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Abstract

Due to the scarcity of annotated samples, the diversity be-
tween support set and query set becomes the main obstacle
for few shot semantic segmentation. Most existing prototype-
based approaches only exploit the prototype from the sup-
port feature and ignore the information from the query sam-
ple, failing to remove this obstacle.In this paper, we proposes
a dual prototype network (DPNet) to dispose of few shot
semantic segmentation from a new perspective. Along with
the prototype extracted from the support set, we propose to
build the pseudo-prototype based on foreground features in
the query image. To achieve this goal, the cycle comparison
module is developed to select reliable foreground features and
generate the pseudo-prototype with them. Then, a prototype
interaction module is utilized to integrate the information of
the prototype and the pseudo-prototype based on their under-
lying correlation. Finally, a multi-scale fusion module is in-
troduced to capture contextual information during the dense
comparison between prototype (pseudo-prototype) and query
feature. Extensive experiments conducted on two benchmarks
demonstrate that our method exceeds previous state-of-the-
arts with a sizable margin, verifying the effectiveness of the
proposed method.

Introduction
Aiming to give pixel-level classification, semantic segmen-
tation has witnessed remarkable improvements in recent
years (Chen et al. 2017; Long, Shelhamer, and Darrell 2015;
Zhao et al. 2017). Although these works are brilliant, they al-
most require abundant annotated images. When faced with
limited annotated samples, they may fail to achieve satis-
fying performance. To solve this problem, few shot seman-
tic segmentation has drawn growing attention. Designed to
learn transferable knowledge from given classes and gener-
alize it to novel classes, few shot semantic segmentation is
capable of giving pixel-wise classification with a few anno-
tated samples.

Following the pioneer (Shaban et al. 2017), most previous
methods adopt a prototype-based network where the proto-
type is extracted by averaging foreground features from sup-
port images. The extracted prototype then is used to guide
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Figure 1: Illustration of previous prototype-based network
(a) and our proposed dual prototype network (b). Along
with exploiting the information from the support set like
previous prototype-based methods, our proposed approach
also learns from the target sample to generate the pseudo-
prototype which provides extra valuable information for en-
hancing the few-shot segmentation model.

the segmentation of query samples. To further overcome the
obstacle brought by the diversity between the support im-
ages and the query images, such as large variations in object
appearance and shape, some methods intend to keep spatial
information in the prototype. PPM (Yang et al. 2020a), PP-
Net (Liu et al. 2020b) and ASGNet (Li et al. 2021) decom-
pose the original prototype into a set of part-aware proto-
types, then compare the query feature with each part. Unfor-
tunately, they only focus on extracting features on the sup-
port set, and ignore the connection between the support set
and the query set. Another stream of researchers (Liu et al.
2020a; Yang et al. 2020b; Mao et al. 2021) proposes to build
a relation between support samples and query samples via
designed interaction modules. However, the entire feature
of query sample they apply contains irrelevant background
context, which degrades the effectiveness of these methods.

In this paper, a novel dual prototype network (DPNet) is
introduced to effectively bridge the gap between the sup-
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port set and query set by directly capturing foreground in-
formation of the query set. As shown in Fig. 1, in addition
to the prototype extracted from the support set, we propose
to extract the pseudo-prototype from the query set as a sup-
plement. To achieve this goal, a cycle comparison module
(CCM) is introduced to effectively select reliable foreground
features of the query sample and build a pseudo-prototype
with them. Technically, beginning with an arbitrary fore-
ground feature in the support set, we track forward to find
the most similar feature in the query sample and then track
backward with this feature to find the most similar feature in
the support sample. According to the label consistency be-
tween the start and end points, it can be deduced whether
the tracked feature in the query sample can be regarded as
foreground feature. Then the pseudo-prototype is calculated
by averaging all the selected foreground features. Based on
the obtained prototype and pseudo-prototype, the prototype
interaction module (PIM) is proposed to integrate their in-
formation. Through generating trainable weights from the
prototype pairs, this module is capable of interacting proto-
type pairs by exploiting the inner connection between them.
Moreover, the multi-scale fusion module (MSF) is applied
to improve the robustness of handling instances with differ-
ent scales by incorporating the context of different spatial
scales.

