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Abstract

Recently, deep learning techniques are soaring and have
shown dramatic improvements in real-world noisy image de-
noising. However, the statistics of real noise generally vary
with different camera sensors and in-camera signal process-
ing pipelines. This will induce problems of most deep de-
noisers for the overfitting or degrading performance due to
the noise discrepancy between the training and test sets. To
remedy this issue, we propose a novel flexible and adaptive
denoising network, coined as FADNet. Our FADNet is
equipped with a plane dynamic filter module, which gener-
ates weight filters with flexibility that can adapt to the spe-
cific input and thereby impedes the FADNet from overfitting
to the training data. Specifically, we exploit the advantage of
the spatial and channel attention, and utilize this to devise a
decoupling filter generation scheme. The generated filters are
conditioned on the input and collaboratively applied to the
decoded features for representation capability enhancement.
We additionally introduce the Fourier transform and its in-
verse to guide the predicted weight filters to adapt to the noisy
input with respect to the image contents. Experimental results
demonstrate the superior denoising performances of the pro-
posed FADNet versus the state-of-the-art. In contrast to the
existing deep denoisers, our FADNet is not only flexible and
efficient, but also exhibits a compelling generalization capa-
bility, enjoying tremendous potential for practical usage.

Introduction
Image denoising is a fundamental computer vision task, aim-
ing to recover the latent clean image from its counterpart
noisy observation. In the past years, a vast amount of de-
noising methods have been proposed and obtained a contin-
uous performance growth. Most of these methods are ded-
icated to additive white Gaussian noise (AWGN) removal
and have achieved near-optimal performances (Zhang et al.
2017; Zhang, Zuo, and Zhang 2018; Jia et al. 2019; Xu et al.
2021; Zhang et al. 2021). Whereas in real CCD or CMOS
camera systems, the image noises are heavily transformed
by the in-camera signal processing (ISP) pipeline and con-
tain multiple different sources (Tsin, Ramesh, and Kanade
2001; Kim et al. 2012). The statistics of real noise, often-
times, are signal-dependent, spatially variant and do not nec-
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Figure 1: Denoising example from the Smartphone Image
Denoising Dataset (SIDD). Compared to the recent state-
of-the-art methods, our algorithm can better preserve the
structural contents and image textures, while eliminating the
complex real noise. Please view in color with zoom.

essarily remain uniform like AWGN (Seybold et al. 2014;
Karaimer and Brown 2016). The assumption that the AWGN
and real noise follow the same distribution, however, may
limit the applicability greatly on real-world denoising tasks.

Recent research on real-world noisy image denoising has
progressed dramatically with the rapid advance of convolu-
tional neural networks (CNNs). The boost in performance
of most deep denoisers is overly dependent on whether the
domains of the training and test sets are well matched. Actu-
ally, the statistics of real noise are device-dependent. Factors
such as camera sensors, camera settings, ISP pipelines and
scenes can cause heavy noise discrepancy among real cam-
era images. Thus, simply training the deep denoisers on the
open benchmark datasets (i.e., SIDD (Abdelhamed, Lin, and
Brown 2018) and Nam (Nam et al. 2016)) will deprive their
generalization ability to adapt to a wider range of scenarios.

As a remedy, (Guo et al. 2019; Kim et al. 2020) provided
an alternative solution by modeling the noise distribution.
These methods simulate the response functions of the ISP
pipelines to establish a more generalized noise model. One
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clear advantage is that they can generate noisy images with
distinct characteristics. Thus, the real denoisers can be read-
ily trained to handle a large pool of noisy images with un-
known noise types. In this sense, the overfitting issue of the
aforementioned methods can be well solved. However, these
approaches usually overlook the influence of the noise prop-
erties from the camera sensors, and simplify the reverse en-
gineer of the ISP pipelines, casting the flexibility of the noise
modeling-based methods with respect to practical applica-
tions into doubt.

