents 90% of the performance trained on the complete dataset. The TA-VAAL on
the BDD100K is omitted here due to the convergence trouble in the implementation.

where k is patch index and Ω represents the patch set. Eqn. 7
can condense the patch correlations on images and mask
them with labeled information. Then the softmax opera-
tion can handle S as attention guidance. And the final labels
information can be calculated from:

Llast =
∑
Conv(S,ΩLk

). (8)

CLE integrates context relations to extend regional anno-
tations, and the extension insights consider the distribution
similarity of adjacent areas. With CLE as a cascaded proce-
dure following the annotation phase, we can further enrich
the labeled pixels and provide more supervised information
for segmentation training.

Smart Segmentation Tool
For convenient annotation and practical application, we de-
sign an interactive segmentation tool based on the proposed
CPRAL. Fig. 4 displays a visualized annotation process. We
employ superpixels to label large image areas (road, vegeta-
bles) quickly. For biased regions selected by CPRAL, partic-
ipants can draw lines to shape them. We exploit some raw
datasets to validate the Smart Segmentation Tool and may
provide large-scale annotations in the future.

Experiments
Here we demonstrate the performance on two public seman-
tic segmentation datasets: Cityscapes (Cordts et al. 2016)
and BDD100K (Yu et al. 2020). We use MobileNet (Sandler
et al. 2018) and DRN (Yu, Koltun, and Funkhouser 2017) for
feature extraction, respectively, one with efficiency advan-
tage and the other with accuracy. We first compare CPRAL
with the cutting-edge methods. Then we show the superior-
ity for the cooperation of panoptic and regional information.
We also analyze the robustness and ablation study.

Experiments Datasets and Details
Datasets. Both Cityscapes and BDD100K are driving video
datasets with 19 semantic classes, collected from Europe and

the United States, respectively. There are 5000 examples in
Cityscapes, 2975 for training, 500 for validation, and 1525
for testing. We use the training set to train different models
and verify their performance on the validation set. Each im-
age has a resolution of 1024× 2048, and we reduce the size
by half as input. BDD100K consists of 7000 training im-
ages, 1000 validation images, and 2000 testing images. We
also train the models on the training set and verify them on
the validation set. The images in the BDD100K are fed into
the network at their original resolution of 720× 1280.
Implementation details. We implement CPRAL using Py-
Torch and Tesla P100 graphics cards. Random horizontal
flip and Gaussian blur are employed to augment the sam-
pling diversity. The segmentation and loss prediction mod-
ules adopt the (SGD) optimizer with a momentum of 0.9 and
a weight decay of 0.0005. For each sampling iteration, there
are 50 epochs for training. The initial learning rate is 0.001
and drops to 0.0001 at epoch 35. The sampling will iterate
five times on Cityscapes with initial 200 examples and six
times on BDD100K with initial 400 examples. The panop-
tic subset size is 400 for Cityscapes and 800 for BDD100K,
and the final selection is 200 and 400. The batch size for Mo-
bileNet and DRN are 4 and 2, separately. The loss function
for the segmentation model is cross-entropy, and the panop-
tic loss is the same as (Yoo and Kweon 2019).

Comparisons with SOTA
We compare our model with five SOTA methods, TA-
VAAL (Kim et al. 2021), VAAL (Sinha, Ebrahimi, and Dar-
rell 2019), Loss Prediction (Yoo and Kweon 2019), Core-
set (Sener and Savarese 2018), and MC Dropout (Gal and
Ghahramani 2016). Random selection is also involved as
the baseline. The quantitative comparison is demonstrated in
Fig. 5. The four groups of results correspond to two different
datasets and two backbone models. The evaluation metric is
the Mean Intersection over Union (mIoU). The ninety per-
cent of the performance trained on the full dataset is also
shown (p90). The TA-VAAL has an unstable convergence
on BDD100K, and we ignore their results.
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(a) Cityscapes&MobieNet (b) Cityscapes&DRN (c) BDD100K&MobileNet (d) BDD100K&DRN

Figure 6: The comparison of panoptic sampling methods. “ R”-with our regional selection, “p100”-trained on the full dataset.