To sum up, the main contributions of this work are:
• We propose the Dual Prototype Network (DPNet) for

few shot semantic segmentation. DPNet selectively ex-
tracts information from the target sample to generate the
pseudo-prototype which is used to guide query images
segmentation as a supplement of the original prototype.

• Based on the similarity and label consistency, we develop
a cycle comparison module (CCM) to obtain the pseudo-
prototype by selecting reliable foreground features in the
query sample.

• A prototype interaction module (PIM) and a multi-scale
fusion module (MSF) are proposed to implement effec-
tive and robust semantic segmentation by exploiting the
obtained dual prototypes.

• DPNet achieves new state-of-the-art performances on
PASCAL-5i (mIoU of 62.7% and 66.2% in 1-shot and
5-shot) and COCO-20i (mIoU of 37.2% and 42.9% in
1-shot and 5-shot), demonstrating the effectiveness of it.

Related Work
Few-shot learning: Few-shot learning aims to obtain a
model which generalizes well on novel classes when lim-
ited data is offered. Existing methods can be divided into
three categories. The first is in terms of metric-learning
which aims to learn a transferable metric to measure the dis-
tance between samples, then classify the samples through
nearest-neighbor criterion (Vinyals et al. 2016; Snell, Swer-
sky, and Zemel 2017; Sung et al. 2018; Oreshkin, López,
and Lacoste 2018). The second is based on meta-learning
which focuses on learning appropriate initialization param-
eters (Finn, Abbeel, and Levine 2017; Rusu et al. 2019; Ja-
mal and Qi 2019). When it comes to a new task, the model
can fast adapt through a small number of gradient update

steps. The last one is based on data augment which learns to
generate fake samples of the novel classes for training and
inference(Hariharan and Girshick 2017; Wang et al. 2018;
Antoniou, Storkey, and Edwards 2017).
Semantic segmentation: Semantic segmentation intends to
classify each pixel in the pictures. In recent years semantic
segmentation has already achieved notable advances. Fully
convolutional networks (FCN) (Long, Shelhamer, and Dar-
rell 2015) take advantage of fully convolutional layers to re-
place fully connected layers. DeepLab utilizes dilated con-
volution to extend the receptive field. Besides, DeepLab
(Chen et al. 2017) proposes atrous spatial pyramid pooling
(ASPP) to Integrate multi-scale information. Pyramid Scene
Parsing Network (PSPNet) (Zhao et al. 2017) employs pyra-
mid pooling to concatenate multi-scale features to obtain
more precise predictions. DANet (Fu et al. 2019) proposes
a dual attention model to integrate local features with their
global dependencies adaptively.
Few-shot semantic segmentation: Few-shot segmentation
can be regarded as the application of few-shot learning in se-
mantic segmentation. Following (Shaban et al. 2017), most
previous methods adopt the two-branched pipeline consist-
ing of a condition branch (support branch) and a segmen-
tation branch (query branch). They extract a global vector
from the support set to represent the prototype of the tar-
get novel class. Then the prototype can be applied directly
to identify each pixel-wise feature base on cosine similar-
ity (Rakelly et al. 2018). Other methods (Zhang et al. 2019b)
up-sample the prototype and concatenate the prototype and
query feature for deep comparison. However, the prototype
extracted from few samples is short of generalization. In re-
sponse to the difficulty caused by the appearance diversity
of objects and stuff, PPM (Yang et al. 2020a), PPNet (Liu
et al. 2020b) and ASGNet(Li et al. 2021) decompose the
original prototype into parts, each part-prototype represents
a region of support images to alleviate intra-class varia-
tion. CRNet (Liu et al. 2020a), BriNet (Yang et al. 2020b),
DAN (Wang et al. 2020) enforce the prototype-based seman-
tic representations via building the relationship between sup-
port set and query set. However, these methods apply the en-
tire representation of query image, which contains irrelevant
background context and may affect the learning of proto-
type. However these methods mentioned above either only
focus on the support set itself or coarsely use the entire in-
formation from the query set.
Cycle consistency: The idea of cycle consistency has been
applied in many computer vision tasks. For example, Cy-
cle GAN (Zhu et al. 2017) introduces “cycle consistency
losses” to push bi-directional transformation functions to be
consistent with each other. TCC (Dwibedi et al. 2019) ap-
plies the temporal cycle consistency computation to align
different video sequence representations of the same action.
(Wang, Jabri, and Efros 2019) utilizes cycle consistency be-
tween the start and end points to dig out extra supervision.
PLCA (Kang et al. 2020) builds pixel-level cycle associa-
tion to diminish the domain gap between source and target.
These methods all train their models through a designed cy-
cle consistency loss to learn consistent representations be-
tween different samples.
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Figure 2: The details of our proposed dual prototype network (DPNet). CCM takes the support feature F s and the query feature
F q as the input, and selects reliable foreground features of query sample to generate the pseudo-prototype Pq . Then PIM
exploits the correlation information between P (prototype) and Pq (pseudo-prototype) to reinforce the prototype pair and query
feature. Finally, the dual prototypes are fused with query feature by MSF to produce the feature F q

