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Abstract

The challenge of talking face generation from speech lies in
aligning two different modal information, audio and video,
such that the mouth region corresponds to input audio. Previ-
ous methods either exploit audio-visual representation learn-
ing or leverage intermediate structural information such as
landmarks and 3D models. However, they struggle to synthe-
size fine details of the lips varying at the phoneme level as
they do not sufficiently provide visual information of the lips
at the video synthesis step. To overcome this limitation, our
work proposes Audio-Lip Memory that brings in visual in-
formation of the mouth region corresponding to input audio
and enforces fine-grained audio-visual coherence. It stores
lip motion features from sequential ground truth images in
the value memory and aligns them with corresponding au-
dio features so that they can be retrieved using audio input
at inference time. Therefore, using the retrieved lip motion
features as visual hints, it can easily correlate audio with vi-
sual dynamics in the synthesis step. By analyzing the mem-
ory, we demonstrate that unique lip features are stored in
each memory slot at the phoneme level, capturing subtle lip
motion based on memory addressing. In addition, we intro-
duce visual-visual synchronization loss which can enhance
lip-syncing performance when used along with audio-visual
synchronization loss in our model. Extensive experiments are
performed to verify that our method generates high-quality
video with mouth shapes that best align with the input audio,
outperforming previous state-of-the-art methods.

Introduction
Talking face generation from speech, also referred to as lip-
syncing, is synthesizing a video of a target identity such
that the mouth region is consistent with arbitrary audio in-
put. It has many applications such as audio-driven photo-
realistic avatars that can be employed in online classes or
games, dubbing films in another language, and communica-
tion aids for the hearing-impaired who can lip-read. As the
talking face generation carries various practical usage, it has
received great interest for research.

The main challenge of talking face generation from
speech is aligning audio and visual information so that the
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generated facial sequence is coherent with the input au-
dio. Previous methods based on encoder-decoder structure
have worked on improving audio and visual representations.
(Zhou et al. 2019, 2021) disentangled visual input into iden-
tity and speech content space using metric learning and
enhanced audio feature by embedding into a shared latent
space between visual feature. (Mittal and Wang 2020) dis-
entangled audio representation into phonetic content, emo-
tional tone, and other factors. They have explored feature
disentanglement to remove irrelevant factors in lip-syncing.
However, the disentangled audio representation does not ex-
plicitly contain visual information of the mouth which can
help the decoder to map visual dynamics from audio.

Recent advances utilize intermediate structural represen-
tations such as facial landmarks and 3D models to better
capture facial dynamics. (Chen et al. 2019; Das et al. 2020;
Zhou et al. 2020) mapped lip landmarks from audio and
composited into the mouth region of a target person. (Song
et al. 2020; Thies et al. 2020) learned speaker independent
features in a 3D face model and rendered a talking face video
of a target person with fine-tuning. However, they commonly
lack sophistication in lip-syncing. This is because the facial
landmarks are too sparse to provide accurate lip synchro-
nization, and the 3D models cannot capture fine details in
the mouth region including teeth (Zhang et al. 2021; Wang,
Mallya, and Liu 2021). Also, they bear the limitation of
having to acquire the intermediate representation separately
from the generation network.

Distinct from the previous works, we introduce Audio-
Lip Memory that explicitly provides visual information of
the mouth region and enables more precise lip synchroniza-
tion with input audio. The memory learns to align audio with
corresponding lip features from sequential ground truth im-
ages during training, so that it outputs the audio-aligned lip
features, when queried with audio at inference time. The re-
called lip features are fused with audio features and injected
into the decoder for synthesizing the talking face video.
As the decoder can leverage the explicit visual hints of the
mouth, it can better map audio to video both temporal- and
pixel-wise. Moreover, the Audio-Lip Memory stores the rep-
resentative lip features at the phoneme level and retrieves
various combinations of the lip features through memory ad-
dressing, enabling sophisticated and diverse lip movements.
We additionally impose visual-visual synchronization along
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with audio-visual synchronization for strong lip-syncing.
Hence, the proposed model achieves high-quality video gen-
eration with fine-grained audio-visual coherence.

Our contributions are as follows: (1) We propose Audio-
Lip Memory that maps audio to lip-movement intermediate
representations that bridge audio with lip sync video gen-
eration. It explicitly provides visual hints of the lip move-
ment to the decoder and enhances the sophistication of lip
motion corresponding to the audio. (2) We ensure strong
lip synchronization by utilizing visual-visual synchroniza-
tion between ground truth face sequence and generated face
sequence along with audio-visual synchronization between
input audio and generated faces. (3) By analyzing learned
representations inside the memory, we confirm that the rep-
resentations are stored at the phoneme level in each mem-
ory slot and different combinations of addressing slots yield
variational mouth shapes. Thus, direct manipulation of lip
movement using memory address is possible. (4) We achieve
state-of-the-art performance on LRW and LRS2 dataset in
terms of visual quality and lip-sync quality.