On the Cityscapes dataset, our CPRAL shows obvious su-
periority, especially as sampling increases after the initial
iteration, which can prove the effectiveness of valid regional
selection and contextual extension. Given the fixed sampling
amount, the Gaussian filter can distill semantics-biased re-
gions, balancing the selection for non-dominant classes and
reducing the annotations for redundant pixels. Simultane-
ously, CLE can extend labels to context-related areas, en-
larging the coverage of each annotated region. After the last
iteration, CPRAL can achieve more than 90% performance
with only 33.6% data proportion and has a clear margin over
the TA-VAAL. Before the first annotation phase, the distri-
bution of the selected samples is uniform for the segmenta-
tion model. However, the inductive prediction or VAE mod-
ule in Loss Pred, VAAL, and TA-VAAL can extract panop-
tic information and jointly optimize the segmentation mod-
ule in a self-adapted manner. Thus their performance for the
first iteration is superior to Core-set and MC Dropout. Our
panoptic selection can also utilize the image-based features
and benefit from the joint optimization. However, the adver-
sarial training between VAE and discriminator in VAAL and
TA-VAAL have better contributions at the expense of addi-
tional convergence consumption.

As for the BDD100K, most observations are similar.
BDD100K has more diversity in the cities, weather, and
driving image types. Nevertheless, CPRAL can also achieve
better than 90% performance with only 34.3% annotated im-
ages. The promotion of CPRAL after the first iteration is
prominent, except for the third phase with MobileNet, which
may arise from the stability of the backbone. The VAAL and
Loss Pred also have better behaviors for the initial phase,
proving the generalization of panoptic information.

For the cross-comparisons between Cityscapes and
BDD100K, we can observe that CPRAL has better adapta-
tion with different segmentation backbone models. If 50% of
mIoU is the essential requirement for the segmentation an-
notation task, CPRAL demands approximately 13.4%, 7.9%,
38.5%, and 11% of labeled data for each of the combina-

tions in Fig. 5. By contrast, the Core-set has impressive pre-
dictions with DRN as the backbone model while showing
sub-optimal performance with the features from MobileNet.
As the annotated images accumulate, the improvement trend
of Loss pred decreases dramatically. Panoptic features can
quickly capture dominant semantics and lose the class bal-
ance control when acquiring many redundant pixels.

Performance of Regional Selection
There are many panoptic sampling methods to replace the
image-based selection in our framework. Like the mentioned
above, the loss prediction can benefit the panoptic selection
for the initial model training. In this section, we combine the
proposed regional selection with different panoptic sampling
methods to demonstrate the accuracy promotion.

Entropy (Ozdemir et al. 2018), Confidence (Li and Sethi
2006), and Margin (Balcan, Broder, and Zhang 2007) are
representative active learning sampling methods. We adopt
them to replace the panoptic selection in our pipeline.
The panoptic and regional sampling sizes are the same as
CPRAL. The quantitative results are reported in Fig.6. We
can observe that all methods have a noticeable improvement
after embedding with regional selection. On the Cityscapes
dataset, our extended loss prediction module can capture
general semantics, contributing to the panoptic selection
(8% and 2% performance promotion with MobileNet and
DRN). On the BDD100K dataset, due to the data diversity
and scene complexity, semantic-agnostic panoptic loss fails
to summary the features of large-scale samples. The perfor-
mance of Entropy, Confidence, and Margin are very close or
even better than CPRAL, which proves the compatibility and
efficacy of regional selection. By the way, our collaborative
sampling can save much more time than region-only selec-
tion. CPRAL requires 8.28 (MobileNet) and 25.17 (DRN)
minutes for each iteration on Cityscapes, while region-only
selection takes about 23.2 and 131.57 minutes. The 64.3%
and 80.8% time savings from the panoptic selection are sig-
nificant for the active learning process.
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Figure 7: The performance of CPRAL, Loss Pred, and Core-
set under 3 proportions of noise levels (20%, 40%, 60%).

Figure 8: Ablation study on Cityscapes with MobileNet.
Left-regional subset size 200, right-regional subset size 40.

