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Abstract

With increasing appealing to privacy issues in face recog-
nition, federated learning has emerged as one of the most
prevalent approaches to study the unconstrained face recogni-
tion problem with private decentralized data. However, con-
ventional decentralized federated algorithm sharing whole
parameters of networks among clients suffers from privacy
leakage in face recognition scene. In this work, we intro-
duce a framework, FedGC, to tackle federated learning for
face recognition and guarantees higher privacy. We explore
a novel idea of correcting gradients from the perspective of
backward propagation and propose a softmax-based regular-
izer to correct gradients of class embeddings by precisely in-
jecting a cross-client gradient term. Theoretically, we show
that FedGC constitutes a valid loss function similar to stan-
dard softmax. Extensive experiments have been conducted to
validate the superiority of FedGC which can match the per-
formance of conventional centralized methods utilizing full
training dataset on several popular benchmark datasets.

Introduction
Face Recognition has been the prominent biometric tech-
nique for identity authentication and has been widely ap-
plied in many areas. Recently, a variety of data-driven ap-
proaches using Deep Convolutional Neural Networks (DC-
NNs) (Taigman et al. 2014; Kim, Park, and Shin 2020; Deng
et al. 2020; Duan, Lu, and Zhou 2019; Marriott, Romdhani,
and Chen 2021) have been proposed to improve the face
identification and verification accuracy. A large scale dataset
with diverse variance is crucial for discriminative face rep-
resentation learning. Although existing datasets (Cao et al.
2018; Guo et al. 2016; Kemelmacher-Shlizerman et al. 2016;
Wang et al. 2018a; Yi et al. 2014; Zhu et al. 2021) were
created aiming to study the unconstrained face recognition
problem, they are still biased compared with the real world
data distribution. Considering privacy issue, we are not au-
thorized to get access to mass face data in real world. Thus,
it is vital to train a model with private decentralized face data
to study the unconstrained face recognition problem in real
world scene.

Federated methods on object classification tasks are all
under a common setting where a shallow network is adopted
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as backbone and a shared fully-connected layer is applied for
final classification, which is likely to lead to privacy leakage.
Therefore, these methods are not applicable to face recog-
nition. Once the private class embedding is obtained, one
client’s private high-fidelity face images can be easily syn-
thesized by other clients via optimizing random noise, such
as DeepInversion (Yin et al. 2020). Moreover, lots of GAN-
based face generation technics are also proposed to generate
a frontal photorealethistic face image with face embeddings.
On the other hand, existing federated methods are mainly fo-
cusing on shallow networks(e.g. 2 layer fully connected net-
work), we found these methods may easily cause network
collapsing when applied to deeper network structure on fa-
cial datasets. Thus, we rethink the federated learning prob-
lem of face recognition on privacy issues, and remodel con-
ventional Federated Averaging algorithm (FedAvg) (McMa-
han et al. 2017) via ensuring each client holds a private fully-
connected layer which not only guarantees higher privacy
but also contributes to network convergence.

In general, each client commonly holds a small-scale non-
IID local dataset. When we follow the above setting, onece
the k-th client solves the optimization problem locally, the
classification task is relatively uncomplicated and the net-
work tends to overfit and suffers from degradation of gener-
alization ability. It leads to a phenomenon that class embed-
dings (the parameters of last fully-connected layer) of the
same client are almost orthogonal to each other, but part of
class embeddings of different clients are highly similar.

To solve aforementioned problem, we should constitute a
new training strategy to train a model with private decen-
tralized non-IID (Non Identically and Independently Dis-
tributed) facial data. In this work, we first propose FedGC,
a novel and poweful federated learning framework for face
recognition, which combines local optimization and cross
client optimization injected by our proposed softmax reg-
ularizer. FedGC is a privacy-preserving federated learning
framework which guarantees that each client holds private
class embeddings. In face recognition, several variants of
softmax-based objective functions (Deng et al. 2019; Deng,
Zhou, and Zafeiriou 2017; Simonyan and Zisserman 2014;
Sun, Wang, and Tang 2015; Taigman et al. 2014; Wang
et al. 2018b; Wolf, Hassner, and Maoz 2011) have been pro-
posed in centralized methods. Hence, we propose a softmax-
based regularizer aiming to correct gradients of local soft-
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max and precisely introduce cross-client gradients to ensure
that cross-clients class embeddings are fully spread out and
it can can be readily extended to other forms. Additionally,
we give a theoretical analysis to show that FedGC consti-
tutes a valid loss function similar to standard softmax. Our
contributions can be summarized as follows:

• We propose a federated learning framework, FedGC, for
face recognition and guarantees higher privacy. It ad-
dresses the missing local optimization problems for face-
specific softmax-based loss functions.

