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Abstract

In this paper, we give a new definition for sample complexity,
and further develop a theoretical analysis to bridge the gap be-
tween sample complexity and model capacity. In contrast to
previous works which study on some toy samples, we conduct
our analysis on more general data space, and build a qualita-
tive relationship from sample complexity to model capacity
required to achieve comparable performance. Besides, we in-
troduce a simple indicator to evaluate the sample complexity
based on continuous mapping. Moreover, we further analysis
the relationship between sample complexity and data distri-
bution, which paves the way to understand the present repre-
sentation learning. Extensive experiments on several datasets
well demonstrate the effectiveness of our evaluation method.

Introduction
Over the past decades, the boom in deep neural networks
(DNNs) has promoted the rapid development of artificial in-
telligence communities (Goodfellow et al. 2014; Girshick
2015; Long, Shelhamer, and Darrell 2015). Along with these
advances, a large amount of newly proposed datasets and
deep neural network structures (Simonyan and Zisserman
2014; He et al. 2016) further promote the breakthrough of
deep learning. However, there exist two common concerns
in the most basic classification tasks, that is, how to eval-
uate the sample complexity of a given dataset and how to
build the relationship between datasets sample complexity
and model capacity.

To tackle these problems, various methods have been pro-
posed to discuss the connection between dataset and model.
Some researchers (Branchaud-Charron, Achkar, and Jodoin
2019; Ho and Basu 2002) start from assessing different
datasets by a series of complexity measures, which are then
used to evaluate the complexity of classification problem.
The class entanglement is evaluated based on the assump-
tion that discriminative and separated classes are conducive
to classification tasks. Ho et al. (Ho and Basu 2002) propose
to evaluate the sample complexity by a combination of 12
descriptors, which is effective for small non-image two-class
datasets. These metrics are then generalized by (Orriols-
Puig, Macia, and Ho 2010; Sotoca, Mollineda, and Sánchez
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2006), which build on strong assumptions for data distribu-
tion and complex calculations. Branchaud et al. (Branchaud-
Charron, Achkar, and Jodoin 2019) develop CSG metric for
dataset complexity assessment based on class overlap and
spectral clustering of image datasets. Schmidt et al (Schmidt
et al. 2018) utilize a simple setting of mixture of two spheri-
cal Gaussians with one component per class. They theoreti-
cally analyze the model capacity required for standard train-
ing and adversarial training, and further extend their conclu-
sion to complex datasets.

Instead of discussing sample complexity from the whole
dataset, we focus on the most representative points in the
dataset. These key-points, defined as dominating data, can
serve as data anchors, which play an essential role in model
fitting. Concretely, the whole dataset can be divided as sev-
eral clusters based on point distance, and the dominating
data can be extracted from these clusters. We assume that if
the model fits on these dominating data, the learned patterns
can easily generalize to the whole dataset. Similar view-
points can also be embodied in support vector machine (No-
ble 2006) and prototype learning (Yang et al. 2018; Zhang
et al. 2018). In this paper, we use the concept of dominating
data as a medium to explore the relationship between sample
complexity and model capacity.

We argue that the amount of dominating data is a good
metric for the sample complexity. Furthermore, we give the
definition of model capacity, and theoretically give the upper
and lower bounds of the model capacity required for training
under a certain amount of dominant data. Inspired by contin-
uous mapping, we also provide a qualitative evaluation for
sample complexity of a given dataset based on clusters. Be-
sides, considering the dominating data wrapped by clusters
can be regarded as unit distribution, we can further analysis
the relationship between sample complexity and data distri-
bution, and give a new method to compute the sample com-
plexity by inter-class and intra-class distribution. We think
this investigation has broad implications for present repre-
sentation learning (Bengio, Courville, and Vincent 2013).

Our contributions can be summarized as follows:
• We give a new definition of sample complexity and theo-

retically build the relationship between sample complex-
ity and model capacity.

• We further discuss the relationship between sample com-
plexity and data distribution, and measure the sample
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complexity based on representation learning.
• Extensive experiments well demonstrate that the pro-

posed method can effectively characterize the relation-
ship between sample complexity and model capacity.

Theoretical Analysis
Preliminary
We view the data set as some data clusters according to the
distance between data samples. Based on this, firstly, we ar-
gue that some small data clusters or outliers (i.e., hard ex-
amples (Smirnov et al. 2018)) hinder the generalization of
trained models. Namely, there exist few samples surround-
ing these small clusters or outliers, which resulting in the
limited marginal benefit of model generalization during the
fitting process. However, for some big clusters, the central of
clusters are surrounded by a large amounts of neighboring
points. Secondly, some representative key-points can be ex-
tracted from clusters of original dataset to enable a favorable
performance. As observed in Fig.1, only using central points
of clusters can achieve comparable accuracy compared with
using the whole train set. Therefore, fitting these key-points
can be deemed as an important aspect of model learning.
Recent researches on prototype learning (Yang et al. 2018;
Zhang et al. 2018; Liu, Song, and Qin 2020) also show that
the most representative exemplars can serve as anchors to
facilitate efficient learning. Similar standpoint is also re-
vealed in dataset distillation (Hinton, Vinyals, and Dean
2015; Wang et al. 2018).