Related Work
Talking Face Generation Existing works on talking face
generation can be broadly categorized into reconstruction
based methods and intermediate representation based meth-
ods. Reconstruction based methods (Chen et al. 2018; Song
et al. 2018; Jamaludin, Chung, and Zisserman 2019; KR
et al. 2019; Vougioukas, Petridis, and Pantic 2020) follow
the encoder-decoder structure where identity features and
speech features are extracted and fused together as an in-
put to a decoder to synthesize talking face videos in an end-
to-end manner. (Prajwal et al. 2020) took a face video as a
visual input and used lower-half masked of the input video
as a pose prior. It employed a pre-trained lip-sync discrimi-
nator and highlighted the importance of an accurate lip-sync
discriminator that can feedback lip-sync quality to the net-
work. (Zhou et al. 2019) disentangled speech related fea-
tures and identity related features from video input through
associative-and-adversarial training. In (Zhou et al. 2021),
the author further disentangled visual input into identity
space, pose space, and speech content space, allowing free
pose-control. Although many works have explored improv-
ing visual representation by disentangling different factors
in visual input, not much work has sought into improving au-
dio representation. (Mittal and Wang 2020) attempted to im-
prove performance from the perspective of audio represen-
tation learning. They disentangled phonetic content, emo-
tional tone, and the rest of the other factors from audio using
Variational Autoencoder with KL divergence and negative
log likelihood with margin ranking loss. Instead of decou-
pling speech related features from the audio, our work ex-
plicitly filters out lip motion related features from the input
audio. As we directly map audio to lip features before in-
jecting the audio features to the generator, we can impose
lip synchronization earlier in the generation step.

Intermediate representation based methods consist of two
cascaded modules where intermediate representations such
as landmarks and 3D models are leveraged to generate video

from input audio. (Chen et al. 2019; Das et al. 2020) esti-
mated facial landmarks from input audio and then generated
video conditioned on the generated landmarks and a refer-
ence image. (Zhou et al. 2020; Das et al. 2020) separately
considered speech content related landmarks and speaker
identity related landmarks for the generation of unseen sub-
jects. 3D model based methods commonly extract expres-
sion, geometry, and pose parameters to reconstruct 3D fa-
cial mesh (3DMM) from which a face video is generated
(Song et al. 2020; Yu et al. 2020). (Thies et al. 2020) used a
pretrained audio-expression network to model an expression
basis in the 3D face model. (Zhang et al. 2021) proposed a
style-specific generator that produces facial animation pa-
rameters that are combined with facial shape parameters to
create 3D mesh points. Such intermediate representations
provide structural information of facial dynamics that has
limitations in containing fine details of the mouth. More-
over, acquiring the landmarks and 3D models is laborious
and time-consuming. We try to overcome these limitations
by leveraging recalled lip features from memory. The mem-
ory stores lip features in value memory slots at the phoneme
level during training so that information about lip motion
corresponding to input audio can be obtained at inference.
Also, as various combinations of the lip features in each slot
are possible through memory addressing, more diverse and
subtle lip movements can be portrayed.

Audio-Visual Alignment Audio-visual alignment aims to
find the correlation space between audio and video, and find
temporal coherence between the two modality data. In the
context of talking face generation task, (Prajwal et al. 2020)
directly employed a pretrained embedding module (Chung
and Zisserman 2016b) as a lip-sync discriminator, and (Zhu
et al. 2020) presented asymmetric Mutual Information Esti-
mator. They all relied on the audio-visual embedding mod-
ule placed at the end of the generator network to give feed-
back to the whole network on the coherence between in-
put audio and generated video. More recent works on cross-
modal learning apply multi-way matching loss that consid-
ers intra-class pairs as well as inter-class pairs, and have
shown its effectiveness (Chung, Chung, and Kang 2019;
Nagrani et al. 2020; Gao and Grauman 2021). Inspired by
the intra-class loss, our work additionally exploits visual-
visual sync loss. As input audio and ground truth video are
in sync, we can expect the complementary effect of audio-
visual alignment by aligning visual lip features from gener-
ated face sequence and ground truth face sequence.

Memory Network Memory Network (Weston, Chopra,
and Bordes 2014) provides a long-term memory component
that can be read from and written to with inference capabil-
ity. (Miller et al. 2016) introduced key-value memory struc-
ture where key memory is used to address memories with
respect to a query and corresponding value is obtained from
value memory using the address. Since the scheme can re-
member selected information, it is effective for augmenting
features (Kaiser et al. 2017; Lee et al. 2018; Cai et al. 2018;
Zhu et al. 2019; Pei et al. 2019; Lee et al. 2021; Kim, Park,
and Ro 2021; Kim et al. 2021; Kim and Ro 2021). (Yi et al.
2020) incorporated memory to talking face generation to re-
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Figure 1: Overview of our proposed model. During training, Audio-Lip Memory learns to store lip feature flip in the lip-value
memory and to align key address Aaud with value address Alip as depicted in (a). During inference, the model utilizes recalled
lip feature from key address, f̂lip;keyAdr, obtained from audio input as a query as shown in (b).

fine roughly rendered frames into realistic frames. It stores
spatial features and identity features as key-value pairs and
retrieves the best-matching identity feature using the spatial
feature as a query. Unlike previous works that use memory
only to remember critical information, we employ the key-
value memory to align and store two different modality fea-
tures. We map audio to lip features through key-value mem-
ory addressing so that the lip features not available at infer-
ence can be utilized with audio input as a query. The recalled
lip features from the value memory is used as an intermedi-
ate representation to bridge between audio and video.

