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Abstract

Recent advances in generative adversarial networks (GANs)
have led to remarkable achievements in face image synthesis.
While methods that use style-based GANs can generate strik-
ingly photorealistic face images, it is often difficult to control
the characteristics of the generated faces in a meaningful and
disentangled way. Prior approaches aim to achieve such se-
mantic control and disentanglement within the latent space of
a previously trained GAN. In contrast, we propose a frame-
work that a priori models physical attributes of the face such
as 3D shape, albedo, pose, and lighting explicitly, thus pro-
viding disentanglement by design. Our method, MOST-GAN,
integrates the expressive power and photorealism of style-
based GANs with the physical disentanglement and flexibility
of nonlinear 3D morphable models, which we couple with a
state-of-the-art 2D hair manipulation network. MOST-GAN
achieves photorealistic manipulation of portrait images with
fully disentangled 3D control over their physical attributes,
enabling extreme manipulation of lighting, facial expression,
and pose variations up to full profile view.

Introduction
Changing certain attributes of a given portrait image, also
referred to as face image manipulation, is a popular research
topic that demonstrates the synergy between computer vi-
sion and computer graphics. Face image manipulation has a
wide range of applications such as varying the illumination
conditions to make a portrait image more appealing (Sun
et al. 2019), changing the identity of a person to anonymize
an image (Gafni, Wolf, and Taigman 2019), and exchang-
ing the hairstyle in a virtual try-out setting (Tan et al. 2020).
Two key factors make face image manipulation particularly
challenging. First, the human visual system is sensitive to
the smallest artifacts in synthesized face images, and care-
ful handling of detail is therefore crucial to achieve photo-
realism. Second, faces are 3D objects with rich variations
in shape, expression, and appearance, and inferring such 3D
variations from 2D images is inherently an ill-posed prob-
lem.

StyleGAN2 (Karras et al. 2020) is currently one of the
most advanced models for 2D image generation, reaching
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unprecedented quality and photorealism in synthesizing face
images. At the same time, 3D face models, such as those
based on 3D Morphable Models (3DMMs) (Blanz and Vet-
ter 1999; Egger et al. 2020), are commonly used in recover-
ing 3D faces from 2D images; however, these reconstruction
methods often lack photorealism (Tewari et al. 2017; Deng
et al. 2019b). There are a few recent approaches that aim to
combine the physically grounded modeling of 3DMMs with
the synthesizing capabilities of style-based GANs (Tewari
et al. 2020a,b). However, these approaches build on a fixed
generative model, StyleGAN, and apply the explicit 3D
model as a guiding tool to disentangle the learned StyleGAN
latent space. As a result, these models cannot escape the data
manifold characterized by a trained StyleGAN. Thus, while
they provide some amount of control, they lack the general-
ization capabilities or physical disentanglement of 3D mod-
els, which limits their ability to synthesize large variations
in the physical attributes of a face image.

In this work, we propose a nonlinear 3D face model that
explicitly separates shape, albedo, lighting, and pose, which
we refer to as physical attributes. Since we represent each
of these attributes explicitly, we are able to control each of
them independently, either within their learned latent spaces
or by direct manipulation of their 3D physical realization.
By processing each physical attribute separately, our novel
real-image manipulation method achieves full disentangle-
ment of these attributes. This is in sharp contrast to state-
of-the-art methods such as Deng et al. (2020), Tewari et al.
(2020a), and Groueix et al. (2018), in which entanglement
among different attributes is inevitable as they are all rep-
resented in one common latent space. Our model combines
the photorealism of style-based GAN architectures with the
generalization capabilities of 3DMMs, which allows for ex-
trapolating beyond the variations present in the datasets. As
a result, our method is able to manipulate faces to new poses,
expressions, and illumination conditions that are not well
represented in the training set. We also couple our 3D face
model with a state-of-the-art 2D hair model (Tan et al. 2020)
to achieve a complete portrait image manipulation pipeline,
allowing for joint face and hair processing. The contribu-
tions of this work include:

• We present a novel face image manipulation method, 3D
MOrphable STyleGAN (MOST-GAN), which by design
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Figure 1: Fully disentangled, 3D controllable portrait image manipulation with MOST-GAN.

achieves full disentanglement of shape, albedo, lighting,
pose, and hair.

• We successfully combine the generalization capabilities
of 3DMMs with the photorealism of style-based GANs,
which enables us to synthesize novel 3D-grounded por-
trait images with extreme variations that are rare or
nonexistent in the training data.