final which is delivered to a
decoder for segmentation. The auxiliary branch is only adopted in training and is removed in evaluation.

Task Description
Few-shot segmentation aims to produce pixel-level predic-
tions of novel category samples where only a few annotated
images are provided. Different from normal semantic seg-
mentation, there exists no overlapped categories between the
train set Dtrain and testing set Dtest in the few-shot seg-
mentation task. To render the model with the ability to gen-
erate representative features that generalize well on the test
set, following the previous work (Shaban et al. 2017) , an
episode based sampling strategy is applied in the training
and evaluating phase. Specifically, for a k-shot segmentation
task, every sampled episode of a certain class c consists of
two parts, the support set and the query set. The support set
S = {(xsi , ysi ), i = 1, 2, ..., k} contains the support images
xsi with their corresponding ground-truths ysi and query set
Q = {(xq, yq)} contains the query image xq and its mask
yq . The support set S and the query image xq together con-
stitute the input batch data, while the query label yq is in-
visible to the model. Our goal is to optimize the model to
produce the segmentation prediction ŷq that is as similar to
the label yq as possible.

Methodology
Overview
In this paper, we propose a novel method named DPNet to
provide a new perspective for few-shot semantic segmenta-

tion. The motivation of our approach is to build a pseudo-
prototype directly from the query set as a supplement to the
original prototype. To achieve this goal, the cycle compari-
son module is introduced to acquire pseudo-prototype by se-
lecting reliable foreground features from the query set. Aim-
ing at exploiting the extracted pseudo-prototype, a prototype
interaction module is designed to integrate the information
of prototype and pseudo-prototype through exploring the in-
ner connection between them. Moreover, a multi-scale fu-
sion module is proposed to fuse the multi-level spatial con-
text for a more comprehensive feature representation. The
detailed structure of this network is shown in Fig. 2 and ev-
ery component will be presented in the following sections
elaborately.

Cycle Comparison Module
A natural criterion to give pseudo-labels for the features in
a query sample is based on the feature similarity between
support set and query set. Any features with higher simi-
larity may share the same label with a higher probability.
Unfortunately, this simple solution may cause lots of feature
mismatching which may introduce noise and have a nega-
tive effect on the optimization. To solve this problem, DP-
Net resorts to the idea of cycle-consistency and introduces a
cycle-comparison model followed by an extra discriminator
to further improve the correctness of matching.