Methods

We propose Audio-Lip Memory that explicitly maps audio
to lip features. Our whole pipeline is depicted in Fig.1. We
take a frame of target identity, 0.2 seconds of source audio,
and upper half masked face sequence (5 frames) correspond-
ing to the source audio as input. We aim to lip-sync the input
video of the target identity such that the mouth region is con-
sistent with the input audio, altering only the mouth while
preserving all the other elements (i.e., pose, identity, and
etc). We align and store encoded audio features and encoded
lip features in the Audio-Lip Memory so that lip features can
be obtained when queried with audio features. The recalled
lip features from the memory are fused with audio features
and injected into the decoder network for video synthesis. In
addition, strong lip synchronization is imposed with audio-
visual synchronization loss and visual-visual synchroniza-
tion loss. We explain the details of the Audio-Lip memory
in Sec. 3.1 and video synthesis in Sec. 3.2.

Audio-Lip Memory
Audio-Lip Memory maps audio features to lip motion re-
lated features. We firstly encode a spectrogram of source au-
dio (0.2 seconds) into audio feature faud ∈ RC using an au-
dio encoder, and corresponding 5 sequential frames with up-
per half masked to lip feature flip ∈ RC using a lip encoder.
Audio-Lip Memory is composed of an audio-key memory
Maud ∈ RS×C and a lip-value memory Mlip ∈ RS×C ,
where S denotes slot size and C channel. Note that we uni-
versally set C to 512. The memory learns to store representa-
tive lip features in the lip-value memory through reconstruc-
tion loss between recalled lip features from the key address
and lip features extracted from the lip encoder. It simultane-
ously learns to align lip features with audio features through
key-value address alignment loss so that the corresponding
lip feature can be retrieved using an audio feature as a query.

Storing lip features in lip-value memory The lip-value
memory Mlip = {mi

lip}Si=1 where mi
lip ∈ RC is a unique

lip feature in the i-th slot. When a lip feature of 5 sequen-
tial mouth frames from the lip encoder is given as a query,
distance between the lip feature and each of the slots is com-
puted using cosine similarity:

dilip =
mi

lip · flip
∥mi

lip∥2 · ∥flip∥2
. (1)

Then, we take softmax of the similarity distance computed
on individual slots as follows:

αi
lip =

exp(κ · dilip)∑S
j=1 exp(κ · djlip)

, (2)
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where κ is a scaling term, and αi
lip is an attention weight

on the i-th slot of the lip-value memory with respect to the
lip feature. By computing the attention weights for all slots,
we get a value address Alip = {α1

lip, α
2
lip, . . . α

S
lip} ∈ RS .

It is used to locate relevant slots in the lip-value memory
associated with the lip feature. Finally, we can retrieve the
lip feature associated with the query by taking dot product
between the value address and the lip-value memory:

f̂lip;valAdr = Alip ·Mlip. (3)

We denote f̂lip;valAdr ∈ RC as recalled lip feature from
the value address. By taking the weighted sum of the dif-
ferent lip features stored in individual slots, we can utilize
various combinations of the lip features and generate more
diverse lip motions. In order to save the lip feature in the lip-
value memory, we employ reconstruction loss between the
recalled lip feature f̂lip;valAdr and the lip feature given as a
query flip as follows:

Lstore = ∥flip − f̂lip;valAdr∥22. (4)
Through Lstore, the model learns to embed representative
lip features of 5 sequential ground truth frames in the slots
attended by value addresses.

Aligning key address with value address After storing
the lip features in the lip-value memory, we should be able to
retrieve the corresponding lip feature when an audio feature
is given as a query. This is how the memory network works
at inference time when there are no matching ground truth
images to extract lip features from. We obtain key address
in the same way as the value address, replacing lip feature
flip with the audio feature faud and lip-value memory Mlip

with audio-key memory Maud as follows:

diaud =
mi

aud · faud
∥mi

aud∥2 · ∥faud∥2
, (5)

αi
aud =

exp(κ · diaud)∑S
j=1 exp(κ · djaud)

, (6)

Aaud = {α1
aud, α

2
aud, . . . α

S
aud}. (7)

We align key address with value address through key-value
address alignment loss:

Lalign = DKL(Alip∥Aaud), (8)
which is KL divergence between the two address vectors. By
aligning key address and value address obtained from audio
and video pairs that are in sync, both of them point to equiva-
lent slots in the lip-value memory. Therefore, we can obtain
lip features by using key addresses to retrieve information
saved in the lip-value memory:

f̂lip;keyAdr = Aaud ·Mlip, (9)

where f̂lip;keyAdr ∈ RC is the recalled lip feature from
key address. It contains lip movement related features cor-
responding to the input audio, acting as a strong bridge be-
tween audio and video in synthesizing the mouth region. As
the decoder can take advantage of the additional visual hints
on the lip movements, both visual quality and lip-sync qual-
ity can be enhanced. Also, learning audio-visual alignment
earlier in the generation step imposes a stronger lip synchro-
nization.

Video Synthesis
Identity encoder extracts identity feature fI from a ran-
dom reference frame concatenated with a pose-prior (tar-
get face with lower-half masked) along the channel axis.
The pose-prior is crucial as it guides the model to gener-
ate the lower half mouth region that fits the upper half pose,
reducing artifacts when pasting back to the original video
(KR et al. 2019). The recalled lip feature from the key ad-
dress is channel-wise concatenated with the audio feature
and injected into the decoder G. The decoder has a U-Net-
like architecture (Ronneberger, Fischer, and Brox 2015) with
multi-scale intermediate features concatenated with those
from the identity encoder, one after every up-sampling oper-
ation. This skip-connection is to ensure that the input iden-
tity and pose features are preserved.

At the inference time, we take recalled lip features from
key addresses as shown in Fig.1 (b). At training, we addi-
tionally use lip features extracted directly from the lip en-
coder as shown in Fig.1 (a),

Îg = G(f̂lip;keyAdr ⊕ faud, fI), (10)

ÎG = G(flip ⊕ faud, fI), (11)

where Îg is a frame generated with a recalled lip feature from
a key address and ÎG is generated with a lip feature directly
from the lip encoder. Although only Îg is used at inference,
we additionally adopt ÎG during training in loss computation
so that the lip encoder learns to extract meaningful features
related to the lip movement from the face sequence.

We design our generation loss functions to increase visual
quality and lip-sync quality. Reconstruction loss and percep-
tual loss are pertinent to visual quality, and audio-visual sync
loss and visual-visual sync loss are related to lip-sync qual-
ity. Note that we compute generation loss with regards to
both Îg and ÎG.

Reconstruction Loss The network is trained to minimize
L1 reconstruction loss between the generated frames and
ground truth frames I as follows:

Lrecon =
1

N

N∑
i=1

(∥Îig − Ii∥1 + ∥ÎiG − Ii∥1). (12)

Generative Adversarial Loss We employ GAN loss
(Goodfellow et al. 2014) to evaluate image realism. L1 re-
construction alone can yield blurry images or slight artifacts
as it is a pixel-level loss.

Lgan = EÎ∈[̂IG ,̂Ig ]
[log(1−D(Î))], (13)

Ldisc = EI [log(1−D(I))] + EÎ∈[̂IG ,̂Ig ]
[logD(Î)]. (14)

D is a quality discriminator trained on Ldisc, penalizing on
unrealistic face generation. We adopt its architecture from
(Prajwal et al. 2020). Î is an image from a set of generated
images with Eq. 10 and 11.
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LRW LRS2

Method PSNR SSIM LMD LSE-D LSE-C PSNR SSIM LMD LSE-D LSE-C

ATVGnet 31.409 0.781 1.894 7.664 5.735 30.427 0.735 2.549 8.223 5.584
3D Identity Mem 30.725 0.745 1.659 8.991 3.963 29.867 0.696 2.170 9.263 4.182

Wav2Lip 32.147 0.875 1.371 6.617 7.237 31.274 0.837 1.940 5.995 8.797
PC-AVS 30.440 0.778 1.462 7.344 6.420 29.887 0.747 1.963 7.301 6.728

Ground Truth N/A 1.000 0.000 6.968 6.876 N/A 1.000 0.000 6.259 8.247

Ours (La-v) 33.099 0.886 1.276 7.375 6.162 32.681 0.875 1.440 6.392 7.835
Ours (Lv-v) 33.112 0.893 1.262 7.394 6.131 32.611 0.875 1.433 6.787 7.363

Ours (La-v + Lv-v) 33.126 0.893 1.253 7.013 6.619 32.529 0.876 1.387 6.352 7.925

Table 1: Quantitative results on LRW and LRS2 test sets. The best scores in each metric are highlighted in bold.