• We develop a 3D-guided 2D hair manipulation algo-
rithm, allowing for photorealistic and consistent hair
styles and appearances over pose variations up to full
profile views.

Related Work
Generative adversarial networks. Generative adversarial
networks (GANs) (Goodfellow et al. 2014) have set new
standards in photorealistic image generation, with recent
style-based methods StyleGAN (Karras, Laine, and Aila
2019) and StyleGAN2 (Karras et al. 2020) generating faces
that are barely distinguishable from real photos. As conven-
tional GANs learn only 2D representations, several works
propose 3D GANs to achieve better understanding of the 3D
world, via voxel-based (Choy et al. 2016; Wu et al. 2016,
2017; Zhu et al. 2018; Nguyen-Phuoc et al. 2019; Xie et al.
2019; Nguyen-Phuoc et al. 2020; Lunz et al. 2020) or mesh-
based representations (Wang et al. 2018; Groueix et al. 2018;
Pan et al. 2019). Recently, neural implicit representations
have facilitated continuous 3D scene synthesis, including 3D
faces (Schwarz et al. 2020; Chan et al. 2020). These meth-
ods, however, allow only limited control of facial pose. In
another line of work, the 3D scene information is extracted
from 2D GANs such as StyleGAN2 to manipulate 2D im-
ages in 3D (Shen and Zhou 2020; Härkönen et al. 2020) and
recover explicit 3D shapes from images (Pan et al. 2020;
Zhang et al. 2020). However, these methods do not employ

strong shape priors such as 3DMMs, limiting their 3D ma-
nipulation capabilities. In contrast, we start from a 3D archi-
tecture while incorporating StyleGAN2 inside our network,
which we train without using real 3D data.

3D Morphable Models. There is a classic line of research
based on 3D Morphable Models (3DMMs) (Blanz and Vet-
ter 1999; Egger et al. 2020) that aims for an object-specific
3D model for faces based on high-quality 3D scans. Conven-
tional linear 3DMMs such as the Basel Face Model (Paysan
et al. 2009; Gerig et al. 2018) and FLAME (Li et al. 2017)
typically suffer from a lack of expressiveness, due to their
simplistic PCA-based texture and shape models and lim-
ited training data. To improve the representational power of
3DMMs, Tran and Liu (2018, 2019) and Tran, Liu, and Liu
(2019) proposed a nonlinear 3DMM that achieves better re-
construction quality than linear 3DMMs. Nonlinear models
based on deep neural networks have also been used for re-
alistic texture synthesis for various tasks (Saito et al. 2017;
Slossberg, Shamai, and Kimmel 2018; Nagano et al. 2018).
In this work, we build our face model as a nonlinear 3DMM
based on the FLAME topology. Although the linear bases
of FLAME do not yield photorealistic images, we use them
to generate synthetic images for pretraining and to regular-
ize our albedo reconstructions. We emphasize that although
our model builds on the FLAME template, it does not suf-
fer from FLAME’s limitations, because we learn an en-
tirely new nonlinear 3D face model with significantly more
expressive shape and albedo representations than FLAME.
Furthermore, in contrast to Tran and Liu (2018), we use sep-
arate encoders for different face attributes to foster further
disentanglement among them, and we employ StyleGAN2
for albedo synthesis, which generates images with better
photorealism.

3D Face Reconstruction. A key application of 3DMMs
is to reconstruct 3D faces from 2D images, with the objec-
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Â

x

x Mf

Mf
x̂f

x̂f Mf

Eα

Eβ

Eγ

Eθ

Gα

Gβ

̂θ

po
se

lig
ht

in
g

Gh

Mf

Eh

R

x̂

x

x̂h Mh

x̂h Mh
h

input image

final image

input image

reconstructed faceencoders generators

refiner

reconstructed hair

Φ

convolutional

style-based

Figure 2: Overview of our architecture. Our model starts with a set of encoders for shape, albedo, lighting, pose, and hairstyle
given an input image. To reconstruct the shape and albedo in their physical spaces, we use a convolutional generator for shape
and a StyleGAN2 architecture for albedo. The reconstructed face image is produced using a differentiable renderer. In addition
to our face model, which is demarcated by black connecting arrows, a hair generator reconstructs the hair in 2D. Reconstructed
face and hair are finally fused and improved using a refiner network. All components are trained end-to-end, except for hair
where we deploy a pretrained MichiGAN model (Tan et al. 2020).