As shown in Fig. 3, the cycle-comparison module is
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Figure 3: Illustration of the cycle comparison process. Start-
ing with the red point S1, we track its most similar pixel in
query image Q1. Analogously, based on the similarity with
Q1, we track back to search the most similar pixel in support
set S2. Whether Q1 can be regarded as a reliable foreground
pixel depends on the consistency of labels of S1 and S2. The
upper and lower row of the figure visualize successful and
failed examples, respectively.

proposed to build pixel-level correspondence between sup-
port feature Fs ∈ RC×Hs×W s

and query feature Fq ∈
RC×Hq×W q

. Specially, support features Fs are firstly mul-
tiplied by the label mask to obtain the foreground features.
For an arbitrary feature Fp

i′ with index i′ in the foreground
features set, we calculate its similarity with the features of
each pixel in Fq , getting a similarity matrix Mi′ with shape
Hq ×W q . Then the index of maximum value in Mi′ is se-
lected, and it is denoted by j∗. Cyclically, for the pixel j∗,
we also calculate the similarity between j∗ and each pixel in
Fs and select the most similar pixel i∗. The cycle compari-
son process is formulated as follows:

j∗ = argmax
j∈{0,1,...,Hq×W q−1}

G(Fp
i′ ,F

q
j), (1)

i∗ = argmax
i∈{0,1,...,Hs×W s−1}

G(Fq
j∗ ,F

s
i ), (2)

where G(.) denotes the distance function to measure sim-
ilarity of two vectors, here we adopt cosine distance as the
metric in this paper. Note that the Fs and Fq for cosine simi-
larity computing is extracted before the last ReLU operation
in 3rd-block to keep their negative parts. If the starting pixel
i′ and the ending pixel i∗ belong to the same category (i.e.
ysi′ = ysi∗ where ysi′ and ysi∗ represent the labels of pixel i′
and i∗ in support feature map respectively), we regard the
sequence i′ → j∗ → i∗ satisfies cycle consistency, then
collect j∗ in query feature into the confidence locations set
C = {l1, l2, . . . , lN}whereN represents the amount of con-
fidence locations in set C.

To further improve the reliability of obtained pseudo-
prototypes, an extra discriminator is designed to supervise
the selection of candidates in confidence locations set. The
discriminator firstly transforms the concatenation of location
features and prototype with two fully connected layers. Then
a sigmoid activation with threshold β is applied to identify
whether the location features share the same category with
the prototype or not.

After filtering, the confidence locations set is curtailed to
C′ = {l′1, l′2, . . . , l′K}, where l′K denotes the location se-
lected in query feature. The number of confidence locations
is reduced from N to K. Then the pseudo-prototype is cal-
culated by averaging all features in set C′:

Pq =
1

K

∑
j∈C′

Fq
j , (3)

where Pq denotes the pseudo-prototype learning from the
target sample. One special case is K = 0 what means
no confidence location is found in the query feature. The
pseudo-prototype is replaced by the original prototype
which is calculated by averaging all foreground features in
the support set, i.e., Pq = P. In that case, the dual prototype
matching degenerates into general prototype-based method.

Prototype Interaction Module
Although the cycle comparison module is able to produce a
reliable pseudo-prototype from the query set, how to adap-
tively exploit the obtained information remains to be solved.
Therefore, a prototype interaction module (PIM) is proposed
to adaptively fuse the obtained information with the origi-
nal prototype by exploring their correlation. Specifically, the
correlation information is extracted from the current input
pair of prototypes by the co-attention mechanism. As the
production of correlation information, the attention weights
are integrated into the prototype pair and query feature.

We first explore how to extract correlation information
from the current input pair of prototypes. Given the pro-
totype P and the pseudo-prototype Pq both with a size of
C×1×1, the concatenated feature of P and Pq is delivered
to a 1 × 1 convolutional layer to collect their information.
Note that batch normalization(Ioffe and Szegedy 2015) lay-
ers are not adopted due to the statistics drift phenomenon
in few-shot semantic segmentation(Cermelli et al. 2020).
Therefore, we apply the z-score normalization instead:

X̂ =
X− µ
σ

, (4)

where X̂ and X represent the features before and after nor-
malization, respectively, µ indicates the mean value of X
where σ indicates the standard deviation of X. After that, the
normalized feature is conducted by a two FC layers and acti-
vated by a sigmoid function to obtain the attention weights:

W = sigmoid(W2(σ(W1(X̂)))), (5)

where W1, W2 represent learnable fully connection layers
and σ represents the ReLU activation function(Nair and Hin-
ton 2010). Afterwards, we integrate the attention weights
into the prototype pair and query feature through a residual
structure with a learnable scale α:

P′ = (1 + αW)�P, (6)

P′q = (1 + αW)�Pq, (7)

F′
q
= (1 + αW)� Fq, (8)

where P, Pq denote the prototype and the pseudo-prototype
respectively. Fq denote the query feature and � represents
the Hadamard product.
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Multi-Scale Fusion Module
Another obstacle for few-shot segmentation is the huge vari-
ance in object scales. In the segmentation branch, the proto-
type aggregating the whole foreground features is applied
to guide the classification for pixel-level features. However,
the pixel-level features only contain local information. This
discordant matching may naturally lead to the contradiction
between global descriptor and local representation. Further-
more, the variance of scales may escalate this contradiction
and affect the performance of the whole model. To overcome
this obstacle, we introduce a simple multi-scale fusion mod-
ule to exploit the context of the local region for a more com-
prehensive representation. Specifically, given a re-calibrated
query feature map F′

q ∈ RC×Hq×W q

, we down-sample the
feature to F′

q
m ∈ RC×Hq

2 ×
Wq

2 and F′
q
s ∈ RC×Hq

4 ×
Wq

4

which are the half and a quarter of the original size, respec-
tively. Then these different scale query features are fused
with the prototype by three parallel unshared 1 × 1 convo-
lutional layers. In the end, the three activation maps are re-
stored to the same original size and superimposed together.
The detailed structure of the multi-scale fusion module is
presented in the green block in Fig. 2.

Dual Prototype Network
In the end, as illustrated in Fig. 2, the fused features with
prototype and pseudo-prototype are concatenated together
to produce the final feature Fq

final. Then the final feature
is delivered to a decoder which is composed of an Atrous
Spatial Pyramid Pooling module (ASPP) and a fully con-
nection layer for segmentation. Moreover, we set an auxil-
iary branch that only decodes the feature fused of prototype
and query feature to help optimize the learning process. The
auxiliary branch is abolished to reduce computational con-
sumption in the test phase. Accordingly, the whole loss dur-
ing training can be divided into three parts as shown by the
red dotted arrows in Fig. 2. Specifically, Lseg represents the
cross-entropy loss to measure the final predictions:

Lseg = − 1

G

∑
i,j

yq(i, j) log ŷq(i, j), (9)

where G is the total number of spatial locations, (i, j) repre-
sents the specific spatial location of the input sample. yq and
ŷq represent the label and prediction of query image respec-
tively. Besides, an auxiliary loss Laux located at the auxil-
iary branch is applied to accelerate the training process. Its
form is essentially the same as Lseg , except that the pro-
duced predictions are only related to the original prototypes.
The last loss Ldis supervises the discriminator in cycle com-
parison module introduced in section :

Ldis = −
1

K

∑
j∈C′

yqj log hqj + (1− yqj ) log (1− hqj), (10)

where C′ denotes the selected locations set, yqj and hqj are the
ground-truth and discriminator output of the location l′j in
C′ respectively. Therefore, the overall loss function is con-
cluded as follows:

Lall = Lseg + λ1Laux + λ2Ldis, (11)

where λ1, λ2 are the balancing weights which are discussed
in the ablation experiments.

Experiments
Experimental Settings
Datasets and evaluation metric. Our model is evaluated
on two popular benchmarks wildly applied by previous
methods, i.e., PASCAL-5i(Shaban et al. 2017), COCO-
20i(Nguyen and Todorovic 2019). Following the dataset di-
vision in previous works, we divide the dataset PASCAL-5i
and COCO-20i into four folds and conduct cross-validation
over all the folds. During evaluation, 1000 support-query
pairs are randomly chose from the testing set.