In this paper, we tackle the above issues and limitations by
presenting a flexible and adaptive denoising network (FAD-
Net) with our novel plane dynamic filter module (PDFM).
PDFM is specifically designed for endowing the FADNet
with the ability to generalize well on the unknown and so-
phisticated real noise. To achieve this, PDFM employs a dy-
namic filter prediction scheme, in which the weight filters
are generated conditioned on the input and applied to the
extracted deep features. Moreover, inspired by the attention
mechanisms, we propose to decouple the filter generation
procedure into spatial and channel pathways. As such, the
channel and spatial filters can be interwoven within a uni-
fied module and the flexibility of the adaptive feature learn-
ing can be further enhanced. To refine the predicted filters
with rich contextual information, we seek to introduce the
Fourier transform and make it guide the PDFM to exploit
better the semantic and color features. As shown in Fig. 1,
compared with the recently leading denoising methods, our
FADNet achieves very pleasing results by preserving clear
structures and details even under severe noise.

Summarily, our contributions include:
(1) We propose a novel and flexible denoiser, which is

well-generalized and can work universally well for test im-
ages with noise discrepancy.

(2) We incorporate the Fourier transform into the dynamic
filter generation step for adaptive representation capability
enhancement. To the best of our knowledge, this scheme is
the pioneering attempt towards merging the power of dy-
namic filter and Fourier transform for real noise removal.

(3) Comprehensive experiments show that our FADNet
enjoys appealing efficiency, whilst achieving a higher per-
formance than the state-of-the-art image denoising methods.

Related Work
Real Image Denoising
In recent years, deep CNNs have made a splash in the arena
of real noise removal. Driven by the great capabilities of the
deep networks and the ease of access to external training
data, the CNN-based denoisers have shown dramatic im-
provements and exhibited a large performance leap. Zhang
et al. (Zhang et al. 2017) proposed to apply the residual
learning and batch normalization to facilitate the CNN train-
ing for blind image denoising. In (Zhang, Zuo, and Zhang
2018), the authors leveraged the benefits of a tunable noise
level map to recover the corrupted noisy images. Yue et al.
(Yue et al. 2019, 2020) introduced a generative framework,
where the tasks of noise removal and generation can be si-
multaneously attained within a unique Bayesian model. Ma

et al. (Ma et al. 2020) incorporated a set of Kalman fil-
ters into a pyramid neural network to remove the noise in
a coarse-to-fine manner. Recently, visual attention mecha-
nism has exhibited blossoming developments in the field of
image denoising (Saeed and Nick 2019; Ma et al. 2021a,b;
Syed et al. 2020). For instance, (Syed et al. 2020) applied
the dual-attention units to encode multi-scale context for
spatially-precise representations, enabling the denoised re-
sults to maintain high-resolution details. Just recently, (Liu
et al. 2021) proposed a lightweight model by exploring
the invertible networks. This model used two different la-
tent variables to eliminate and generate noise jointly. The
algorithm (Cheng et al. 2021) benefitted from the image-
adaptive projection technology and had shown promising
performance on synthetic and real noise removal.

Albeit the rapid advance of the above CNN-based meth-
ods, they could easily overfit to specific training data and
lack in generalizability on test images with noise discrep-
ancy. An alternative was to simulate the generation proce-
dure of the ISP pipeline (Guo et al. 2019; Kim et al. 2020).
Nonetheless, simply reversing the response functions of the
ISP pipeline was not sufficient to model the full character-
istics of the real noise. In stark contrast to the above, our
FADNet armed with the dynamic filters can cope with the
real noise soundly and feasibly, while exhibiting superior
generalization ability on test images with unknown noises.

Dynamic Filters
Different from the traditional CNN, where the filter weights
stay fixed once trained, the dynamic filters are generated
by separate network branches and can be changed accord-
ing to the input on-the-fly. Due to its adaptive nature, it can
increase the flexibility of a network and has been applied
to various tasks, such as super-resolution (Hu et al. 2019),
point cloud segmentation (Xu et al. 2020), image deblur-
ring (Lee et al. 2021), and style transfer (Chandran et al.
2021). However, generating such depthwise-separable and
spatially-varying filters usually entailed memory intensive
network architectures, which was computation-heavy and
time-consuming.