• We start from a novel perspective of back propagation to
correct gradients and introduce cross-client gradients to
ensure the network updates in the direction of standard
softmax. We also give a theoretical analysis to show the
effectiveness and significance of our method.

• Extensive experiments and ablation studies have been
conducted and demonstrate the superiority of the pro-
posed FedGC on several popular benchmark datasets.

Related Work
Face Recognition. Face Recognition (FR) has been the
prominent biometric technique for identity authentication
and has been widely applied in many areas (Wang and Deng
2018). Rcently, face reogintion has achieved a series of
promising breakthrough based on deep face representation
learning and perfromed far beyond human. Conventional
face-recognition approaches are proposed such as Gabor
wavelets (Liu and Wechsler 2002) and LBP (Ahonen, Ha-
did, and Pietikainen 2006). Schroff (Schroff, Kalenichenko,
and Philbin 2015) proposed triplet loss to minimize intra-
class variance and maximize inter-class variance. Various
of softmax-based loss functions also emerged, such as L-
Softmax (Liu et al. 2016), CosFace (Wang et al. 2018c),
SphereFace (Liu et al. 2017), AM-Softmax (Wang et al.
2018b), Arcface (Deng et al. 2019). Circle Loss (Sun
et al. 2020) proposed a flexible optimization manner via re-
weighting less-optimized similarity scores. GroupFace (Kim
et al. 2020) proposed a novel face-recognition achitecture
learning group-aware representations. However, these data-
driven approaches aim to learn discriminative face repre-
sentations on the premise of having the access to full pri-
vate faical statistics. Public available training databases (Cao
et al. 2018; Guo et al. 2016; Kemelmacher-Shlizerman et al.
2016; Wang et al. 2018a; Yi et al. 2014) are mostly collected
from the photos of celebrities due to privacy issue, it is still
biased. Furthermore, with increasing appealing to privacy
issues in society, existing public face datasets may turn to
illegal.

Federated Learning. Federated Learning (FL) is a ma-
chine learning setting where many clients collaboratively
train a model under the orchestration of a central server,
while keeping the training data decentralized, aims to trans-
fer the traditional deep learning methods to a privacy-
preserving way. Existing works seek to improve model per-
formance, efficiency and fairness in training and commu-
nication stage. FegAvg (McMahan et al. 2017) was pro-
posed as the basic algorithm of federated learning. FedProx

(Li et al. 2018) was proposed as a generalization and re-
parametrization of FedAvg with a proximal term. SCAF-
FOLD (Karimireddy et al. 2019) controls variates to cor-
rect the ’client-drift’ in local updates. FedAC (Yuan and Ma
2020) is proposed to improve convergence speed and com-
munication efficiency. FedAwS (Yu et al. 2020) investigated
a new setting where each client has access to the positive
data associated with only a single class. However, most of
them are mainly focusing on shallow networks and suffers
from privacy leakage in face recognition. Recently, there
also emerged some works (Bai et al. 2021; Aggarwal, Zhou,
and Jain 2021) focusing on federated face recognition.

Methodology
In this section, we will first provide the formulation of the
federated learning and its variant for face recognition. We
start by analysing, and then illustrate how we are motivated
to propose FedGC.

Problem Formulation
We consider a C class classification problem defined over
a compact space X and a label space Y . Let K be the
number of clients, suppose the k-th client holds the data
{xk

i , y
k
i } which distributes over Sk : Xk × Yk, and ensure

the identity mutual exclusion of clients Yk ∩Yz = ∅, where
k, z ∈ [K], k ̸= z, such that S = ∪k∈[K]Sk. In this work,
we consider the following distributed optimization model:

min
w

F (w) ≜
K∑

k=1

pkFk(w), (1)

where pk is the weight of the k-th client. Let the k-th client
holds nk training data and