Mean intersection over union (mIoU) is adopted as the
major evaluation metric in all experiments. Note that the
evaluation metric applied in CANet and PFENet is a bit dif-
ferent(Zhang, Xiao, and Qin 2021). Some samples of the
PASCAL-5i dataset contains some regions with ignored la-
bel, which are always hard to segment. CANet regards these
locations as background while PFENet removes these parts
in the calculation of mIoU, which leads to a sizeable perfor-
mance gap. In this paper, we evaluate our model with both
two evaluation metrics to make a more precise comparison.
Implementation details. ResNet-50 pretrained on Ima-
geNet (Deng et al. 2009) is employed as the backbone of
our model where only the layers before the 4-th block are
adopted. Following (Zhang et al. 2019b), data augmentation
techniques like horizontal flip, randomly crop and randomly
rotate are applied. During training, parameters in the back-
bone are fixed. The learning rate is fixed on 0.0025 with
batch size 4 on PASCAL-5i and 0.005 with batch size of 8 on
COCO-20i. All images are resized to 321× 321 (PASCAL-
5i) and 641 × 641 (COCO-20i) in training and restored to
their original scale in testing. Considering the difference of
scales between PASCAL-5i and COCO-20i, we train our
model for 200, 20 epochs respectively.

Comparison with State-of-the-Art
The performance is verified with multi-scale inference
which is common used in previous methods(Zhang et al.
2019b; Wang et al. 2020; Zhang et al. 2019a). For the k-
shot setting, we unify the k-pairs of the original prototype
and its corresponding pseudo-prototype by simply averag-
ing. Table 1 shows the comparisons between the DPNet net-
work and other methods on PASCAL-5i. It can be observed
that our method outperforms other methods in 1-shot set-
tings and only falls behind by RePRI (Malik et al. 2021)
in 5-shot settings. It is worth noticing that RePRI needs to
retrain the model in the inference phase while our method
does not need. Specifically, comparing with the two baseline
models, the proposed model surpasses 3.3% and 1.9% in 1-
shot setting for CANet and PFENet respectively. Moreover,
the improvements are more significant in 5-shot segmenta-
tion task which is 4.9% and 4.3% respectively.

The experiment results on the more challenging dataset,
COCO-20i, also demonstrate the effectiveness of our
method. As shown in Table 2, our DPNet network improves
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1-shot 5-shotMethod Backbone Fold0 Fold1 Fold2 Fold3 Mean Fold0 Fold1 Fold2 Fold3 Mean #Params

OSLSM (Shaban et al. 2017) VGG16 33.6 55.3 40.9 33.5 40.8 37.5 50.0 44.1 33.9 41.4 272.6M
PANet(Wang et al. 2019) VGG16 42.3 58.0 51.1 41.3 48.1 51.8 64.6 59.8 46.5 55.7 14.7M
CANet(Zhang et al. 2019b) ResNet50 52.5 65.9 51.3 51.9 55.4 55.5 67.8 51.9 53.2 57.1 19.0M
PGNet(Zhang et al. 2019a) ResNet50 56.0 66.9 50.6 50.4 56.0 57.7 68.7 52.9 54.6 58.5 32.5M
RPMMS (Yang et al. 2020a) ResNet50 55.2 66.9 52.6 50.7 56.3 56.3 67.3 54.5 51.0 57.3 19.6M
PPNet(Liu et al. 2020b) ResNet50 47.8 58.8 53.8 45.6 51.5 58.4 67.8 64.9 56.7 62.0 23.5M
PFENet(Tian et al. 2020) ResNet50 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9 35.0M
ASGNet(Li et al. 2021) ResNet50 58.8 67.9 56.8 53.7 59.3 63.7 70.6 64.2 57.4 63.9 34.6M
SCL(CANet)(Zhang et al. 2021) ResNet50 56.8 67.3 53.3 52.5 57.5 59.5 68.5 54.9 53.7 59.2 -
SCL(PFENet)(Zhang et al. 2021) ResNet50 63.0 70.0 56.5 57.7 61.8 54.5 70.9 57.3 58.7 62.9 -
RePRI(Malik et al. 2021) ResNet50 59.8 68.3 62.1 48.5 59.7 64.6 71.4 71.1 59.3 66.6 -
DPNet(CANet) ResNet50 56.0 66.9 57.7 54.0 58.7 59.8 68.9 62.4 56.9 62.0 19.3M
DPNet(PFENet) ResNet50 60.7 69.5 62.8 58.0 62.7 64.7 70.8 69.0 60.1 66.2 19.3M