tive to recover either face shape (Sanyal et al. 2019; Feng
et al. 2021) or both shape and albedo (Kim et al. 2018; Deng
et al. 2019b). Methods that recover both shape and albedo
have benefited from advancements in GANs, which enable
higher quality and more realistic texture synthesis (Sloss-
berg, Shamai, and Kimmel 2018; Gecer et al. 2019; Lattas
et al. 2020). Among these approaches, GANFIT (Gecer et al.
2019) and AvatarMe (Lattas et al. 2020) obtain face recon-
structions with high-frequency details, but they require large
3D datasets for training. Unlike those methods, ours does
not rely on high-quality 3D data for photorealism—instead,
we learn to generate detailed 3D face representations from
2D face images. Several other methods also recover 3D faces
from only 2D images (Tewari et al. 2017; Deng et al. 2019b),
although their reconstructions cannot be used for manipulat-
ing faces due to the lack of photorealism and missing details
such as hair or teeth.

Face image manipulation. Recent research has aimed to
combine 3DMMs with state-of-the-art GANs to edit portrait
images in a disentangled manner (Usman et al. 2019; Kowal-
ski et al. 2020; Deng et al. 2020; Tewari et al. 2020a,b;
Ghosh et al. 2020; Bühler et al. 2021; Piao et al. 2021;
Zhou et al. 2019; Hou et al. 2021). Among them, Disco-
FaceGAN (Deng et al. 2020) promotes disentanglement be-
tween face attributes via contrastive learning, while Sty-
leRig (Tewari et al. 2020a) couples a 3DMM with a pre-
trained 2D StyleGAN and manipulates images in the latent
space of the StyleGAN. Since both methods rely on 2D gen-
erative networks, they are not able to handle extreme vari-

ations in 3D such as extreme lighting, facial expression, or
pose. Furthermore, to manipulate real face images, the im-
ages must be embedded into the learned latent spaces via
Image2StyleGAN (Abdal, Qin, and Wonka 2019), which
hinders the quality of results. To circumvent such issues,
Portrait Image Embedding (PIE) (Tewari et al. 2020b) in-
troduces a novel optimization algorithm to embed real im-
ages into the latent space while preserving their photore-
alism. However, since both StyleRig and PIE are built on
a pretrained 2D StyleGAN, the learned latent space limits
them to variations that are well represented in the FFHQ
dataset (Karras, Laine, and Aila 2019). Further, since these
methods aim to disentangle their latent spaces post hoc, full
disentanglement between physical attributes cannot be at-
tained. In work concurrent to our research, GAR (Piao et al.
2021) proposes a realistic face reconstruction method that
is used to manipulate portrait images, and VariTex (Bühler
et al. 2021) introduces a variational texture generator to syn-
thesize realistic face images while achieving control over
them. Both of these methods, however, provide only head
pose and expression manipulation results, and similar to the
other methods presented in this paragraph, they do not show
results with large pose variations (larger than 45◦).

Societal impacts. We envision that our method could be
used in numerous applications including creative uses in the
entertainment sector, generation of realistic training data, or
anonymization of public images. We have seen previous re-
lated methods misused to produce malicious content, such
as fake news, and our method could enable face editing with
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larger variations. However, the research community is si-
multaneously creating methods to detect and mitigate such
applications (Ciftci, Demir, and Yin 2020), and legal regula-
tions to prohibit such misuse are under consideration.

Methods
Our approach combines a statistical model of 3D faces with
a style-based GAN, achieving a realistic and fully disentan-
gled 3D model of faces. We achieve such disentanglement
by individually processing each of the face’s physical at-
tributes and hair in the architecture, through separate en-
coders and decoders, as shown in Figure 2. Such explicit
control enables us to extrapolate beyond what is well rep-
resented in the training set, allowing for face synthesis in
extreme poses, facial expressions, and lighting conditions.