∑K
k=1 nk = N , where N is total

number of data samples. We define pk as nk

N , then we have∑K
k=1 pk = 1.
Consider an “embedding-based” discriminative model,

given an input data x ∈ X , a neural network G : X → Rd

parameterized by θ embeds the data x into a d-dimensional
vector G(x; θ) ∈ Rd. Finally, the logits of an input data x in
the k-th client fk(x) ∈ RCk can be expressed as:

fk(x) = WT
k G(x; θ), (2)

where matrix Wk ∈ Rd×Ck is the class embeddings of the
k-th client. Then Eq. 1 can be reformulated as:

min
W,θ

F (W, θ) ≜
K∑

k=1

pk
1

nk

nk∑
i=1

ℓk
(
fk(x

k
i ), y

k
i

)
, (3)

where ℓk(·, ·) is the loss function of the k-th client, W =

[W1, · · · ,WK ]
T . To provide a more strict privacy guaran-

tee, we modifed FedAvg (McMahan et al. 2017) via keeping
last fully-connected layer private in each client. We term this
privacy-preserving version of FedAvg as Federated Averag-
ing with Private Embedding (FedPE). In FedPE, each client
only have access to its own final class embeddings and the
shared backbone parameters. Note that differential privacy
(Abadi et al. 2016) for federated methods can be readily
employed in FedPE by adding noise to the parameters from
each client to enhance security.
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Figure 1: An illustration of our method. In communication round t, Server broadcast model parameters (θt,W t
k) to the selected

clients. Then clients locally compute an update to the model with their local data asynchronously, and send the new model(
θt+1,W t+1

k

)
back. Finally, Server collects an aggregate of the client updates and applys cross-client optimization. (a)Client

Optimization: clients seek to get more discriminative and more compact features. (b)Server Optimization: correct gradients and
make cross-client embeddings spreadout.

Observation and Motivation
Softmax Loss. Softmax loss is the most widely used calssi-
fication loss function in face recognition. For convenience,
we omit the bias bj . In the k-th client, the optimization ob-
jective is to minimize the following cross-entropy loss:

L = − 1

N

N∑
i=1

log
eW

T
k,yi

Xk,i∑n
j=1 e

WT
k,jXk,i

, (4)

where Xk,i ∈ Rd denotes the deep feature of the i-th sample,
belonging to the yi-th class. In each individual client, the
optimization objective is to minimize inter-class similarity
and maximize intra-class similarity over the local class space
Ck. We define this optimization in FedPE within client as
local optimization. However, centralized training on the full
training set solves the problem over the global class space
C. We define the centralized method as global optimization.

In local optimization, the local softmax is to force
WT

k,yi
Xk,i > maxj∈Ck,j ̸=yi

(
WT

k,jXk,i

)
. However, in

global optimization, the softmax is to force WT
yi
Xi >

maxj∈C,j ̸=yi

(
WT

j Xi

)
. Thus, it is obvious that the

model solving the classification problem as Eq. 3
only apply within-client optimization and omit cross-
client optimization, lacking constraint WT

k,yi
Xk,i >

maxj∈Cz,z ̸=k

(
WT

z,jXk,i

)
.

Therefore, this objective function as Eq. 3 leads the model
to a convergence state where class embeddings of the same
client are almost orthogonal to each other, but part of class
embeddings of different clients may highly similar. And it
results in overlapping of feature space among cross-client
classes. Furthermore, only applying local optimization is
more likely to cause overfitting on small-scale local datasets.

Cross-Client Separability with Gradient
Correction
It is hard to mimic the global softmax with a set of local
softmax. To address the missing optimization, as illustrated

Algorithm 1: FedGC.

1: Input. The K clients are indexed by k and hold local
data distributes over Sk, η is learning rate.

2: Server initializes model parameters θ0, W 0

3: for each round t = 0, 1, ..., T − 1 do
4: Server initializes k-th client model with θt, W t

k.
5: for each client k = 1, 2, ...,K do
6: The k-th client computes local Softmax
7: (θt+1

k ,W t+1
k )← (θt,W t

k)− η∇ℓk
(
xk
i , y

k
i

)
,

8: and sends (θt+1
k ,W t+1

k ) to the server.
9: end for

10: Server aggregates the model parameters:
11: θt+1 ←

∑K
k=1

nk

n θt+1
k

12: W̃ t+1 =
[
W t+1

k , . . . ,W t+1
K

]T
13: Server applys gradient correction:
14: W t+1 ← W̃ t+1 − λη∇W̃ t+1Reg

(
W̃ t+1

)
15: end for
16: Output. θT , WT

in Fig. 1, a heuristic approach to minimize similarity among
cross-client class embeddings is to constrain the cross-client
embeddings with a regularization term. Considering the ad-
ditivity of gradients and the unique properties of sofmax loss
gradient, we are motivated to address this issue from a new
perspective of back propagation. Following the form of soft-
max, we define a regularization term, namely softmax regu-
larizer, on the class embeddings W ∈ Rd×C as:

Reg (W ) =

K∑
k=0

Ck∑
i=0

− log
eW

′T
k,iW

′
k,i

e
W ′T

k,i
W ′

k,i +
∑

z ̸=k

∑Cz
j=0 e

WT
z,jW

′
k,i

,

(5)
where Wk,i is the i-th class embedding of the k-th client,

and (·)′ indicates the vector dosen’t require gradient (the
gradient is set to be zero). We precisely limit the gradient of
loss function with softmax regularizer in order to push the
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network update towards the direction of standard Softmax.
In addition to FedPE, the server performs an additional

optimization step on the class embedding matrix W ∈
Rd×C to ensure that cross-client class embeddings are sep-
arated from each other. The Federated Averaging with Gra-
dient correction (FedGC) algorithm is summarized in Algo-
rithm 1. In communication round t, Server broadcast model
parameters (θt,W t

k) to the k-th clients. Then clients locally
compute an update with respect to local softmax loss func-
tion with their local data asynchronously, and send the new
model

(
θt+1,W t+1

k

)
back. Finally, Server collects an ag-

gregate of the client updates and applys cross-client opti-
mization. Note that differential privacy can also be applied
to FedGC to prevent privacy leakage, like FedPE.

We will theoretically analyze how FedGC works and how
it pushes the network to update in the direction of global
standard softmax. Note that FedGC effectively seeks to col-
laboratively minimize the following objective with softmax
regularizer Reg(W ):

F (W, θ) ≜
K∑

k=1

pk
1

nk

nk∑
i=1

ℓk
(
fk(x

k
i ), y

k
i

)
+ λ ·Reg (W ) .

(6)
For convenience, we assume that every client holds n1 =
· · · = nC = N

K data and c1 = · · · = cK = C
K , every

class holds a1 = · · · = aC = N
C images, and λ = 1

C , the
objective function can be reformulated as:

F (W, θ) =
1

N

K∑
k=1

∑
(xi,yi)∈Sk

ℓeq
(
fk(x

k
i ), y

k
i

)
= − 1

N

K∑
k=1

∑
(xi,yi)∈Sk

(
log

eW
T
k,yi

Xk,i∑C
j=1 e

WT
k,jXk,i

+ log
eW

′T
k,yi

W ′
k,yi

e
W ′T

k,yi
W ′

k,yi +
∑

z ̸=k

∑Cz

j=0 e
WT

z,jW
′
k,yi

 .

(7)

Thus, FedGC objective Eq. 6 equals the empirical risk
with respect to the loss function ℓeq

(
fk(x

k
i ), y

k
i

)
. Our anal-

ysis easily extends to unbalanced distribution by involving a
weighted form.

Considering the collaborative effect of all the terms in ℓeq ,
we give a interpretation from the perspective of backward
propagation. For standard softmax in global optimization,
the computation of gradients ∂L

∂Wyi
and ∂L

∂Wj
are listed as

follows:

∂L

∂Wyi

=

(
eW

T
yi

Xi∑C
j=1 e

WT
j Xi

− 1

)
Xi, (8)

∂L

∂Wj
=

eW
T
j Xi∑C

j′=1 e
WT

j′Xi
Xi, wherej ̸= yi. (9)

Similarly, for FedGC we also calculate the gradient of ℓeq .
Then, ∂ℓeq

∂Wk,j
, ∂ℓeq
∂Wz,j

and ∂ℓeq
∂Wk,yi

can be expressed as:

(a)w/o correction (b)with correction

𝑊k,𝑖
0

𝑊k,𝑖
𝑇

𝑊k,𝑖
𝑇+1
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Figure 2: Update steps of class embedings on a single client.
(a) The divergence between FedPE and SGD becomes much
larger w/o correction. (b) Gradient correction term ensures
the update moves towards the true optimum.