Our work circumvented the above dilemmas through de-
coupling the generated filters into spatial and channel ones.
Closest to this scheme was the method proposed in (Zhou
et al. 2021). However, (Zhou et al. 2021) generated filters
at each channel dimension. Conversely, we emphasize that
our proposed model is more lightweight in that we predict
the weight kernels along the channel dimension. Moreover,
we share the generated filters over channels for feature en-
coding, such that the spatial and channel information can be
interwoven for more informative representations.

Proposed Method
Network Architecture
Fig. 2 illustrates an overview of the proposed denoising net-
work, namely FADNet. Our FADNet takes a noisy image IN
as input and generates a denoised output ID. We compose
FADNet with two subnetworks, i.e., noise removal and dy-
namic filter generation. The noise removal subnetwork fol-
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Figure 2: Overall architecture of the proposed FADNet.

lows an encoder-decoder architecture design. Given a noisy
image IN ∈ RH×W×3, the feature extractor obtains the la-
tent clean image feature fd ∈ Rhd×wd×cd , where wd = W

8

and hd = H
8 , and passes it through the reconstructor to

restore a clean image. The dynamic filter generation sub-
network (DFGS) involves kernel construction, in which the
noisy input is adaptively transformed to the weight kernels
for feature modulation and update. Precisely, we first apply
the Fourier transform algorithm (Frigo and Johnson 1998)
on IN and then perform the inverse Fourier transform to ob-
tain the corresponding amplitude and phase images. The fil-
ter encoder then separately encodes the two inverse images
into fA and fP , which are concatenated together, followed by
a 1× 1 convolution to form a feature map fE . fE is encoded
further and finally fed into the plane dynamic filter mod-
ule (PDFM). The PDFM is designed to predict the weight
kernels. These predictions are convolved on the image’s fea-
tures, before being outputed to update the counterparts.

We next explain the network architecture. As shown in
Fig. 2, there are mainly four types of layers (identified
with different colors), viz., convolutional layer (Conv layer),
deconvolutional layer (DeConv layer), residual block and
adaptive Conv. More specifically, in the noise removal sub-
network, the Conv layer and rectified linear unit (ReLU) are
adopted as the extractor to extract deep features from the
input. While the Conv layer, adaptive Conv, DeConv layer
and the residual block are the building mainstay of the re-
constructor. Note that the residual block presented in (Ma
et al. 2021b) is adopted in our FADNet. We also employ the
symmetric skip connections to allow more abundant contex-
tual features from the low level to be bypassed. As for the
DFGS, we incorporate the Fourier transform, Conv layer,
residual block and DeConv layer, in addition to the PDFM,
for adaptive weight prediction.

In our work, we leverage the L − 2 norm regulariza-
tion to obtain the optimal parameters for the proposed

FADNet. Given a training set of noisy-clean image pairs{
I jN , I

j
G

}M
j=1

, where I jN and I jG represent the j-th noisy and

clean images, we optimize the proposed model by minimiz-
ing the following loss function:

L(Θ) =
1

M

M∑
j=1

∥∥∥HFADNet(I jN ;Θ)− I jG

∥∥∥2
2
, (1)

where Θ denotes the parameters in training the denoising
network and HFADNet is the noisy-to-clean mapping func-
tion.

Dynamic Filter Generation Subnetwork (DFGS)
In this work, we aim to propose a well-generalized denoiser
that works universally for the unknown and complicated real
noises. The statistics of noise on real photographs, how-
ever, are usually spatially variant and chromatically corre-
lated. Meanwhile, they are associated with different cam-
era sensors and in-camera pipelines, which further scales up
the complexity of real noise. Thus, using the pure encoder-
decoder architecture may be inflexible for the complex noise
and can be easily overfitted to a specific digital imaging de-
vice with certain noisy types. For this, we propose the DFGS
to solve this dilemma. Our DFGS plays two crucial roles for
the noise removal subnetwork. One is impeding the noise re-
moval subnetwork from overfitting to limited training data,
and the other is adapting the proposed denoiser to distinct
noises in test noisy images dynamically and efficiently.