Problem Formulation
Our face image manipulation method relies on reconstruct-
ing accurate and photorealistic 3D faces from 2D images
using the architecture shown in Figure 2. Here, we assume
that a portrait image can be decomposed into five different
attributes: four physical attributes (3D shape, albedo, light-
ing, and pose) and hair. Our face model employs a set of
encoders {Eα,Eβ,Eγ ,Eθ}. Given a masked face image
x′ := x⊙Mf , where x denotes the input image and Mf

denotes its estimated face mask (Chen et al. 2017), the en-
coders Eα and Eβ extract a latent shape code α and albedo
code β, while Eγ and Eθ directly estimate the lighting pa-
rameters γ̂ and pose parameters θ̂. To generate a face im-
age, the shape and albedo codes are fed to a shape genera-
tor Gα and albedo generator Gβ, respectively, to produce a
3D shape Ŝ and albedo map Â. Next, a differentiable ren-
derer Φ renders the generated 3D model {Ŝ, Â} using the
lighting and pose parameters {γ̂, θ̂} to produce the recon-
structed face x̂f : x̂f = Φ(Ŝ, Â, γ̂, θ̂). A discriminator D,
not shown in Figure 2, is employed to enhance photoreal-
ism.

Our hair model consists of an encoder Eh and a generator
Gh to produce a portrait image with reconstructed hair x̂h.
Finally, the outputs of the face model and the hair model are
combined using a face mask Mf and a hair mask Mh, then
passed through a refiner network R that produces the final
image x̂. Formally, given a set of N portrait images along
with their face masks and hair masks {(xi,Mi

f ,M
i
h)}Ni=1,

our objective is to solve the following optimization problem:

argmin
{Eα,Eβ,Eγ ,Eθ,Gα,Gβ,R}

N∑
i=1

∥∥xi ⊙ (Mi
f +Mi

h)− x̂i
∥∥
1

(1)
where each final image x̂ = R(x̂f ⊙ Mf + x̂h ⊙ Mh),
with x̂f = Φ(Gα(Eα(x

′)),Gβ(Eβ(x
′)),Eγ(x

′),Eθ(x
′))

and x̂h = Gh(Eh(x)). In later sections, we will show that
adopting this objective enables us to edit portrait images in
a fully disentangled manner while preserving their photore-
alism.

Face Model
Our face model, demarcated in Figure 2 by black connect-
ing arrows, consists of four physical attribute encoders, two

generators, and a differentiable renderer (Ravi et al. 2020).
In the shape pipeline, the shape code α is input to a con-
volutional generator, Gα. The generated 3D shape, Ŝ, is
composed of 3 channels in the UV-space that represent the
3D coordinates of vertices (Tran and Liu 2018) by their dis-
placement from the FLAME mean head model. In parallel,
the albedo code β goes through a StyleGAN2 (Karras et al.
2020) generator Gβ that outputs an RGB albedo map Â in
the UV-space. Since most of the variations in face images
are due to the variations in the albedo, generating albedo
with a style-based architecture is a crucial step to achieve re-
alism in the final output. Furthermore, in order to allow for
more expressive latent spaces of shape and albedo, we let
our model learn them without being constrained to the sub-
space defined by the original 3DMM. Finally, we represent
the estimated lighting γ̂ using a spherical harmonics param-
eterization with 3 bands (Ramamoorthi and Hanrahan 2001;
Zhang and Samaras 2006), and our 6-DOF pose vector θ̂
includes 3 parameters for 3D rotation using the axis-angle
representation and 3 parameters for 3D translation.

We divide our training process into two stages: 1) we
pretrain our face model on synthetically generated faces;
then 2) we generalize our model to real faces by training
on real 2D images. The loss functions for each stage are
introduced in the equations below and the subsequent
explanations:

Synthetic data Pretraining

Lsyn
image = ∥x− x̂f∥22 (2)

Lsyn
albedo = ∥A− Â∥22 (3)

Lsyn
shape = ∥ws

T (S− Ŝ) ∥22 (4)

Lsyn
pose = ∥θ − θ̂∥22 (5)

Lsyn
lighting = ∥γ − γ̂∥22 (6)

Lsyn
reg = λα∥α∥22 + λβ∥β∥22 (7)

Lsyn
gan = − logD(x̂f ) (8)

(9)
Real data Training

Lreal
image = ∥x⊙Mf − x̂f ⊙Mf∥22 (10)

Lreal
identity = 1− cos(fid(x), fid(x̂

′)) (11)

Lreal
landmark = ∥wl

T [f
(1)
lmk(x)− f

(2)
lmk(Ŝ)] ∥

2
2 (12)

Lreal
albedo = ∥(BTB)−1BT(Â− Ā)∥22 (13)