Audio-Visual Sync Loss We use the audio-visual sync
module proposed in (Prajwal et al. 2020; Chung and Zis-
serman 2016b). We train the audio-visual sync module, Fa

and Fv , separately and do not fine-tune further on the gen-
erated frames so that it learns from clean pairs of audio and
video segments. It takes a sequence of 5 generated frames
(lower half only) and an audio segment a corresponding to
the frame sequence. It outputs audio feature fa and video
feature fv from which binary cross-entropy of cosine simi-
larity is computed as follows:

dsync(fa, fv) =
fa · fv

∥fa∥2 · ∥fv∥2
, (15)

La-v = − 1

N

N∑
i=1

(log dsync(Fa(ai),Fv (̂I
i
g)) (16)

+ log dsync(Fa(ai),Fv (̂I
i
G))), (17)

where Îig = {Îng }i+2
n=i−2, and ÎiG = {ÎnG}

i+2
n=i−2.

Visual-Visual Sync Loss We present visual-visual sync
loss that can complement audio-visual sync loss by encour-
aging coherence in visual domain. Lip features from a se-
quence of generated frames and ground truth frames can
be obtained from a lip encoder Elip. As the lip encoder
is trained to extract lip motion related features that can be
aligned with audio features through Lstore and Lalign, we
can expect the lip encoder to act as a strong visual-visual
sync module. We define visual-visual sync loss as L1 dis-
tance between the two features as follows:

Lv-v =
1

N

N∑
i=1

(∥Elip(̂I
i
g)− Elip(I

i)∥1 (18)

+ ∥Elip(̂I
i
G)− Elip(I

i)∥1). (19)
We freeze the lip encoder to exclude the loss, Lv-v , from
training the lip encoder. By further aligning generated
frames with ground truth frames, sophisticated synchroniza-
tion in pixel level can be achieved.

Total Loss The final objective is as follow:
L = λ1Lrecon + λ2La-v + λ3Lv-v (20)
+ λ4Lgan + λ5Lstore + λ6Lalign, (21)

where λn is hyper-parameter weight.

Experiment
Experimental Settings
Dataset We train and evaluate on LRW (Chung and Zis-
serman 2016a) and LRS2 (Afouras et al. 2018) datasets.
LRW is a word-level dataset with over 1000 utterances
of 500 words. LRS2 is a sentence-level dataset with over
140,000 utterances. Both are from BBC News in the wild.

Metrics We evaluate results using PSNR, SSIM, LMD,
LSE-D, and LSE-C. PSNR and SSIM measure visual qual-
ity and LMD, LSE-D, and LSE-C measure lip-sync quality.
LMD is the distance between lip landmarks (detected us-
ing dlib (King 2009)) of ground truth frames and those of
generated frames. LSE-C and LSE-D proposed by (Prajwal
et al. 2020) are confidence score (higher the better) and dis-
tance score (lower the better) between audio and video fea-
tures from SyncNet (Chung and Zisserman 2016b), respec-
tively. LSE-C and LSE-D measure correspondence between
audio and visual features while LMD directly measures vi-
sual to visual coherence. For a fair comparison, we evaluate
the cropped region of the face based on the face detector
used in ATVGnet (Chen et al. 2019).

Comparison Methods We compare our work with 4 state-
of-the-art methods on talking face generation: ATVGnet
(Chen et al. 2019), Wav2Lip (Prajwal et al. 2020), PC-AVS
(Zhou et al. 2021) and 3D Identity Mem (Yi et al. 2020).
ATVGnet generates frames conditioned on landmarks with
an attention mechanism. Wav2Lip, utilized as a baseline,
is a reconstruction-based method. PC-AVS employs mod-
ularized audio-visual representations of identity, pose, and
speech content. 3D Identity Mem is a 3D model based
method augmented with identity memory. We use open-
source codes to train on the target dataset.

Implementation Details We process video frames to face-
centered crops of size 128×128 at 25 fps and audio to
mel-spectrogram of size 16×80. Mel-spectrograms are con-
structed from 16kHz audio, window size 800, and hop size
200. At the inference, we use the first frame as a reference
frame and the upper half of the target frame as a pose-prior.
Hyper-parameters are empirically set: λ1 to 10, λ2, λ3, λ4,
λ5, λ6 all to 0.01, and κ to 16. We take Wav2Lip as a
baseline model and add Audio-Lip Memory and lip encoder
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Figure 2: Comparison with state-of-the-art methods for talking face generation. Focusing on the red boxed regions, our method
generates mouth that best aligns with the ground truth.

Method Visual Quality Lip-Sync Quality Realness

Ground Truth 4.713 ±0.091 4.871 ±0.052 4.876 ±0.041

ATVGnet 2.059 ±0.284 2.515 ±0.448 1.803 ±0.473

3D Identity Mem 2.132 ±0.399 1.829 ±0.490 1.400 ±0.505

Wav2Lip 3.239 ±0.446 3.929 ±0.506 3.679 ±0.592

PC-AVS 3.108 ±0.444 3.471 ±0.491 3.095 ±0.541

Ours 3.582 ±0.338 4.226 ±0.401 3.934 ±0.480

Table 2: Human evaluation by mean opinion scores with
95% confidence interval on visual quality, lip-sync quality,
and video realness.

which consists of a 3D convolutional layer followed by 2D
convolutional layers to encode lip motion feature. We empir-
ically find the optimum slot size to be 96. We first pre-train
SyncNet on the target dataset and then train the framework
with total loss L with the Adam optimizer using PyTorch.
The learning rate is set to 1 × 10−4, except for the discrim-
inator, whose is 5 × 10−4. We train on 8 RTX 3090 GPUs
and Intel Xeon Gold CPU.