∂ℓeq
∂Wk,j

=
eW

T
k,jXk,i∑Ck

j′=1 e
WT

k,j′Xk,i
Xk,i, (10)

∂ℓeq
∂Wz,j

=
eW

T
z,jWk,yiWk,yi

e
WT

k,yi
Wk,yi +

∑
z ̸=k

∑Cz

j′=0 e
WT

z,j′Wk,yi

, (11)

∂ℓeq
∂Wk,yi

=

(
eW

T
k,yi

Xk,i∑Ck

j=1 e
WT

k,jXk,i
− 1

)
Xk,i. (12)

Let Dk,i denote the distance between Wk,i and Xk,
Dk,i = Wk,yi

− Xk,i. We assume a well trained feature
on local data due to it’s easy convergence on local data, i.e.
Dk,i → 0, then we have Wk,yi

→ Xk,i. We can approxi-
mate:

∂ℓeq
∂Wz,j

≈ eW
T
z,jXk,iXk,i

e
WT

k,yi
Xk,i +

∑
z ̸=k

∑Cz

j′=0 e
WT

z,j′Xk,i
. (13)

The parameters are updated by SGD as w′
k = wk−η ∂ℓeq

∂wk
,

where η is step-size. Here for simplicity, we simplify Eq. 8
as ∂L

∂Wyi
= αXi, Eq. 9 as ∂L

∂Wj
= βXi, and Eq. 12 as

∂ℓeq
∂Wk,yi

= α′Xk,i. Eq. 10 as ∂ℓeq
∂Wk,j

= β′Xk,i Eq. 13 as
∂ℓeq
∂Wz,j

= γ′Xk,i. We consider the direction of gradients, thus
Eq. 12 will act as a substitute for Eq. 8 in within-client opti-
mization, Eq. 10 will act as a substitute for Eq. 9 in within-
client optimization. The collaborative effect of both terms
act as local gradient in Fig. 2. The mismatch of the magi-
tude can be alleviated by adjusting the learning rate of class
embeddings.

More importantly, Eq. 13 performs cross-client optimiza-
tion and act as a correction term in Fig. 2 to correct gra-
dient in cross-client optimization, introducing a gradient of
cross-client samples to Eq. 10. And Eq. 13 has the same
direction as Eq. 9. And for magitude, the denominator of
Eq. 13 lacks term

∑Ck

j=0,j ̸=i e
WT

k,jXk,i compared to stan-
dard SGD, but with a well done local optimization, we have∑Ck

j=0,j ̸=i e
WT

k,jXk,i ≪
∑

z ̸=k

∑Cz

j=0 e
WT

z,jXk,i . Therefore,
magitude of Eq. 13 and Eq. 9 are approximately equal. Thus,
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Eq. 13 together with Eq. 11 can act as a substitute for Eq. 9,
and add a missing cross-client item. Therefore, FedGC can
push the class embeddings toward the similar dirction as
standard SGD and guarantees higher privacy.

Remark: Another simple way to introduce cross-client
constraint is to minimize:

∑
z ̸=k

∑Cz

j=0 W
T
z,jWk,i, we call

it cosine regularizer. For particular Wz,j , cosine regularizer
introduce gradient ∂ℓ

∂Wz,j
=
∑

z ̸=k Wk,i. We show that our
proposed softmax regularizer can act as a correction term for
local softmax and also can be regarded as a weighted version
of
∑

z ̸=k

∑Cz

j=0 W
T
z,jWk,i from the perspective of backward

propagation. Our proposed softmax regularizer generate gra-
dient of larger magitude for more similar embeddings (hard
example), thus it can also be regarded as a regularization
term with hard example mining. In addition, we defined the
softmax regularizer following the form of softmax. Thus,
several loss functions which are the variants of softmax (e.g.
ArcFace, CosFace ) can be obtained with minor modification
on softmax regularizer.

Extend FedGC to More General Case
In the above analysis, we adopt identity mutual exclusion as-
sumption Yk ∩Yz = ∅. In fact, FedGC is to solve the prob-
lem of missing cross-client optimization. FedGC can also be
applied to general case. We generalize the above mentioned
situations, that is, some IDs are mutually exclusive and some
IDs are shared. For example, there is an identity l shared by a
client group Kl. After each round of communication, server
takes the average of W t

n,l, n ∈ Kl and apply our proposed
softmax regularizer (only exclusive clients are introduced, in
this case client K −Kl) to correct its gradient. In this way,
we can get Wl updated in the direction similar to the stan-
dard softmax. With minor modifications to above analysis,
we can prove the applicability of FedGC in general case.

Relation to Other Methods
Multi-task learning. Multi-task learning combines several
tasks to one system aiming to improve the generalization
ability (Seltzer and Droppo 2013). Considering a multi-
task learning system with input data xi, the overall ob-
jective function is a combination of several subobject loss
functions, written as L =

∑
j Lj (θ,Wj , xi), where θ is

generic parameters and Wj , j ∈ [1, 2, · · · ] are task-specific
parameters. While in FedGC, Eq. 3 can also be regarded
as a combination of many class-dependent changing tasks
Lk = 1

nk

∑nk

j=1 ℓk
(
fk(x

k
j ), y

k
j

)
, k ∈ [1, · · · ,K]. In gen-

eral, multi-task learning is conducted end-to-end and train-
ing on a single device. While in FedGC, the model is trained
with class-exclusive decentralized non-IID data. Thus, our
method can be also regarded as a decentralized version of
multi-task learning.