Lreal
lighting = (γ̂ − γ̄)TΣ−1(γ̂ − γ̄) (14)

Lreal
reg = λα∥α∥22 + λβ∥β∥22 (15)

Lreal
gan = − logD(x̂f ⊙Mf ) (16)

Pretraining on Synthetic Data. The first stage is a pre-
training step to allow our network to capture important char-
acteristics of faces using strong supervision coming from
a linear 3DMM. In this stage, we use the FLAME model
to sample 80, 000 faces under an illumination and pose
prior (Deng et al. 2020). We translate each face in 3D so that
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the rendered faces have the same 2D alignment as the FFHQ
faces. Although these synthetic faces lack realism, they have
ground truth values for the disentangled physical attributes
albedo A, shape S, pose θ, and lighting γ, which we use to
guide pretraining. Our loss function for pretraining consists
of three parts: reconstruction losses for the reconstructed
face image (2) and for the four physical attributes (3)–(6);
regularization for shape and albedo codes (7); and a non-
saturating logistic GAN loss (Goodfellow 2016) to improve
photorealism (8). In the shape reconstruction loss (4), we
introduce a weighting term ws to upweight vertices in re-
gions surrounding salient facial features (e.g., eyes, eye-
brows, mouth).

Training on Real Data. After pretraining, we train our
model using the FFHQ face dataset (Karras, Laine, and Aila
2019), where for simplicity we eliminate the images with
glasses. We obtain the face mask Mf for each image au-
tomatically using a semantic segmentation network (Or-El
et al. 2020; Chen et al. 2017), then feed the masked 2D
face images to the network. We train our face model in an
end-to-end fashion, where we combine the loss functions
in (10)–(15) with a non-saturating logistic GAN loss (16).
Since we do not know the ground truth physical attributes
for the real face images, we cannot apply any of the phys-
ical attribute reconstruction losses (3)–(6). The only recon-
struction loss we apply is a pixelwise reconstruction loss for
the masked faces (10). Defining the full reconstructed im-
age as x̂′ := x ⊙ (1 − Mf ) + x̂ ⊙ Mf , we impose an
identity loss (11), where fid(·) denotes the feature vector ex-
tracted by the Arcface face recognition network (Deng et al.
2019a), and cos(·, ·) denotes cosine similarity. Our land-
mark loss (12) measures the distance between the image-
plane projections of the 3D facial landmark locations in
the input image (estimated using Bulat and Tzimiropou-
los (2017)) and the corresponding locations in the recon-
structed 3D shape model. The shape model vertices cor-
responding to specific facial landmarks are defined by the
FLAME topology, and the weighting term wl places more
weight on important landmarks such as the lip outlines to
keep our learned model faithful to the FLAME topology.

Since the decomposition of an input image into physical
face properties is an ill-posed problem, there are ambiguities
such as the relative contributions of color lighting intensities
and surface albedo to the RGB appearance of a skin pixel.
To help resolve this ambiguity, we introduce an albedo reg-
ularization loss (13) to minimize the projection of our re-
constructed albedo into the FLAME model’s albedo PCA
space. Here, Ā and B respectively represent the mean and
basis vectors of the FLAME albedo model. To address the
same ambiguity, we also include a lighting regularization
loss (14), which maximizes the log-likelihood of the recon-
structed lighting parameters γ̂ under a multivariate Gaussian
distribution over lighting conditions. To obtain that distri-
bution, we sampled 50,000 lighting vectors using the prior
provided by Deng et al. (2020) and calculate their sample
mean γ̄ and sample covariance Σ. As in pretraining, (15)
regularizes the shape and albedo codes.
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Figure 3: One iteration of our hair manipulation algorithm.
Given a reference pose from the previous iteration and a tar-
get pose, we calculate a 2D warp field based on how 3D
vertices move within the image plane. Given a reference im-
age from the previous iteration It−1 along with its reference
mask and orientation map, we use this warp field to warp the
mask and the orientation map, which we regularize to obtain
the target mask and orientation map. Next, we combine these
with the hair appearance code obtained from the original in-
put image and the reconstructed face reposed to the target
pose, to obtain a novel portrait image It. At the end, we feed
this image through the refiner to obtain a photorealistic out-
put. This algorithm is invoked sequentially starting from the
original pose. The elements shown on gray backgrounds are
updated in each iteration.