Experimental Results
Quantitative Results Table 1 shows the quantitative com-
parison between other methods on LRW and LRS2 datasets.
Our model generates faces with the highest PSNR, SSIM,
and LMD on both datasets. Wav2Lip performs better on
LSE-D and LSE-C metrics and even outperforms those of
ground truth. However, as noted in (Zhou et al. 2021), it
only proves that their lip-sync results are nearly comparable
to the ground truth, not better. Our LSE-D and LSE-C scores
are indeed closer to the ground truth scores and we perform
better on the LMD metric which is another sync metric that
measures correspondence in the visual domain. To quantify
the effect of our visual-visual sync loss, we have conducted
experiments using different combinations of the sync loss.
As shown in Table 1, La-v has better LSE-D and LSE-C
than Lv-v while Lv-v is better on PSNR, SSIM, and LMD
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Figure 3: (a) Key addresses from audio input and corre-
sponding generated frames in a sequence. (b), (c), and (d)
Generated frames using slots 16, 53, and 13 respectively that
noticeably changed its values in (a).

in overall on both datasets. Such result makes sense as La-v
is relevant to audio-visual synchronization that LSE-D and
LSE-C measure while Lv-v indicates visual-visual synchro-
nization that PSNR, SSIM, and LMD measure. It is more
important to note that the two sync losses combined together
yield the best performance overall on both datasets as they
have complementary effects aligning different pairs of do-
mains. Regardless of which sync loss was used, applying
the memory always outperforms other methods on PSNR,
SSIM, and LMD, because the memory explicitly provides
visual information of the lip motion to the decoder to take
advantage of.

Qualitative Results We compare our generation results
against previous state-of-the-art methods in Fig.2. It shows
that our method generates the highest quality video with
mouth shapes that best match the ground truth. As ATVGnet
and Identity Mem produce given one identity reference,
there are restrictions to pose and expression variance so
naturalness is seemingly low. PC-AVS fails to preserve the
identity features of the target frame. Wav2Lip produces
mouth shapes that do not exactly align with the ground truth,
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Key address Generated frames

66

40

79

Phoneme

‘z’

‘uː’

‘iː’

‘m’

95

‘æ’

43

Figure 4: Generated frames using a single slot of Lip-Value
Memory. Each slot contains a unique lip feature that can be
associated with a phoneme.

(a)

(b)

Slot 13 Slot 40

Slot 86 Slot 91

Figure 5: Interpolation of frames generated between two dif-
ferent slots of Lip-Value Memory. It shows that the mem-
ory address can specifically manipulate only mouth region
in fine-grained level.

and there exist some artifacts. On the other hand, our method
accurately captures the mouth shape including the teeth with
high visual quality, as demonstrated by PSNR, SSIM, and
LMD scores in Table 1. Such results can be contributed to
the memory network allowing sophisticated and subtle lip
generation and the two complementary sync losses aligning
on audio and visual domains.

User study We conduct a user study to compare gener-
ation results. 20 videos are generated using each method,
10 from the LRW test set and 10 from the LRS2 test set.
20 participants were asked to rate generated videos includ-
ing ground truths to evaluate visual quality, lip-sync qual-
ity, and realness in the range of 1 to 5. As shown in Ta-
ble 2, the scores are consistent with the quantitative results.
Our method outperforms all other methods on all three crite-
ria, especially the lip-sync quality scores. Especially the lip
sync quality scores high, demonstrating effectiveness of the
audio-lip memory and visual-visual synchronization loss in
improving temporal coherence.

Memory Analysis
We analyze elements stored in each slot in lip-value mem-
ory. Fig.3 shows key addresses and corresponding generated
frames in a sequence. The key address is generated from an

Slots PSNR SSIM LMD LSE-D LSE-C
24 32.522 0.873 1.458 6.442 7.831
48 32.373 0.873 1.431 6.379 7.838
96 32.529 0.876 1.387 6.352 7.925

120 32.655 0.873 1.469 6.475 7.785

Table 3: Ablation study on the number of slots

audio segment pertaining to the word ’North’. We can see
that the address smoothly varies as lips move. Focusing on
the slots that noticeably change their address value, from t=1
to t=5, the address on the 16th slot decreases from 0.218 to
0.164 while the 53rd slot address increases from 0.097 to
0.186. To visualize the lip feature stored at each slot, we
generate with silent audio and a single slot addressed to the
max as shown in Fig.3 (b), (c), and (d). We can see that a
frame from slot 16 has lips drawn to the sides similar to the
lip shape in t=1 and a frame from slot 53 has pursed lips as
in t=5. Also, a frame from slot 13 has closed lips as in t=8
frame when the address on slot 13 suddenly increased. This
result indicates that the memory well decouples lip features
associated with speech sound and bestows memory with ex-
plicit control over the lip movement while keeping all other
factors such as identity and pose unchanged.