As discussed above, we want to know how many samples
can form a skeleton of the data set which can guarantee the
satisfactory performance of models training. To solve this
problem, we build a new definition of sample complexity,
and further to discuss the relationship between the sample
complexity and model capacity theoretically, which paves
the movement to understand the current popular deep learn-
ing.

Sample Complexity
Many previous methods have been proposed to explore the
relationship between sample complexity and model capac-
ity from the perspective of model fitting and generalization

Fitting Set Test Acc
Train Set 91.5

Center Point 94.7

Figure 1: We conduct a simple validation to fit the points of
two classes (A and B) in the left graph using SVM classifier
with default settings. We respectively fit the central point of
each cluster(blue point) and the complete training set (blue
and purple points). The variance of clusters in test set is set
as two times of that in train set. The size of dotted circle
represents the size of clusters.

(Schmidt et al. 2018; Carmon et al. 2019). Branchaud et
al. (Branchaud-Charron, Achkar, and Jodoin 2019) propose
spectral metric for dataset complexity assessment based on
class overlap for image datasets compared with Ho et al.
(Ho and Basu 2002) for non-image datasets. Schmidt et
al. (Schmidt et al. 2018) theoretically analysis the general-
ization of the a linear classifier trained on a toy data set, i.e,
a mixture of two spherical Gaussians. However, there exist
some limitations on this works: 1). It is uncertain whether
the conclusion established in the linear model on the toy
data (low-dimensional gaussian distribution) can be directly
extended to high-dimensional data and nonlinear neural net-
work. 2). Samples drawn from Gaussian distribution tend to
have strong distinguish ability, which can be easily classi-
fied by a naive linear model. However, the natural data (e.g.
images) or training data sets obtained in the wild are really
complex, which means that these samples cannot obey to
a simple distribution, and even have a complicated mani-
fold structure. Thus, there exits a big gap between the toy
data set and real data. As shown in Tab.1, samples from real
datasets share less similarity compared with low-dimension
Gaussian dataset, even for CNN feature embedding.

To solve these problems, we propose to directly fit rep-
resentative data points in high-dimensional space, and give
a novel definition of sample complexity. Thus, our work is
more general compared with prior arts.

For the sake of discussion, we first give some basic defi-
nitions as follows,

Definition 1 (Neighboring points) Let x1, x2 be two data
points drawn from whole dataset and Φ(x1),Φ(x2) be their
corresponding embedding, such as identity mapping, CNN.
Given a distance threshold ϵ, we call x1, x2 are neighboring
points or x1 has a neighbor x2 if,

d(Φ(x1),Φ(x2)) < ϵ (1)

where d is a distance metric.

Definition 2 (Cluster) For a group of data points G =
{x1, x2, ...} as the subset of the whole dataset, we define
G as a cluster if and only if any two points in G are neigh-
boring points.

The dataset can hence be divided to several clusters and
each data point belongs to a single cluster. Inspired by the
concept of dominating set in graph theory (for graph G =
(V,E), the dominating set is defined as a subset U of vertex
set V that each vertex in V − U has at least one neighbor in

CosSim Gaussian MNIST CIFAR10
Original 0.308 0.536 0.825

Embedding - 0.641 0.889

Table 1: We compute the average cosine similarity on orig-
inal samples and embedded CNN features in MNIST, CI-
FAR10 and constructed Gaussian dataset. We construct
Gaussian dataset following Schidmt et al.(σ = 1.0)
(Schmidt et al. 2018) and we use ResNet34 (He et al. 2016)
and LeNet5 for CIFAR10 and MNIST feature embedding
respectively.
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U ), we obtain the definitions of dominating data and sample
complexity of a dataset, as follows,

Definition 3 (Dominating data) For a given dataset D and
corresponding clusters, we extract one point from each clus-
ter thus forming a subset Dd, we call the subset Dd as the
dominating data of this dataset.

Definition 4 (Sample complexity) The sample complexity S
is interpreted as the scale of dominating data, i.e.