Hair Model
Since hair has a more complex structure than faces, repre-
senting and manipulating hair in 3D is a very challenging
problem. This motivates us to manipulate hair in 2D, but to
couple the hair generation process with our 3D face model.
We build our hair model upon a state-of-the-art 2D model,
MichiGAN (Tan et al. 2020), which disentangles hair shape,
structure, and appearance by processing them separately and
combines them with a backbone network. Here, shape refers
to a 2D binary mask of the hair region, structure is repre-
sented as a 2D hair strand orientation map, and appearance
refers to the global color and style of the hair which is en-
coded in a latent space. We incorporate a pretrained Michi-
GAN in our training pipeline, which we briefly represent as
an encoder-decoder style model in Figure 2. When we re-
pose faces at inference time, we couple MichiGAN with our
3D face model to change the shape and structure of the hair
without changing its appearance code.

Coupling with Face Model. Our 3D-guided hair manip-
ulation algorithm is illustrated in Figure 3. Since our face
model reconstructs explicit 3D face shapes, we use these to
reason about how the hair will move in 2D by calculating
a 2D warp field (Li, Huang, and Loy 2019). We derive the
2D warp field based on the pose-induced movement of the
3D face vertices, then extrapolate the face’s warp field to the
rest of the image.
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Figure 4: Expression and lighting manipulation results. Ex-
pression manipulation (left). We illustrate both moderate
(top) and extreme (bottom) expression variations. The two
numbers above each column indicate which FLAME ex-
pression eigenvector is used and by how many standard
deviations it is scaled. Lighting manipulation (right). Top:
For moderate variation, we rotate the reconstructed light-
ing around the camera axis by the angle above each column.
Bottom: For extreme lighting variation, we render the recon-
structed 3D model using a point light source (rotated about
the vertical axis by the angle above each column) and the
Phong shading model.

We use the warp field to warp the hair mask and the hair
orientation map in 2D. Since this process can introduce warp
artifacts, however, we regularize the warped masks by pro-
jecting them onto a PCA basis calculated from a dataset of
binary hair masks of portrait images. In addition to obtain-
ing hair masks from the FFHQ dataset (Karras, Laine, and
Aila 2019), we extract hair masks from the USC HairSalon
database (Hu et al. 2015) by rendering that dataset’s 3D hair
models with faces in extreme poses to allow for accurate
and consistent hair masks under large pose variations. The
orientation map, on the other hand, is regularized as part of
the MichiGAN framework, which outputs a map that is con-
sistent with the warped map and aligned with the regularized
hair mask. Finally, the reconstructed face in the target pose,
hair appearance code, hair mask, and hair orientation map
are combined by the MichiGAN pipeline to produce the re-
posed portrait image, which is then processed with the re-
finer (described below). For large pose variations, we invoke
this algorithm sequentially by going from reference pose to
target pose in multiple steps, and we regularize the warped
masks and orientation maps at each step. For more details,
please see the supplementary material.

Refinement
Although our combined model’s rendered 3D face recon-
structions and 2D hair reconstructions closely resemble the
original images, there is still a small realism gap that needs
to be filled. In particular, since we regularize the recon-

Input OursHou et al. (2021)

Figure 5: Relighting comparison with Hou et al. (2021). Our
method achieves more photorealistic relighting, with fewer
artifacts.

structed albedos using the FLAME albedo space, the recon-
structions do not exhibit sufficient variation in the eye re-
gions, and they lack certain details such as eyelashes, facial
hair, teeth, and accessories, which are not modeled by the
FLAME mesh template. Furthermore, since face and hair
are processed separately, some reconstructions have blend-
ing issues between the face and the hair. To address these
issues, we utilize a refiner network, which closes the real-
ism gap between the reconstructions and the original images
while making only a minimal change to the reconstructions.
We employ a U-Net (Ronneberger, Fischer, and Brox 2015)
that takes in an image combining the reconstructed face and
hair and outputs a more realistic portrait image, as shown in
Fig. 2.

After freezing the weights of the rest of the model, we
train the refiner with pairs of original images from the
dataset and reconstructed images. For the refiner, we com-
bine the identity loss (11) described above with an adversar-
ial loss as well as a reconstruction loss based on the VGG-16
perceptual loss (Simonyan and Zisserman 2014; Johnson,
Alahi, and Fei-Fei 2016), promoting better reconstruction
quality for hair. For more details, please see the supplemen-
tary material.