As depicted in Fig. 2, the proposed DFGS contains two
main parts: Fourier transform and plane dynamic filter mod-
ule.

Fourier transform For a single channel image I SN , its
Fourier transformation can be expressed as:

F(I SN )(u, v) =
H−1∑
h=0

W−1∑
w=0

I SN (h,w)e−i2π(
h
H u+

w
W v), (2)
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Figure 3: Schematic illustration of our proposed plane dy-
namic filter module. We set the convolution window as 3×3
in this example for easy demonstration.

where i2 = −1. LetA(I SN ) and P(I SN ) be the amplitude and
phase components of F(I SN ), we have:

A(I SN )(u, v) =
[
R2(I SN )(u, v) + C2(I SN )(u, v)

]
,

P(I SN )(u, v) = arctan

[
C(I SN )(u, v)

R(I SN )(u, v)

]
,

(3)

where R(I SN ) and C(I SN ) stand for the real and imaginary
part of F(I SN ), respectively. We then independently inverse
A(I SN ) and P(I SN ) and map them back to their image space.
For an RGB image, one can obtain the corresponding am-
plitude and phase inversed images by computing the Fourier
transform for each channel individually.

As shown in Fig. 2, the P(I SN )-only reconstruction pro-
duces the important semantic information and visual struc-
tures. While for theA(I SN )-only reconstruction, it reveals the
color-wise information conveyed in the original image. With
simple network training, the filter encoder is encouraged to
attain the essential semantic and color deep features without
sophisticated network design. Finally, we integrate the out-
put features to enhance the contextual aggregation for adap-
tive weight kernel prediction. Since the primary task of im-
age denoising is to effectively eliminate the corrupted noise
while reserving the desired fine image details, the semantic
and color cues are of significant importance to facilitate the
generated filters to adapt to the image contents with textural
and structural information.

Plane dynamic filter module (PDFM) The PDFM has
the purpose of enriching the convolution kernels with the
ability to generalize well on diverse noisy input. As shown
in Fig. 3, the PDFM is built upon a simple convolutional
module, whose input is the feature maps, while the output is
the weight kernels. In this subsection, we begin by introduc-
ing the standard dynamic filtering operation to draw forth
our proposed PDFM.

The standard dynamic filters, predicted by separate net-
work branches, are spatially varying at each pixel and capa-
ble of facilitating adaptive learning on image contents and
feature embeddings. In general, a dynamic filter generation
network takes a feature tensor fin (with a size of hin × win

having cin channels) as input and generates the filtered re-
sult f ∗ ∈ Rkh×kw×cin×cout , where cin and cout enumerate
the input and output channels, respectively. The generated
weight filters are then applied on the target image features
in a sliding-window manner, and consequently, enable an
adjustment of a deep network for flexible operators on-the-
fly. However, predicting such a weight kernel often requires
a large number of parameters (i.e., kh × kw × cin × cout),
which entails heavy side-networks and leads to huge mem-
ory consumption and computational loads. To achieve a
well-generalized and efficient denoiser, the generated weight
kernels are expected to be content-adaptive and lightweight.
We accomplish this by proposing the PDFM, where the key
idea behind our framework is to incorporate both the spatial
and channel attention into the dynamic filter generation step.