S = |Dd| (2)

We claim that once the model fits the dominating data,
it can easily generalize the to the whole data set. So we
can use dominating data as a metric to describe the sample
(i.e., dataset) complexity. Our assumption is also reflected in
other machine learning field. Introducing data augmentation
in model training can significantly improve model general-
ization. Previous data augmentation methods, such as ran-
domly flipping, randomly cropping, adding noise, cutout,
can be seen as creating new data patterns compared with
the original single style data sets. The newly crafted pat-
terns diversify the space of data expansion, which increase
the sample complexity, thus causing much model capacity.
In adversarial training, there exists a trade-off between the
generalization ability on natural samples and adversarial ex-
amples (Madry et al. 2017; Zhang et al. 2019). One ratio-
nal explanation is that the adversarial examples far deviate
from the original data distribution which is easy to general-
ize, forming more outlier data points as well as dominating
data. It is laborious to obtain the generalization of these sam-
ples by learning smooth model as before. Moreover, the hard
examples (Smirnov et al. 2018), which can be interpreted as
samples with small clusters, are not conducive to the model
learning. Out of distribution samples (OOD) (Krueger et al.
2021) can be regarded as no corresponding data cluster in
the training set and domain adaption (Long et al. 2015) can
be viewed as dominating data alignment.

Model Capacity for Dominating Data
In this section, we discuss the model capacity which need
to fit all the dominating data from the perspective of combi-
natorics, to bridging the relationship between sample com-
plexity and model capacity.

Let n be the amount of dominating data as well as sample
complexity D : Rd. As illustrated above, these samples are
relatively independent of each other, and the model needs
to consume the fitting ability to memorize these points. For
the convenience of the following derivation, we assume that
the dominating data are composed of many sub datasets S
with a capacity of w, where w < n, S ⊂ D. In addition,
this assumption stems from the training set and test set in
reality are commonly sampled from total data space, and the
model is expected to maintain performance under different
data combinations.

At the same time, let m be the number of distinct cat-
egories Y . Then the number of all the possible mappings
Rd → Y in a random data set is T = mn. Note that for a
determined data set in reality, the number of mappings cor-
responds to the amount of dominant data, that is, T ≈ n.

However, considering the preciseness of deduction, we still
use T = mn. Correspondingly, suppose that the classifier
can be consisted of a series of atomic functions, and each
atomic functions can classify or cover t mappings (t > w)
in the domination data. Thus, we can obtain the definition of
model capacity,

Definition 5 (Model capacity) We assume the classifier can
be divided into some atomic function, which can only cover
a fixed number of mappings. We call the number of atomic
functions |F | required to classify all sub datasets as model
capacity M, i.e.

M = |F | (3)

Since the sub datasets are sampled from the dominating
data, we can find N = Cw

n possible sub datasets. Accord-
ingly, the atomic function corresponds to the subset of map-
pings, and therefore there are M = Ct

T possible atomic
functions. This problem can be transformed into a perfect
hash mapping problem, that is, given N sub datasets, how
many atomic functions of total M we need to select to
achieve complete coverage of all sub datasets.

Referring to the proof of Stein-Lovasz theorem (Deng
et al. 2011) in coding theory, we provide the upper bound
of model capacity in the above problem.

Theorem 1 (Upper bound) Let w be the sub dataset capac-
ity sampled from dominating data and let T be the number of
all possible mappings. The classifier is composed of atomic
functions and each atomic function can cover t mappings
with t > w. Then the model capacity |F | required to cover
all the sub datasets satisfies,

|F | ≤ Ct
T

Ct−w
T−w

(1 + lnCw
t ) (4)

At this point, if the fitting ability of a atomic function is close
to the size of sub dataset, i.e. t > w and t ≈ w, the above
conclusion can degenerate into |F | ≤ Cw

T .

All the proofs can be found in the in the supplementary ma-
terials.

Note that Ct
T

Ct−w
T−w

= T (T−1)...(T−w+1)
t(t−1)...(t−w+1) , as shown clearly

in Eqn. 4, the model capacity is related to the total num-
ber of mappings in dataset, which is then determined by the
amount of dominating data. That is, the more sample com-
plexity, the more atomic functions should be required, the
more model capacity is required.

Besides, we use probabilistic approach to obtain a lower
bound of model capacity required to coverage of all sub
datasets. Due to the limited pages of main body, we put the
lower bound and corresponding proof in the supplementary
material. Similar views can be drawn from the lower bound
of model capacity.

Sample Complexity and Dataset
Inspired by the concept of continuous mapping (Scarf 1967),
we attempt to bridge the sample complexity and dataset.
Moreover, we provide the lower bound of the number of
small clusters in the dataset measured by data points dis-
tance. It can be seen from Fig. 1 that the points in a cluster
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are easy to learn through model generalization, and conse-
quently the cluster can be served as the basic unit of sample
complexity.

Suppose a CNN model, there exists a continuous map-
ping from the input space X : x ∈ Rhwc to the output space
Y : Φ(x) ∈ Rd with respect to this model. Data observed in
reality are limited and can not fill the whole data space X ,
however, We assume that the learned CNN model can satisfy
local continuous mapping in dataset, i.e., we hope a single
point is surrounded by as many neighbor points as possible.
Concretely, if our dataset possesses many large clusters, the
classifier only need to memory some representative domi-
nating points in these clusters, to obtain generalization for
the other points.