Table 1: Performance of 1-shot and 5-shot on the PASCAL-5i dataset. (CANet) and (PFENet) denote CANet and PFENet are
adopted as baselines, respectively. Best result in bold.

Method Backbone 1-shot 5-shot

PANet (Wang et al. 2019) VGG16 20.9 29.7
RPMMs (Yang et al. 2020a) ResNet50 30.6 35.5
PPNet (Liu et al. 2020b) ResNet50 29.0 38.5
ASG (Li et al. 2021) ResNet50 34.6 42.5
RePRI (Malik et al. 2021) ResNet50 34.1 41.6
FWB (Nguyen et al. 2019) ResNet101 21.2 23.1
PFENet (Tian et al. 2020) ResNet101 32.4 37.4
SCL (Zhang et al. 2021) ResNet101 37.0 39.9

DPNet(ours) ResNet50 37.2 42.9

Table 2: Results of 1-shot and 5-shot on the COCO-20i
dataset. Best result in bold.

the baseline of PFENet by 4.8% in 1-shot setting and 5.5%
in 5-shot setting respectively.

Ablation Study
The following ablation experiments are all conducted on
PASCAL-5i dataset, and the evaluation metric adopted is the
same as that used in CANet.
Impact of each part of DPNet. The proposed DPNet con-
sists of three parts: cycle comparison module (CCM), proto-
type interaction module (PIM) and multi-scale fusion mod-
ule (MSF). To verify the effectiveness of each component,
we exhibit a step-by-step performance table in Table 3 that
evaluates the proposed components one by one. PIM, which
explores the information between the current prototype pair
and integrates it to the input features, brings an improve-
ment of performance by 1.7%. MSF that aims to exploit
the multi-scale context information in the fusion process im-
proves the performance of 0.5%. The goal of CCM is to pro-
duce a reliable pseudo-prototype, thus when we discuss the
effectiveness of CCM, we compare the performances of the
master branch and the auxiliary branch instead. The differ-
ence between these two branches only lies in whether the
pseudo-prototype is exploited. When the CCM is adopted in
the module, another promotion by 2.0% is obtained.

PIM MSF CCM Fold0 Fold1 Fold2 Fold3 Mean

48.8 63.4 54.3 48.6 53.8
X 51.9 65.3 54.5 50.1 55.5
X X 52.0 65.7 57.0 49.4 56.0
X X X 54.6 66.6 57.2 53.5 58.0

Table 3: Ablation study on the effect of each component.
PIM, MSF, CCM denotes prototype interaction module,
multi-scale fusion module and cycle comparison module, re-
spectively.

Setting Fold0 Fold1 Fold2 Fold3 Mean

Baseline 52.0 65.7 57.0 49.4 56.0
Global 52.8 66.6 54.3 52.5 56.5
Cosine 52.0 66.5 56.8 53.7 57.3
CCM 54.6 66.6 57.2 53.5 58.0

Table 4: Effectiveness of CCM for 1-shot on the PASCAL-5i
dataset. Global, Cosine and CCM denote the three different
methods of generating the pseudo-prototype.