Robustness Analysis
Noisy labels are a potential distraction for human-in-loop
annotation procedures. Especially for novice users, label
missing and label errors are prevalent in practical applica-
tions. Here we explore three noise levels according to the
proportion of wrong labels (20%, 40%, and 60%) and as-
sume three potential types of noisy labels to investigate the
robustness of CPRAL. (1) symmetry noise: replace the
ground truth with the subtraction of n-classes, c = n − c.
(2) missing noise: replace the ground truth with ignoring
index 255. (3) asymmetric noise: replace the ground truth
with a random label. The ratio of the three types is 1 : 2 : 1
for all noise levels. We compare CPRAL with Loss Pred and
Core-set on the Cityscapes and BDD100K datasets with Mo-
bileNet backbone. Fig. 7 shows how noisy label accumula-
tion affects data sampling. The results reflect the error tol-
erance and robustness of the models. A model with better
results has lower requirements for annotators.

At noise level-20, there is a slight degradation in the per-
formance of CPRAL, and after five iterations, mIoU de-
creases by 1.6 and 0.6 percent. By contrast, Loss Pred drops
2.7% and 1.5%, Core-set drops 4% and 1.3%. For the in-
tractable noise-60 level, CPRAL can also achieve the mIoU
of 0.57 and 0.45, and Core-set is greatly hampered under
such widespread misleading. Furthermore, missing noise
is the most common situation in real-time annotations, and
half of the noise labels here are frommissing noise, which
can demonstrate the competent robustness of CPRAL.

Ablation Study
Here we remove the contextual labels extension module
(CLE) and regional Gaussian attention module (RGA) from
CPRAL to make an ablation study. The results are displayed
in Fig. 8. “Panoptic” means the panoptic subset is directly
acquired for labeling. “w/o CLE” means removing CLE
from CPRAL, and “w/o RGA” means removing RGA based

Input w/o RGA w/o CLE CPRAL Full GT

Figure 9: Visual comparison on Cityscapes&MobileNet.
“Full” means the performance trained on the full dataset.

on “w/o CLE”. Intuitively, the performance of “Panoptic”
drops a lot, suggesting the significance of region informa-
tion. The Gaussian attention and contextual extension built
on regional selection can also bring improvement for pixel
sampling. RGA can distill class-biased regions and comple-
ment the semantic-agnostic panoptic selection, while CLE
can connect relevant context to extend regional annotations.
The visual ablation is shown in Fig. 9, and many tiny areas
are refined (we crop the patch for better display).

To further prove the effect of CLE and RGA, we also per-
form an ablation on with regional subset size 40 in Fig. 8
(right). For a fair comparison with most existing methods,
CPRAL selects 200 images from 400 panoptic samples as
a regional subset and achieves around 90% full-trained per-
formance (Fig. 8, left). RGA and CLE are also calculated
based on 400 panoptic samples. However, if we reduce the
regional subset size to 40, their promotion is more obvious.

Discussions
The performance of CPRAL is contributed from panoptic se-
lection, RGA and, CLE. Panoptic selection is essentially a re-
gressed rating, ignoring the primary semantics of unlabeled
images, and it will fade into mediocrity as data increment.
RGA can capture discrete semantics, while complex scenes
in BDD100K may produce unbridled pixels to discount at-
tention filter. The biggest threat to CLE is the wrong label,
which can affect adjacent regions after contextual extension.

Conclusion
This paper exploits the Collaborative Panoptic-Regional Ac-
tive Learning (CPRAL) for semantic segmentation. Panoptic
information is responsible for selecting fully supervised im-
ages and summarizing the unlabeled pool to a representative
subset. Then Regional Gaussian Attention module (RGA)
can decide semantics-biased areas to eliminate redundant
pixels and acquire final queried regions. The Contextual La-
bels Extension module (CLE) can extend annotations to rel-
evant context with attention guidance. The cooperation of
panoptic and regional information can strike a balance be-
tween samples acquisition and model performance. Exten-
sive experiments on Cityscapes and BDD100K datasets can
demonstrate the annotation accuracy of CPRAL. In future
work, we will combine the sequential relations and optical
flow variation between frames to optimize the video seg-
mentation in active learning. Some domain adaption-related
researches may also be considered to transfer different rep-
resentations between video clips.
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