Suppose that the number of data points in a dataset is N .
We can apply a center threshold stated in Definition. 1 to
obtain the neighboring points of xi, we denote the number
of neighboring points of xi as d(xi). Then we can get the
following theorem,

Theorem 2 (Lower bound of sample complexity) Let
x1, ..., xn be the data points of dataset D and d(xi) be the
number of neighboring points of xi, then the number of clus-
ters α(D) satisfies,

α(D) ≥
∑
xi

1

1 + d(xi)
(5)

where the size of the maximal cluster satisfies,

ω(D) ≥
∑
xi

1

n− d(xi)
(6)

From Theorem. 2, it is obvious that the number of neigh-
boring points of each point have negative correlation with
the number of clusters, and the cluster number, correspond-
ing to the dominating data, can be regarded as a measure-
ment for sample complexity.

Towards Evaluating Data Sets Complexity
As mentioned above, we theoretically analysis the relation-
ship between sample complexity and model capacity. In this
section, we explore the impact of the specific data distribu-
tion on sample complexity. As discussed above, dominat-
ing data can be drawn from clusters, so we can define the
unit distribution as a dominating point combined with its
corresponding cluster. In order to achieve better generaliza-
tion, we expect the unit distributions belonging to different
classes have less overlap, and the unit distributions of the
same class are more collective. From the perspective of rep-
resentation learning (Bengio, Courville, and Vincent 2013),
the inter-class discrimination and intra-class compactness is
beneficial for model fitting and generalization.

Then, we will discuss how to evaluate dataset complexity
from the perspective of inter-class and intra-class unit distri-
butions.

Inter-class Distribution Overlap
Given a dataset on domain X , it is infeasible to directly
compute the distance of two unit distributions of different

classes. Here, JS(Jensen–Shannon) divergence (Menéndez
et al. 1997) is applied to depict the overlap of two distri-
bution. Supposing P and Q are two unit distributions,

JS(P ||Q) =
1

2
KL(P ||P +Q

2
) +

1

2
KL(Q||P +Q

2
) (7)

Following f-GAN (Nowozin, Cseke, and Tomioka 2016), we
define f as the generator function f : R+ → R of JS diver-
gence, and f∗ as its conjugate function, which is defined as
f∗(t) = sup

u∈domf
{ut− f(u)}. Then we get the following

formulation of JS divergence,
JS(P ||Q) ≥ sup

T∈T
Ex∼P [T (x)]− Ex∼Q[f

∗(T (x))] (8)

where T represents a arbitrary mapping from data point x
to conjugate variable t and T represents qualified mapping
groups. Proof details can be found in the in the supplemen-
tary materials.

We assume that T is an optimized model with learn-
able parameters θ following f-GAN (Nowozin, Cseke, and
Tomioka 2016), and its optimal solution determines a classi-
fication for distribution P and Q. We rewrite T as a combi-
nation of feature extraction function Vw and activation func-
tion gf , i.e., Tθ(x) = gf (Vw(x)). Let the activation function
be,

gf (v) = log 2− log(1 + e−v) (9)
and D(v) = 1/(1+e−v), we can obtain the following propo-
sition,
Proposition 6 Let Vw(x) be a specific feature extraction
function, the overlap between unit distributions P and Q
measured by JS divergence can be represented as,

DPQ = −Ex∼P [log(D(Vw(x)))]

− Ex∼Q[log(1−D(Vw(x)))]
(10)

Note that we omit the constant term log 4. If P and Q
are balanced, the overlapping metric is equivalent to cross-
entropy loss,

DPQ = −Ex[yx log(D(Vw(x)))

+ (1− yx) log(1−D(Vw(x)))]

= Ex[CEVw(x)(x)]

(11)

where yx = 1(x ∈ P ).
It is noteworthy that when we talk about the sample com-

plexity of a dataset, we potentially default to that we are per-
forming a specific task, such as image classification. There-
fore, it is rational to discuss the sample complexity relative
to a specific model.

Due to the symmetry of JS divergence, it can be verified
that the above indicator also holds symmetry property,
DPQ = EP [logDp(Vw(x))] + EQ[log(1−Dp(Vw(x)))]

= EP [log(1−Dq(Vw(x)))] + EQ[logDq(Vw(x))]

= DQP

(12)
It is shown that the classification loss can be used to mea-

sure the overlap between unit distributions. Since we can
easily compute this metric on all cluster pairs of different
classes, we can thus obtain the index of sample complexity
based on inter-class discrimination.
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Intra-class Distribution Dispersity
The dispersity of intra-class distribution can be measured
by the concept of information entropy, that is, larger entropy
means the chaotic of the distribution, bigger sample capacity
and more dominating data. However, due to the high dimen-
sion of images, given a specific group of data, it is difficult to
directly compute data information entropy. It sounds reason-
able to utilize signal-to-noise ratio, but suffers from rough
depiction.