We further generate frames using a single slot in Fig.4. It
is possible to assign each slot with a phoneme. For example,
slot 43 closely aligns with ’æ’, slot 40 ’u:’, slot 79 ’m’, slot
95 ’i:’ and slot 66 ’z’. It demonstrates that each slot contains
a unique lip feature at the phoneme level and that by taking
combinations of the lip features in each slot through address,
diverse lip movements can be generated.

We verify that lip shape can be smoothly interpolated be-
tween addresses on two different slots. As shown in Fig.5, as
the ratio of the address varies from 13 to 40 in (a) and from
86 to 91 in (b), the lips change accordingly. Since the gen-
eration is very sensitive to the address value concerning the
input audio, our method can generate subtle lip movements.

Lastly, we perform ablation study on using a different
number of slots as shown in Table 3. The performance grad-
ually increases from using 24 slots to 96 slots but decreases
when the slot size is further increased to 120. This indicates
that a large number of slots to hold many lip features does
not linearly increase the performance because it may com-
plicate the model in aligning key and value addresses. Thus,
we empirically set the optimum slot size to 96.

Conclusion
Our proposed Audio-Lip Memory extracts the lip motion re-
lated features to bridge from audio to video generation. The
lip synchronization is achieved during the memory learning
that aligns the audio and visual lip features, and it is fur-
ther enforced by the audio-visual and the visual-visual syn-
chronization losses. We have verified that the lip features are
stored in each memory slot at the phoneme level, and dif-
ferent combinations of the slots through memory addressing
can yield diverse and subtle lip motions. Therefore, our work
effectively exploits visual information of the mouth region to
simultaneously achieve high visual quality and lip synchro-
nization for talking face generation.

2068



Acknowledgements
This work was partially supported by Genesis Lab under a
research project (G01210312).

References
Afouras, T.; Chung, J. S.; Senior, A.; Vinyals, O.; and Zisser-
man, A. 2018. Deep audio-visual speech recognition. IEEE
transactions on pattern analysis and machine intelligence.
Cai, Q.; Pan, Y.; Yao, T.; Yan, C.; and Mei, T. 2018. Mem-
ory matching networks for one-shot image recognition. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 4080–4088.
Chen, L.; Li, Z.; Maddox, R. K.; Duan, Z.; and Xu, C. 2018.
Lip movements generation at a glance. In Proceedings of the
European Conference on Computer Vision (ECCV), 520–
535.
Chen, L.; Maddox, R. K.; Duan, Z.; and Xu, C. 2019. Hier-
archical cross-modal talking face generation with dynamic
pixel-wise loss. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 7832–
7841.
Chung, J. S.; and Zisserman, A. 2016a. Lip reading in
the wild. In Asian conference on computer vision, 87–103.
Springer.
Chung, J. S.; and Zisserman, A. 2016b. Out of time: auto-
mated lip sync in the wild. In Asian conference on computer
vision, 251–263. Springer.
Chung, S.-W.; Chung, J. S.; and Kang, H.-G. 2019. Per-
fect match: Improved cross-modal embeddings for audio-
visual synchronisation. In ICASSP 2019-2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 3965–3969. IEEE.
Das, D.; Biswas, S.; Sinha, S.; and Bhowmick, B. 2020.
Speech-driven facial animation using cascaded gans for
learning of motion and texture. In European Conference on
Computer Vision, 408–424. Springer.
Gao, R.; and Grauman, K. 2021. Visualvoice: Audio-visual
speech separation with cross-modal consistency. arXiv
preprint arXiv:2101.03149.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. Advances in neural in-
formation processing systems, 27.
Jamaludin, A.; Chung, J. S.; and Zisserman, A. 2019. You
said that?: Synthesising talking faces from audio. Interna-
tional Journal of Computer Vision, 127(11): 1767–1779.
Kaiser, Ł.; Nachum, O.; Roy, A.; and Bengio, S. 2017.
Learning to remember rare events. arXiv preprint
arXiv:1703.03129.
Kim, J. U.; Park, S.; and Ro, Y. M. 2021. Robust Small-
Scale Pedestrian Detection With Cued Recall via Memory
Learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 3050–3059.
Kim, M.; Hong, J.; Park, S. J.; and Ro, Y. M. 2021. Multi-
modality associative bridging through memory: Speech