Experiments and Results
In our experiments, we manipulate portrait images with
respect to several physical attributes and compare them
with the results of a state-of-the-art relighting method (Hou
et al. 2021) and a state-of-the-art real-image manipulation
method, PIE (Tewari et al. 2020b). Besides providing qual-
itative comparisons with these two methods, we also quan-
titatively compare the performance of our pose editing al-
gorithm by employing a head pose estimator (Ruiz, Chong,
and Rehg 2018) to measure the error between the desired
and estimated head poses.

Because MOST-GAN generates a full 3D model, we can
manipulate physical attributes beyond the distribution of the
training set. We can also modify the face in ways not antici-
pated during training, such as relighting faces using a differ-
ent lighting and shading model.

Expression and lighting manipulation. We illustrate our
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Figure 6: Shape transfer comparison. We transfer the 3D
shape of each source image to each target image while keep-
ing everything else unchanged. Our results (left) demon-
strate more accurate shape transfer and much better disen-
tanglement between shape and other attributes (e.g., albedo,
pose, and hair) than the combination of StyleRig (Tewari
et al. 2020a) and PIE (Tewari et al. 2020b) (right).

facial expression and lighting manipulation results in Fig-
ure 4. To edit facial expression (left), we choose an eigen-
vector from the FLAME expression basis and multiply it by
a constant factor to obtain an offset, which we add to the
vertex locations in our model’s reconstructed 3D shape. In
the moderate examples (top left), we use the first eigenvec-
tor to add smile/frown variations up to ±2 standard devi-
ations. In the extreme examples (bottom left), we scale 4
different expression eigenvectors by up to 10 standard devi-
ations. For lighting manipulation (right), the moderate edits
(top right) rotate the reconstructed lighting around the cam-
era axis (axis perpendicular to the image plane). For extreme
lighting variations (bottom right), we employ a point light
source and Phong shading model, where we rotate the light
source horizontally around the vertical axis and can intro-
duce any desired amount of specularity to the face albedo.
The results demonstrate that our method easily handles ex-
treme expressions and lighting conditions that are not well-
represented in the training set and can use lighting and shad-
ing models not used in training. We show additional exam-
ples in the supplementary material.

Although our method facilitates face image manipulation
in several physical attributes simultaneously or in isolation,
it is also able to outperform methods that are focused on
and optimized for more limited tasks such as manipulating
a single attribute. To illustrate this, we compare our extreme
lighting manipulation results with those of a state-of-the-art
relighting method (Hou et al. 2021) in Figure 5.

Shape transfer. Our model achieves superior disentan-
glement of physical attributes such as shape and albedo by
design, by modeling them separately and explicitly. This dis-
entanglement is illustrated by the shape transfer results in
Figure 6, where we transfer the 3D face shape of a source
image to a target image. Our results show that our method
(left) is able to transfer the face shapes accurately, while
maintaining photorealism and keeping the albedo, lighting,
and hair unchanged. This is in contrast to the shape transfer
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Figure 7: Pose manipulation results. From an input portrait
image, our method accurately rotates the reconstructed 3D
face all the way to profile pose. (Faces in more extreme
poses appear larger due to the FFHQ alignment.) In contrast,
PIE (Tewari et al. 2020b) struggles to maintain photorealism
and cannot achieve large rotations.

results by the previous state of the art (right, a combina-
tion of StyleRig (Tewari et al. 2020a) and PIE (Tewari et al.
2020b)), where for a given source shape, the transfer results
have varying face shapes with noticeable differences in ex-
pressions. When the source and target images are identical
(images on the diagonal), our method produces the origi-
nal reconstruction by design, whereas PIE + StyleRig strug-
gles to maintain the original identity. Our method can also
transfer albedo alone, transfer multiple physical attributes
(such as albedo and shape) simultaneously, and smoothly in-
terpolate between different shapes and albedos in the latent
space continuously. (See the supplementary material for ex-
amples.)