In the above section, a metric of overlap has been pro-
posed to measure the distance between different data distri-
butions. Intuitively, considering model generalization, a sin-
gle peak and more concentrated distribution is superior to
a scattered multi peak distribution. Therefore, we can ran-
domly divide data belonging to one class into small groups,
and then investigate the distribution overlap among these
groups, as follows,

Da = sup
K∈Ka

2

a(a− 1)

∑
ki,kj∈K

D(pki
, pkj

) (13)

where Ka represents all random divisions of a groups, and
ki, kj denote two groups in a particular division K. D
is a measurement of distribution overlap, as illustrated in
Eqn.11.

For a real dataset, given group numbers a, we want to
seek out a best division to maximize distribution difference,
as an approximation of the above formula. Similar scheme is
also applied in DRO (Kuhn et al. 2019; Sagawa et al. 2019),
where they group the data set through target and background
of images to encourage the model to pay attention to out of
distribution images. Data grouping can be applied according
to specific tasks. For example, clusters can be used as a divi-
sion of data. In adversarial training (Goodfellow, Shlens, and
Szegedy 2014; Madry et al. 2017), the adversarial example
and clean samples naturally form a division of the data set.
More generally, all data can be sorted by model losses and
we can make groups according to the order of the loss.

Experiments
In this section, we conduct extensive experiments to evaluate
the sample complexity and model capacity of classification
tasks on various datasets, which demonstrate the validity of
the proposed analysis method. Our experiments are based on
PyTorch.

Implementation Details
We conduct our experiments mainly on three datasets, in-
cluding MNIST, CIFAR-10 and SVHN. Both the original
samples and embedded features are utilized to evaluate sam-
ple complexity and required model capacity. For CNN em-
bedding, we use ResNet-34 (He et al. 2016) model for CI-
FAR10 and SVHN datasets, and use LeNet5 (LeCun et al.
1998) model for MNIST dataset. The details of model train-
ing can be found in the supplementary materials. In addi-
tion, we also apply TSNE (Van der Maaten and Hinton 2008)
function to project the original down to 2D space and simi-
larly the CNNTSNE function is applied to the CNN embed-
ding.

Several data augmentation methods are introduced to
verify the validity of our method. We compare the origi-
nal data without applying data augmentation with Random
crop, Random flip, Affine transformation, Rotation, Cut-
Out, Noise. Due to the limited pages, we put the details and
parameters settings about augmentations in the supplemen-
tary materials. As a special method of data augmentation, we
will separately introduce the generation of adversarial exam-
ples in the following subsections. Considering the computa-
tional complexity, we will select partial classes in the data
set or randomly select partial samples in each category for
evaluation without affecting the experimental reliability.

Sample Complexity and Model Capacity
In this section, we evaluate the sample capacity of different
augmentations on CIFAR10 as well as the model capacity to
validate the relationship revealed in the theorem above.

For a certain dataset, we utilized the number of clusters
(Clusters), which can be interpreted as dominating data, to
indicate the sample capacity as illustrated above. For each
data point pair, we compute the L2 distance and get a dis-
tance matrix. We then apply Definition. 1 to identify neigh-
boring points (ϵ is empirically set as 12 for original im-
ages and 2 for CNN embedding) thus obtaining a graph,
where vertexes represent data points and edges represent
points neighboring. The dual relationship between the max-
imum independent set and the number of cliques in the
graph is used to obtain the number of clusters, as defined
in Definition.2. For more comprehensive validation, we also
compute the size of the maximal cluster (MCS), which is
defined as clique number in the graph theory. To evaluate
the model capacity, several classifiers are utilized, including
decision tree (Safavian and Landgrebe 1991), random forest
(Biau and Scornet 2016) and 3 layer multi-layer perceptron
(MLP). Hyper-parameters about classifiers can be found in
the supplementary materials. For decision tree, the number
of nodes and leaves are used to measure model capacity. For
random forest and MLP, the number of base estimators and
the hidden layer size are used to measure the model capacity.

The experimental results on CIFAR10 dataset in shown
in Tab. 2. Average Clusters and MCS are collected from
each classes. The decision tree fitting accuracy on train set
of different augmentation is 100%. We only pay attention to
the accuracy on train set since we are currently discussing
the relationship between model fitting and data capacity. We
can observed from the results that data augmentations can
promote the dominating data, thus increasing the model ca-
pacity. For CNN embedding, we apply random forest and
MLP classifier and evaluate the test set accuracy related with
the number of base estimators and the hidden layer size, as
shown in Fig.2. It clearly shows that augmentation datasets
that possess more dominating data require more complex
classifier to obtain the comparable performance. Similar re-
sults can be observed from Fig.3, where the original images
and CNN embedding are projected to 2D space.