sound recollected from face video. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
296–306.
Kim, S.; and Ro, Y. M. 2021. M-CAM: Visual Explana-
tion of Challenging Conditioned Dataset with Bias-reducing
Memory. In The 32nd British Machine Vision Conference,
BMVC 2021. British Machine Vision Association (BMVA).
King, D. E. 2009. Dlib-ml: A machine learning toolkit. The
Journal of Machine Learning Research, 10: 1755–1758.
KR, P.; Mukhopadhyay, R.; Philip, J.; Jha, A.; Namboodiri,
V.; and Jawahar, C. 2019. Towards automatic face-to-face
translation. In Proceedings of the 27th ACM International
Conference on Multimedia, 1428–1436.
Lee, S.; Kim, H. G.; Choi, D. H.; Kim, H.-I.; and Ro, Y. M.
2021. Video Prediction Recalling Long-term Motion Con-
text via Memory Alignment Learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 3054–3063.
Lee, S.; Sung, J.; Yu, Y.; and Kim, G. 2018. A memory
network approach for story-based temporal summarization
of 360 videos. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 1410–1419.
Miller, A.; Fisch, A.; Dodge, J.; Karimi, A.-H.; Bordes, A.;
and Weston, J. 2016. Key-value memory networks for di-
rectly reading documents. arXiv preprint arXiv:1606.03126.
Mittal, G.; and Wang, B. 2020. Animating face using
disentangled audio representations. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, 3290–3298.
Nagrani, A.; Chung, J. S.; Albanie, S.; and Zisserman, A.
2020. Disentangled speech embeddings using cross-modal
self-supervision. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), 6829–6833. IEEE.
Pei, W.; Zhang, J.; Wang, X.; Ke, L.; Shen, X.; and Tai,
Y.-W. 2019. Memory-attended recurrent network for video
captioning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 8347–8356.
Prajwal, K.; Mukhopadhyay, R.; Namboodiri, V. P.; and
Jawahar, C. 2020. A lip sync expert is all you need for
speech to lip generation in the wild. In Proceedings of the
28th ACM International Conference on Multimedia, 484–
492.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-net: Con-
volutional networks for biomedical image segmentation. In
International Conference on Medical image computing and
computer-assisted intervention, 234–241. Springer.
Song, L.; Wu, W.; Qian, C.; He, R.; and Loy, C. C. 2020.
Everybody’s talkin’: Let me talk as you want. arXiv preprint
arXiv:2001.05201.
Song, Y.; Zhu, J.; Li, D.; Wang, X.; and Qi, H. 2018. Talk-
ing face generation by conditional recurrent adversarial net-
work. arXiv preprint arXiv:1804.04786.
Thies, J.; Elgharib, M.; Tewari, A.; Theobalt, C.; and
Nießner, M. 2020. Neural voice puppetry: Audio-driven fa-
cial reenactment. In European Conference on Computer Vi-
sion, 716–731. Springer.

2069



Vougioukas, K.; Petridis, S.; and Pantic, M. 2020. Realis-
tic speech-driven facial animation with gans. International
Journal of Computer Vision, 128(5): 1398–1413.
Wang, T.-C.; Mallya, A.; and Liu, M.-Y. 2021. One-shot
free-view neural talking-head synthesis for video conferenc-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 10039–10049.
Weston, J.; Chopra, S.; and Bordes, A. 2014. Memory net-
works. arXiv preprint arXiv:1410.3916.
Yi, R.; Ye, Z.; Zhang, J.; Bao, H.; and Liu, Y.-J.
2020. Audio-driven talking face video generation with
learning-based personalized head pose. arXiv preprint
arXiv:2002.10137.
Yu, L.; Yu, J.; Li, M.; and Ling, Q. 2020. Multimodal Inputs
Driven Talking Face Generation With Spatial–Temporal De-
pendency. IEEE Transactions on Circuits and Systems for
Video Technology, 31(1): 203–216.
Zhang, Z.; Li, L.; Ding, Y.; and Fan, C. 2021. Flow-Guided
One-Shot Talking Face Generation With a High-Resolution
Audio-Visual Dataset. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
3661–3670.
Zhou, H.; Liu, Y.; Liu, Z.; Luo, P.; and Wang, X. 2019.
Talking face generation by adversarially disentangled audio-
visual representation. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, 9299–9306.
Zhou, H.; Sun, Y.; Wu, W.; Loy, C. C.; Wang, X.; and Liu, Z.
2021. Pose-controllable talking face generation by implic-
itly modularized audio-visual representation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 4176–4186.
Zhou, Y.; Han, X.; Shechtman, E.; Echevarria, J.; Kaloger-
akis, E.; and Li, D. 2020. MakeltTalk: speaker-aware
talking-head animation. ACM Transactions on Graphics
(TOG), 39(6): 1–15.
Zhu, H.; Huang, H.; Li, Y.; Zheng, A.; and He, R. 2020.
Arbitrary Talking Face Generation via Attentional Audio-
Visual Coherence Learning. 2334–2340.
Zhu, M.; Pan, P.; Chen, W.; and Yang, Y. 2019. Dm-gan:
Dynamic memory generative adversarial networks for text-
to-image synthesis. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 5802–
5810.

2070