Generative Adversarial Nets (GAN). Based on the idea
of game theory, GAN is essentially a two players minimax
problem, minG maxD V (D,G) = Ex∼pdata (x)[logD(x)] +
Ez∼pz(z)[log(1 − D(G(z)))], which converges to a Nash
equilibrium. In FedGC, client optimization and server op-
timization can be regarded as a process of adversary learn-

ing, where clients tend to minimize the similarity of within-
client class embeddings, Lk = 1

nk

∑nk

j=1 ℓk
(
fk(x

k
j ), y

k
j

)
.

But server tends to minimize the similarity of cross-client
class embeddings and encourages within-client class embed-
dings to be more compact, Reg(W ). By performing adver-
sary learning similar to GAN, the network can learn more
discriminative representations of class embeddings.

Experiments
Implementation Details
Datasets. Considering that federated learning is extremely
time-consuming, we employ CASIA-WebFace (Yi et al.
2014) as training set. CASIA-WebFace is collected from in-
ternet and contains about 1,000 subjects and 500,000 im-
ages. To simulate federated learning setting, we randomly
divide training set into 36 clients. For test, we explore
the verification performance of proposed FedGC on bench-
mark datasets ( LFW (Huang et al. 2008), CFP-FP (Sen-
gupta et al. 2016), AgeDB-30 (Moschoglou et al. 2017),
SLLFW (Deng et al. 2017), CPLFW (Zheng and Deng
2018), CALFW (Zheng, Deng, and Hu 2017), and VGG2-
FP (Cao et al. 2018)). We also explore on large-scale image-
datasets ( MegaFace (Kemelmacher-Shlizerman et al. 2016),
IJB-B (Whitelam et al. 2017) and IJB-C (Maze et al. 2018)).

Experimental Settings. In data preprocessing, we use
five facial landmarks for similarity transformation, then crop
and resize the faces to (112×112). We employ the ResNet-
34 (He et al. 2016) as backbone. We train the model with
2 synchronized 1080Ti GPUs on Pytorch. The learning rate
is set to a constant of 0.1. The learning rate is kept constant
without decay which is similar to the recent federated works.
The batch size is set as 256. For fair comparison, the learn-
ing rate is also kept 0.1 in centralized standard SGD. We set
momentum as 0.9 and weight decay as 5e-4.

Ablation Study
Fraction of participants. We compare the fraction of par-
ticipants C ∈ [0, 1]. In each communication round, there
are C · K clients conduct optimization in parallel on LFW.
Table 1 shows the impact of varying C for face recognition
models. We train the models with the guidance of Softmax.
It is shown that with the increasing of client participation C,
the performance of the model also increased. And FedGC
still ourperforms the baseline model by a notable margin.

Regularizer multiplier λ. We perform an analysis of the
learning rate multiplier of the softmax regularizer λ on LFW.
As shown in Table 2, FedGC achieves the best performance
when λ is 20. It is shown that a large multiplier also cause
network collapsing, as it makes within-client class embed-
dings collapse to one point. When λ is very small, then the
model degenerates into baseline model FedPE.

Balanced v.s. Unbalanced Partition. We compare the
verification performance according to the partition of
datasets. Here we constructed a unbalanced partition by log-
arithmic normal distribution: lnX ∼ N (0, 1). We perform
an analysis on the model with softmax loss functions on
LFW. In table 3, it shows that unbalanced partition even im-
prove the performance of network to some extent. We find
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Method C = 0.25 C = 0.5 C = 0.75 C = 1
Softmax-FedPE 93.12 93.83 94.32 94.77
Softmax-FedGC 97.07 97.98 98.13 98.40

Table 1: Verification performance on LFW of different par-
ticipance fraction C with softmax loss function.

Method λ = 1 λ = 20 λ = 50
Softmax-FedGC 95.20 98.40 97.42

Table 2: Verification performance on LFW of different learn-
ing rate multiplier λ with softmax loss function.

that the clients which holds larger scale dataset than aver-
age contribute significantly to network and make it generate
more discriminative representations. And FedGC still out-
performs baseline model on both balanced and unbalanced
datasets.