Analyses of cycle comparison module. To further verify
the effectiveness of the cycle comparison module, contrast
experiments with different methods to generate the pseudo-
prototype are conducted. Firstly, we set the model without
the pseudo-prototype as a baseline. Besides, we design an-
other two approaches for comparison. One is directly us-
ing the average features of the whole query images as the
pseudo-prototype, which can be considered as introducing
global context into the feature map. This is a well-known
trick for semantic segmentation. The other one is directly
selecting the features in query set that are most similar to
the foreground features in support set, the similarity met-
ric used is cosine distance. Finally, we record the accuracy
of adopting pseudo-prototypes that are extracted by the pro-
posed cycle comparison module. Because the global context
includes background information that will do harm to the re-
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Figure 4: Qualitative results of our DPNet on PASCAL-5i.
The second row and third row denote the predictions with-
out and with the pseudo-prototype extracted from the target,
respectively. Best viewed in color and zoom in.

liability of the pseudo-prototype, while our designed CCM
is able to filter out the interference from the background
significantly. Consequently, better performance results are
achieved as shown in Table 4. In addition, the visualization
results of whether the pseudo-prototype is employed are pre-
sented in the second and third rows of Fig. 4. Obviously, the
pseudo-prototype is beneficial to focus the predictions on
the target category and remove the interference of the back-
ground regions.
Sensitivity to discriminator thresholds β. The filtering
capacity of the discriminator is partly determined by the
threshold β. Adopting a higher β may produce a more reli-
able pseudo-prototype, however, the information contained
will reduce. When β is set to 0, the discriminator is unable
to filter out any features. To explore the influence of β in
the evaluation stage, we vary β from 0 to 0.8 and visual-
ize the corresponding performance on the two benchmarks
in Fig. 5. Note that β is only modified in the testing stage
and is kept to 0.5 in the training stage. The suitable hyper-
parameter we finally choose is 0.2 that brings 0.3% and 0.6%
improvements in PASCAL-5i and COCO-20i, respectively.
Loss coefficients. Table 5 shows the impact of the loss coef-
ficients in Eq. 11. λ1 and λ2 mean the balancing weights of
Laux and Ldis, respectively. We find that the best results are
achieved when λ1 and λ2 are both set to 1.0. Therefore, we
transfer this setting to other experiments. Another important

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

57.3

57.6

57.9

Threshold β

(a) Pascal-5i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
34

35.5

37

Threshold β

(b) COCO-20i

Figure 5: Experiments on the selecting of threshold β on two
benchmarks. The results reported are the average of all splits
under the mIoU metric.

λ1 = 0 λ1 = 0.5 λ1 = 1.0 λ1 = 1.2

λ2 = 0 55.7 56.0 56.7 56.5
λ2 = 0.5 55.8 56.5 57.3 56.7
λ2 = 1.0 56.2 56.8 57.7 56.9
λ2 = 1.2 55.8 56.4 56.6 56.3

Table 5: Results of different combinations of loss balancing
weights. λ1 (column) and λ2 (row) mean the coefficients of
Laux and Ldis, respectively.

observation is that these two losses are complementary to
each other, which means either Laux or Ldis can facilitate
to achieve better performance, and the model achieves best
results when both losses are jointly applied in training.
Multi-scale inference. We test our final model with multi-
scale inference where the scale rates are set to {0.7,1.0,1.3}.
The predictions of different scales are restored to the original
size and averaged to obtain the final predictions. As it can be
seen in Table 6, this simple trick brings 0.7% and 1.0% im-
provements in 1-shot and 5-shot segmentation, respectively.

Setting State Fold0 Fold1 Fold2 Fold3 Mean

1-shot w/o MS 54.6 66.6 57.2 53.5 58.0
w MS 56.0 66.9 57.7 54.0 58.7

5-shot w/o MS 58.1 68.2 61.6 56.3 61.0
w MS 59.8 68.9 62.4 56.9 62.0

Table 6: impact of multi-scale inference on the PASCAL-5i.

Conclusion
In this paper, we propose a novel method named dual pro-
totype network for few-shot semantic segmentation. We in-
troduce the cycle comparison module to excavate valuable
foreground information from the query sample. Then the
obtained information is incorporated into the prototype ex-
tracted from the support image to increase its generaliza-
tion. Furthermore, multiple scales features are applied to
overcome the obstacle caused by scale variation of objects.
Extensive experiments on two benchmarks demonstrate that
our method achieves a new state-of-the-art performance,
proving the superiority of the proposed method.
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