To evaluate the data sample complexity based on repre-
sentation learning, we conduct experiments of several aug-
mentations on CIFAR10 to compute the metric of distribu-
tion overlapping and distribution dispersity. The distribution
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Augmentation Clusters MCS Nodes Leaves
Normal 493.2 60.4 4993 2497
Crop 636.1 18.3 5251 2626
Flip 492.7 60.4 4995 2498
Affine 564.3 28.6 5063 2532
Rotation 579.6 28.2 5135 2575
Cutout 730.0 15.6 5303 2652

Table 2: Sample complexity measured by average Clusters
and MCS and model capacity measured by decision tree
nodes and leaves on CIFAR10 original images. The deci-
sion tree fitting accuracy of all augmentations is 100.0%. We
evaluate totally 10000 samples where 1000 samples from
each class.

(a) Random Forest (b) 3 Layer MLP

Aug. Normal Flip Affine Rotation Cutout
Clusters 724.1 960.2 800.8 826.9 764.1

Figure 2: We report the test accuracy related with the model
(Random Forest, 3 Layer MLP) capacity measured by num-
ber of base estimators and hidden layer size respectively for
different augmentations on CIFAR10. Corresponding Clus-
ters of different augmentation CNN embedding are shown
in table below.

(a) TSNE (b) CNNTSNE

Figure 3: We apply TSNE to the original images and
CNNTSNE to the CNN embedding. Corresponding clusters
are marked in above figure.

overlapping is calculated by Eqn.11 and the distribution dis-
persity is calculated by Eqn.13, where the dataset is grouped
by clusters. Since the trained model has applied random flip
and random crop augmentations, for fairly comparison, we
only use other four augmentations for evaluation. As shown
in Fig.4, the indicators used to measure sample complexity
by distribution are aligned with the data capacity embodied
by clusters. The experimental results shows the rationality of
utilizing representation learning to depict the sample com-

plexity.

Figure 4: We show the distribution overlapping and distri-
bution dispersity related with clusters of different augmen-
tations.

Data Combination
In this section, we conduct experiments on several self-
constructed datasets extracted from CIFAR10 dataset to fur-
ther verify large intra-class distribution dispersity can lead to
more sample complexity. We construct four kind of datasets,
1) Merge 5: merge the adjacent categories like (0,1), (2,3),
(4,5), (6,7), (8,9) to total 5 classes, 2) Keep 5: drop the
class 5,6,7,8,9, and only keep the first 5 classes, 3) Merge
5 (Sim): merge the categories according to class similarity,
like (airplane, ship), (automobile, truck), (bird, frog), (cat,
dog), (deer, horse), to total 5 classes, 4) Keep 5 (Sim): keep
one class from each pair above, like airplane, truck, bird,
dog, deer. Details about class pairs in 3) can be found in sup-
plementary materials. We make each processed class con-
tain the same number of samples for fair comparison, and
here we set the number of samples each class as 1000. Tab.3
shows our experimental results. Model capacity is evaluated
on decision tree(Nodes, Leaves), random forest with 10 base
estimators and MLP with hidden neural size 10. It is re-
ported that the merged datasets, which damages the intra-
class compactness, increase the model capacity compared
with non-merged settings. The results holds even when we
merge the similar classes. Note that since similar classes
will also reduce sample complexity, the model capacity for
Merge 5 (Sim) is a bit smaller than that of Merge 5, which
further validate our assumption.

Combinations Nodes Leaves RF10 MLP10

Merge 5 67 34 90.2 93.8
Keep 5 23 12 95.3 96.6
Merge 5 (Sim) 65 33 92.7 95.3
Keep 5 (Sim) 27 14 95.1 96.1

Table 3: Model capacity of different data combination meth-
ods. Nodes and leaves are used to indicate the model capac-
ity of decision tree. RF10 represents the test set accuracy of
random forest with 10 base estimators and MLP10 represents
the test set accuracy of MLP with hidden neural size 10.
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(a) MNIST

(b) SVHN

Figure 5: Experimental results on MNIST and SVHN
datasets. We use the number of clusters, decision tree nodes
to measure sample complexity and model capacity.

Results on MNIST and SVHN

To further validate the proposed evaluation methods, we per-
form experiments on MNIST and SVHN datasets. CNN em-
bedding is used to compute the point neighboring. We em-
pirically set the distance threshold ϵ as 10 for MNIST and
2 for SVHN. Number of clusters, as an indicator for dom-
inating data, is used to measure sample complexity. The
model capacity is measured by the number of nodes in de-
cision tree. For distribution metric, we compute the distri-
bution overlapping and as Eqn.11 and Eqn.13. We make
a simplification here. We divide the samples of each class
into two groups according to the order of classification loss,
and approximate the intra-class by computing the distribu-
tion overlapping between the two groups of samples. All the
experiments are conducted on test set. For sample complex-
ity and model capacity evaluation, we randomly select 500
(MNIST) and 1000 (SVHN) samples from each class and
compute the average results. For distribution metric, we use
the whole test set. As displayed in Fig.5, the sample com-
plexity, model capacity and distribution metric are almost
aligned, which well demonstrate the effectiveness of the pro-
posed evaluation methods.