Regularizer v.s. Fixed. It has been proved that random
initialized vectors in high dimensional spaces (512 in this
case) are almost orthogonal to each other. A naı̈ve way to
prevent the class embeddings from collapsing into a over-
lapping space is keep the class embeddings fixed to initial-
ization. Table 5 shows that proposed FedGC outperforms
model with fully-connected layer fixed (”-Fixed”). For soft-
max loss function, simply fixing the last fully-connected
layer leads to a better accuracy. However, for Arcface and
Cosface which introduce a more strict constraint, the perfor-
mance of the model is even worse than baseline model. Intu-
itively, random initialized orthogonal vectors lack semantic
information, and it confuses the network in a more difficult
classification task. Thus, it is shown that the performance is
further increased with adaptive optimization (FedGC).

Cosine v.s. Softmax Regularizer. We replace soft-
max regularizer with cosine regularizer, namely FedCos:∑

z ̸=k

∑Cz

j=0 W
T
z,jWk,i, and guided by softmax loss func-

tion. We show the verification result on LFW in Table 4.
Although cosine regularizer shows a better accuracy than
FedPE, it is still worse than FedGC. Because softmax reg-
ularizer can be regarded as a hard sample mining version
of cosine regularizer, and also match the gradient in stan-
dard softmax. Thus, the superiority of softmax regularizer is
proved experimentally.

Visualization
To show the effectiveness of FedGC, the visualization com-
parisons are conducted at feature level. We select four pairs
of classes to compare FedGC and FedPE. In each pair, the
two classes are from different clients and their correspond-
ing class embeddings are highly similar in FedPE model.
The features are extracted from softmax model and visu-
alized by t-SNE (Maaten and Hinton 2008), as shown in
Fig. 3(a) and Fig. 3(b), the representations of the 4 pairs
tends to gather to a point and form 4 clusters in FedPE,
but the representations tends to spreadout and clustered by
themselves in FedGC. We also illustrate the angle distribu-
tions of all 8 selected cross-client classes. For each pair, we

Method LFW CFP-FP AgeDB
Balanced-FedPE 94.77 81.90 78.38
Balanced-FedGC 98.40 90.20 85.85
Unbalanced-FedPE 96.27 85.26 81.22
Unbalanced-FedGC 98.80 91.56 88.78

Table 3: Verification performance on LFW of different data
partition with softmax loss function.

FedPE FedCos FedGC
LFW 94.77 96.63 98.40

Table 4: Verification performance on LFW of different form
of regularization with softmax loss function.

calculate pair-wise cosine similarity of two classes’ sam-
ples. In Fig. 3(c) and Fig. 3(d), we can clearly find that
the cross-client class similarity significantly decreases in
FedGC which encourage a larger cross-client class angle.

Evaluations
LFW, CALFW, CPLFW, CFP-FP, VGG2-FP SLLFW
and AgeDB-30. In this section, we explore the performance
of different loss functions (Softmax, Cosface (Wang et al.
2018c), Arcface (Deng et al. 2019)). We set the margin of
Cosface (Wang et al. 2018c) at 0.35. For Arcface (Deng et al.
2019), we set the feature scale s to 64 and choose the angular
margin m at 0.5. The performance of a model trained with
federated learning algorithms is inherently upper bounded
by that of model trained in the centralized fashion. Table 5
shows the experiments results, where ”-X” means the dataset
is trained by method ”X”. FedGC achieves the highest aver-
age accuracy for all loss functions (Softmax, Arcface , Cos-
face) and performs better on all of the above datasets. For
ArcFace(m = 0.5), the centralized method even achieves a
poor performance worse than FedPE. And FedGC can also
match the performance of conventional centralized methods.

MegaFace. The MegaFace dataset (Kemelmacher-
Shlizerman et al. 2016) includes 1M images of 690K
different individuals as the gallery set and 100K photos of
530 unique individuals from FaceScrub (Ng and Winkler
2014) as the probe set. It measures TPR at 1e-6 FPR for
verification and Rank-1 retrieval performance for identifica-
tion. In Table 6, adopting FaceScrub as probe set and using
the wash list provided by DeepInsight (Deng et al. 2019),
FedGC outperforms the baseline model FedPE by a large
margin in different loss functions on both verification and
identification tasks. Some centralized methods (Softmax,
ArcFace(m = 0.5)) even show a poor performance when
the learning rate is 0.1. It shows that FedGC can match the
performance of conventional centralized methods.