Pose manipulation. In Figure 7, we compare our pose
manipulation results (odd rows) to PIE (Tewari et al. 2020b)
(even rows). To edit the pose of a given portrait image, we
rotate the reconstructed faces in 3D and warp the hair in 2D
using our 3D-guided hair manipulation algorithm described
in the Hair Model section. The results show that our method
is able to rotate portrait images all the way to profile pose
while keeping the identity, expression, and illumination con-
ditions unchanged. For the 0◦ pose, PIE (Tewari et al. 2020b)
is slightly better at reconstructing the original identity. How-
ever, PIE relies on a costly optimization over the latent space
of a pretrained GAN, whereas our method reconstructs 3D
faces at interactive framerates (30 fps) using our encoder-
decoder style architecture. Furthermore, PIE cannot handle
extreme rotations that were not well represented in the Style-
GAN training set, yielding unrealistic artifacts and an in-
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-90◦ -75◦ -60◦ -45◦ -30◦ -15◦ 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

Ours 13.2 6.0 3.5 4.5 4.7 4.8 2.3 2.6 5.0 6.0 3.9 2.7 6.7
PIE 61.7 38.0 22.1 15.8 10.8 7.6 3.5 6.2 13.1 22.5 35.5 54.8 81.0

Table 1: Mean absolute errors between the desired and estimated head poses in degrees, on 100 random images from our test
set. Our method’s average head pose error is significantly smaller than that of PIE (Tewari et al. 2020b), indicating our method’s
superior pose disentanglement.

ability to achieve larger desired (target) poses. To quantify
the latter, we calculate the mean absolute error between the
desired and achieved head poses using a head pose estima-
tion network (Ruiz, Chong, and Rehg 2018). In particular,
we randomly sampled 100 images from our test dataset, re-
posed them in a range of yaw angles using our method and
PIE, and calculated the average absolute pose error of each
method. The results, in Table 1, show that our method yields
much more accurate pose manipulation at all pose angles.

Limitations. Since we disentangle hair from the physical
attributes by design, changing the lighting conditions has a
limited effect on the hair, and that effect is achieved by the
refiner. Since the hair appearance is strongly dependent on
the head pose and lighting conditions, this issue could be
addressed by coupling the pose and lighting with the hair
model at training time. Also, since the reconstruction qual-
ity of hair is heavily influenced by the hair orientation map
in the MichiGAN framework, achieving consistency of ori-
entation maps over large pose variation is crucial to render
photorealistic hair for reposed images. Currently, however,
we handle dis-occlusions of the hair by warping the orienta-
tion maps in 2D, which sometimes yields inconsistent orien-
tations (and thus unrealistic hair rendering) after large pose
changes. In addition, our model tends to attribute skin color
mostly to the lighting component, which is due to the fact
that samples from the FLAME albedo basis, which we use
to regularize our albedo reconstructions, do not exhibit much
variation in skin tone. Finally, our face model tends to yield
smooth 3D shape reconstructions, sometimes attributing fine
shape details such as wrinkles on the face to the albedo in-
stead of the shape. We believe that this is related to our shape
generator following a convolutional architecture, which pro-
motes local consistency between neighboring vertices of the
face mesh.

Conclusion
In this work we introduce MOST-GAN, a novel frame-
work for manipulating face images in a 3D controllable and
fully disentangled way. We achieve this by combining the
physically-grounded modeling of 3DMMs with the expres-
sive power of style-based GANs. We employ an encoder-
decoder style architecture built on a 3DMM template, where
we represent 3D shape, albedo, pose, and lighting indepen-
dently by design. By coupling our 3D face model with a
state-of-the-art 2D hair model, we develop a full portrait im-
age manipulation pipeline. Unlike state-of-the-art methods,
which require costly optimizations before manipulating real
images, our method enables efficient image manipulation at
inference time. Our results demonstrate the ability of our

method to photorealistically manipulate 3D shape, albedo,
pose, and lighting of face images, facilitating larger varia-
tions compared to state-of-the-art methods, and achieving
better disentanglement in face image manipulation tasks.
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M.; Schönborn, S.; and Vetter, T. 2018. Morphable face
models-an open framework. In 2018 13th IEEE Interna-
tional Conference on Automatic Face & Gesture Recogni-
tion (FG 2018), 75–82. IEEE.
Ghosh, P.; Gupta, P. S.; Uziel, R.; Ranjan, A.; Black, M.; and
Bolkart, T. 2020. Gif: Generative interpretable faces. arXiv
preprint arXiv:2009.00149.
Goodfellow, I. 2016. Nips 2016 tutorial: Generative adver-
sarial networks. arXiv preprint arXiv:1701.00160.
Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial networks. arXiv preprint
arXiv:1406.2661.
Groueix, T.; Fisher, M.; Kim, V. G.; Russell, B. C.; and
Aubry, M. 2018. A papier-mâché approach to learning 3d
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