Evaluation on Adversarial Examples

We conduct experiments on adversarial examples using
CNN embedding. Project Gradient Descent(PGD) (Madry
et al. 2017) are apply to attack clean images. As shown in
Tab.4, adversarial examples can significantly raise the sam-
ple complexity, especially for distribution overlapping, thus
increasing model capacity.

Data Process Nodes RF10 Overlap Dispersity
Normal 99 92.15 0.296 0.592
PGD 1835 47.05 37.791 6.889

Table 4: Evaluation on adversarial examples. Decision tree
and random forest are used to measure model capacity. We
use distribution overlapping and distribution dispersity to
show sample complexity.

Related Work
Classical framework to abstractly characterize the ma-
chine learning ability is Probably Approximately Correct
(PAC) learning (Haussler 1990), which studies the condi-
tions required to obtain a favorable model and the scale
of corresponding training samples under a certain hypoth-
esis space. For the infinite hypothesis space, VC (Vapnik-
Chervonenkis) dimension (Blumer et al. 1989) is introduced
to measure the complexity of the hypothesis space and the
relationship between hypothesis space and data space upper
bound is thus established. With the wide application of deep
neural networks (He et al. 2016; Goodfellow et al. 2014; Gir-
shick 2015) and the research on the sensitivity of model to
adversarial examples (Szegedy et al. 2013; Carlini and Wag-
ner 2017; Madry et al. 2017), a variety of works on sample
complexity and model capacity have emerged. Schmidt et
al. (Schmidt et al. 2018) theoretically show the data com-
plexity to train a standard classification model and an adver-
sarially robust model. Carmon et al. (Carmon et al. 2019)
supplemented that the unlabeled data can be used to fill
the gap between standard model and robust model through
semisupervised learning. Moreover, some researchers study
on assessing different datasets through a series of com-
plexity measures (c-measures) to evaluate the difficulty of
classification problems (Branchaud-Charron, Achkar, and
Jodoin 2019). They assess class entanglement and assume
that overlapping data distributions in dataset are more dif-
ficult to classify than well separated discriminative distri-
butions. Related works include (Anwar, Jones, and Ganesh
2014; Baumgartner and Somorjai 2006; Duin and Pekalska
2006; Ho and Basu 2002; Sotoca, Mollineda, and Sánchez
2006).

Conclusion and Further Work
In this paper, we theoretically develop a new qualitative
analysis between sample complexity and model capacity
bridged by dominating data, and then propose how to com-
pute sample complexity based on representation learning.
Extensive experiments demonstrated the effectiveness of our
evaluation method. The idea of analysing representative sup-
porting data can be viewed as a new approach to explore the
properties of datasets. Since the dominating data serve as the
information about sample importance, in the further work,
we can dynamically evaluate the importance of training data
during model training, and correspondingly customize the
data batch to improve efficiency.

1978



Acknowledgments
This work was supported by National Science Foundation of
China (U20B2072, 61976137).

References
Anwar, N.; Jones, G.; and Ganesh, S. 2014. Measurement of
data complexity for classification problems with unbalanced
data. Statistical Analysis and Data Mining: The ASA Data
Science Journal, 7(3): 194–211.
Baumgartner, R.; and Somorjai, R. L. 2006. Data com-
plexity assessment in undersampled classification of high-
dimensional biomedical data. Pattern Recognition Letters,
27(12): 1383–1389.
Bengio, Y.; Courville, A.; and Vincent, P. 2013. Represen-
tation learning: A review and new perspectives. IEEE trans-
actions on pattern analysis and machine intelligence, 35(8):
1798–1828.
Biau, G.; and Scornet, E. 2016. A random forest guided tour.
Test, 25(2): 197–227.
Blumer, A.; Ehrenfeucht, A.; Haussler, D.; and Warmuth,
M. K. 1989. Learnability and the Vapnik-Chervonenkis di-
mension. Journal of the ACM (JACM), 36(4): 929–965.
Branchaud-Charron, F.; Achkar, A.; and Jodoin, P.-M. 2019.
Spectral metric for dataset complexity assessment. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 3215–3224.
Carlini, N.; and Wagner, D. 2017. Towards evaluating the
robustness of neural networks. In 2017 ieee symposium on
security and privacy (sp), 39–57. IEEE.
Carmon, Y.; Raghunathan, A.; Schmidt, L.; Liang, P.; and
Duchi, J. C. 2019. Unlabeled data improves adversarial ro-
bustness. arXiv preprint arXiv:1905.13736.
Deng, D.; Li, P.; van Rees, G.; and Zhang, Y. 2011. The
Stein-Lovasz theorem and its applications to some combi-
natorial arrays. JCMCC-Journal of Combinatorial Mathe-
maticsand Combinatorial Computing, 77: 17.
Duin, R. P.; and Pekalska, E. 2006. Object representation,
sample size, and data set complexity. In Data complexity in
pattern recognition, 25–58. Springer.
Girshick, R. 2015. Fast r-cnn. In Proceedings of the IEEE
international conference on computer vision, 1440–1448.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. Advances in neural in-
formation processing systems, 27.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572.
Haussler, D. 1990. Probably approximately correct learn-
ing. University of California, Santa Cruz, Computer Re-
search Laboratory.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.

Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531.

Ho, T. K.; and Basu, M. 2002. Complexity measures of su-
pervised classification problems. IEEE transactions on pat-
tern analysis and machine intelligence, 24(3): 289–300.

Krueger, D.; Caballero, E.; Jacobsen, J.-H.; Zhang, A.; Bi-
nas, J.; Zhang, D.; Le Priol, R.; and Courville, A. 2021. Out-
of-distribution generalization via risk extrapolation (rex).
In International Conference on Machine Learning, 5815–
5826. PMLR.

Kuhn, D.; Esfahani, P. M.; Nguyen, V. A.; and Shafieezadeh-
Abadeh, S. 2019. Wasserstein distributionally robust opti-
mization: Theory and applications in machine learning. In
Operations Research & Management Science in the Age of
Analytics, 130–166. INFORMS.

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11): 2278–2324.

Liu, J.; Song, L.; and Qin, Y. 2020. Prototype rectification
for few-shot learning. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part I 16, 741–756. Springer.

Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully convo-
lutional networks for semantic segmentation. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 3431–3440.

Long, M.; Cao, Y.; Wang, J.; and Jordan, M. 2015. Learn-
ing transferable features with deep adaptation networks.
In International conference on machine learning, 97–105.
PMLR.

Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2017. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083.

Menéndez, M.; Pardo, J.; Pardo, L.; and Pardo, M. 1997.
The jensen-shannon divergence. Journal of the Franklin In-
stitute, 334(2): 307–318.

Noble, W. S. 2006. What is a support vector machine? Na-
ture biotechnology, 24(12): 1565–1567.

Nowozin, S.; Cseke, B.; and Tomioka, R. 2016. f-gan: Train-
ing generative neural samplers using variational divergence
minimization. In Proceedings of the 30th International Con-
ference on Neural Information Processing Systems, 271–
279.

Orriols-Puig, A.; Macia, N.; and Ho, T. K. 2010. Documen-
tation for the data complexity library in C++. Universitat
Ramon Llull, La Salle, 196(1-40): 12.

Safavian, S. R.; and Landgrebe, D. 1991. A survey of deci-
sion tree classifier methodology. IEEE transactions on sys-
tems, man, and cybernetics, 21(3): 660–674.

Sagawa, S.; Koh, P. W.; Hashimoto, T. B.; and Liang, P.
2019. Distributionally robust neural networks for group
shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731.

1979



Scarf, H. 1967. The approximation of fixed points of a con-
tinuous mapping. SIAM Journal on Applied Mathematics,
15(5): 1328–1343.
Schmidt, L.; Santurkar, S.; Tsipras, D.; Talwar, K.; and
Madry, A. 2018. Adversarially robust generalization re-
quires more data. arXiv preprint arXiv:1804.11285.
Simonyan, K.; and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
Smirnov, E.; Melnikov, A.; Oleinik, A.; Ivanova, E.; Kali-
novskiy, I.; and Luckyanets, E. 2018. Hard example mining
with auxiliary embeddings. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops, 37–46.
Sotoca, J. M.; Mollineda, R. A.; and Sánchez, J. S. 2006. A
meta-learning framework for pattern classication by means
of data complexity measures. Inteligencia Artificial. Revista
Iberoamericana de Inteligencia Artificial, 10(29): 31–38.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2013. Intriguing proper-
ties of neural networks. arXiv preprint arXiv:1312.6199.
Van der Maaten, L.; and Hinton, G. 2008. Visualizing data
using t-SNE. Journal of machine learning research, 9(11).
Wang, T.; Zhu, J.-Y.; Torralba, A.; and Efros, A. A. 2018.
Dataset distillation. arXiv preprint arXiv:1811.10959.
Yang, H.-M.; Zhang, X.-Y.; Yin, F.; and Liu, C.-L. 2018.
Robust classification with convolutional prototype learning.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 3474–3482.
Zhang, H.; Yu, Y.; Jiao, J.; Xing, E.; El Ghaoui, L.; and Jor-
dan, M. 2019. Theoretically principled trade-off between
robustness and accuracy. In International Conference on
Machine Learning, 7472–7482. PMLR.
Zhang, X.; Zhu, Z.; Zhao, Y.; and Kong, D. 2018. Self-
Supervised Deep Low-Rank Assignment Model for Proto-
type Selection. In IJCAI, 3141–3147.

1980