IJB-B and IJB-C. The IJB-B dataset (Whitelam et al.
2017) contains 1, 845 subjects with 21.8K still images and
55K frames from 7, 011 videos. In total, there are 12, 115
templates with 10, 270 genuine matches and 8M impostor
matches. The IJB-C dataset (Maze et al. 2018) is a further
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Method LFW CFP-FP AgeDB CALFW CPLFW SLLFW VGG2-FP Average
Softmax∗ 99.84 89.39 87.62 84.83 76.08 92.33 88.18 88.32

-FedPE 94.77 81.90 78.38 74.15 64.40 80.42 80.32 79.19
-FedPE+Fixed 96.11 83.67 80.28 77.95 66.27 84.23 82.70 81.60
-FedGC 98.40 90.20 85.85 81.47 71.88 90.38 87.64 86.55

CosFace(m = 0.35)∗ 99.10 90.79 91.37 89.53 80.20 95.95 89.10 90.86
-FedPE 98.17 86.90 86.28 83.68 72.67 91.15 85.24 86.30
-FedPE+Fixed 96.35 73.01 81.77 79.25 62.15 86.57 75.16 79.18
-FedGC 98.83 88.60 90.00 87.82 76.72 94.02 85.74 88.82

ArcFace(m = 0.5)∗ 97.62 90.50 83.37 77.33 70.95 86.28 89.40 85.06
-FedPE 98.18 87.23 86.13 82.47 71.77 91.05 85.70 86.08
-FedPE+Fixed 95.85 64.43 79.15 77.53 58.63 85.67 66.70 75.42
-FedGC 98.65 87.77 89.27 86.47 75.17 93.58 84.80 87.96

Table 5: Verification results (%) of different loss functions (Softmax, Cosface, Arcface) and method on 7 verification datasets.
FedGC surpass others and enhance the average accuracy. ∗ indicates the re-implementation by our code and η is constant 0.1.
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Figure 3: Visualization of selected 8 classes from training
set. (a)(b) t-SNE (Maaten and Hinton 2008) data distribu-
tion; (c)(d) Histogram of pairwise cosine similarity (hori-
zontal axis: cosine similarity, vertical axis: number of pairs).

extension of IJB-B, having 3, 531 subjects with 31.3K still
images and 117.5K frames from 11, 779 videos. In total,
there are 23, 124 templates with 19, 557 genuine matches
and 15, 639K impostor matches. The verification TPR at 1e-
3 FPR and identification Rank-1 are reported in Table 7.
FedGC shows significant improvements and surpasses all
candidates by a large margin. Compared with centralized
method on all of three loss functions, FedGC can match the
performance of conventional centralized methods on both
IJB-B and IJB-C datasets.

Conclusion
In this paper, we rethink the federated learning problem for
face recognition on privacy issues, and introduce a novel
face-recognition-specialized federated learning framework,

Method Ver.(%) Id.(%)
Softmax∗ 61.21 59.65

-FedPE 36.83 34.08
-FedGC 69.87 61.26

CosFace(m = 0.35)∗ 83.30 79.09
-FedPE 62.62 57.91
-FedGC 72.82 70.96

ArcFace(m = 0.5)∗ 50.51 35.18
-FedPE 64.53 58.12
-FedGC 71.96 68.75

Table 6: Verification TPR (@FPR=1e-6) and identification
Rank-1 on the MegaFace Challenge 1.

Method IJB-B IJB-C
Ver.(%) Id.(%) Ver.(%) Id.(%)

Softmax∗ 72.60 74.81 75.06 76.05
-FedPE 54.33 64.44 57.85 65.35
-FedGC 69.23 78.52 71.33 79.52

CosFace(m = 0.35)∗ 76.79 78.35 79.45 79.90
-FedPE 74.24 78.10 77.12 79.10
-FedGC 80.28 82.10 83.40 83.44

ArcFace(m = 0.5)∗ 56.64 60.14 59.38 59.79
-FedPE 73.42 76.40 75.74 76.82
-FedGC 75.11 78.33 78.13 79.28

Table 7: Verification TPR (@FPR=1e-3) and identification
Rank-1 on the IJB-B and IJB-C benchmarks.

FedGC, that consists of a set of local softmax and a softmax-
based regularizer to effectively learn discriminative face rep-
resenttations with decentralized face data. FedGC can ef-
fectively enhance the discriminative power of cross-client
class embeddings and enable the network to update towards
the same direction as standard SGD. Extensive experiments
have been conducted over popular benchmarks to validate
the effectiveness of FedGC that can match the performance
of centralized methods.
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