As visualized in Fig. 3, let f1 ∈ Rh1×w1×c1 be the in-
put feature map of the PDFM, we start by generating both
the channel and spatial dynamic filters from f1. Precisely,
for a single pixel H ∈ R1×1×c1 at spatial location (m,n)
centered within a k × k convolution window, to obtain the
channel dynamic filter q ∈ Rk×k×1, we have:

q = ψ(X 1(H)). (4)

In this formula, X 1 includes two operations: first it per-
forms the global average pooling (GAP) across spatial di-
mensions and thus yields an aggregated contextual feature
q̂ ∈ R1×1×c1 . Then, we employ an 1 × 1 convolution layer
to rescale the feature dimension from 1×1×c1 to 1×1×k2.
ψ signifies the linear transformation that implements the
channel-to-space rearrangement. As for the spatial dynamic
filter p ∈ Rk×k×1, we apply two parallel operations, viz.,
the GAP and global max pooling (GMP), on the pixels along
the channel dimensions within the k × k spatial neighbor-
hood and finally aggregate the outputs from these two opera-
tions. We symbolize this generation procedure as X 2, which
takes the following form:

p = X 2(H). (5)

Following this, we concatenate the generated spatial and
dynamic filters to form a filter V ∈ Rk×k×1 for better repre-
sentation interweavement. As the generated filter V is con-
ditioned on f1, the exceedingly large or small filter values
can be problematic in stabilizing the training of the network
model. We followed (Zhou et al. 2021) to tackle this issue,
using the filter normalization (FN) such that the filter values
can be tweaked to a reasonable range.

We now turn to the step of applying the generated dy-
namic filter on the feature map of our reconstructor. Note
that this procedure corresponds to the operations of the adap-
tive Conv as shown in Fig. 2. Concretely speaking, given a
decoded feature map f2 whose spatial size and channel num-
ber are the same as f1, V is specially tailored for the pixel
O located at (m,n). In other words, each generated filter is
ingested into a single pixel for incarnation. More correctly,
in the k × k spatial vicinity of the center pixel O, V ex-
ecutes the multiplication broadcast operation along all the
channel dimensions, thus forming E ∈ Rk×k×c1 . To do so,
the information in the channel dimension of a pixel lattice
is explicitly associated with its neighborhood, after which
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the features in an enlarged receptive field can be well ag-
gregated. The final new output is derived by a summation
gathered operation over the spatial domain.

Our PDFM enjoys three desirable properties. First, the
generated filter is conditioned on the input noisy image
while being guided by the Fourier transform. Such a mecha-
nism allows the PDFM to flexibly adapt to the image con-
tents. Second, we tactfully decouple the filter generation
process into its spatial and channel. This way, the spatial
and channel information can be interwoven, collaboratively
enhancing the representation capability. Third, the proposed
PDFM offers a satisfactory solution to reduce the prohibitive
memory and computation consumption, in which the param-
eter count of our predicted weight kernel is k × k and is
far fewer than the commonly used dynamic filter generation
based works. As we shall soon see in the experimental part,
the FADNet inherites incredible advantages from PDFM by
offering a considerably better denoising performance and
generalization ability.

Experiments
Dataset
In this work, the training data was from SIDD (Abdelhamed,
Lin, and Brown 2018). SIDD contained 30k high-resolution
real noisy images captured by 5 smartphone cameras. The
corresponding clean images were obtained by a systematic
procedure. SIDD also provided a medium version package,
in which 320 images pairs were leveraged for fast training
and 1280 images pairs for validation purposes. In the exper-
imental studies, we used 320 noisy-clean image pairs from
the medium version of SIDD for network training.

At the test stage, in addition to SIDD, we further adopted
three datasets to validate the effectiveness of FADNet. In
particular, Nam (Nam et al. 2016) included noisy images of
11 static scenes, each of which was shot 500 times using the
same consumer camera. By averaging these 500 shots from
the same scene, the approximately noise-free images can be
obtained. Considering that the images were of megapixel-
size, we randomly cropped 300 smaller images (with a size
of 512 × 512) for different scenes to perform the exper-
iments. Darmstadt Noise Dataset (DND) (Plötz and Roth
2017) was composed of 50 real noisy images. All the im-
ages were collected under the outdoor lighting environment
by 4 consumer-grade cameras. While the ground-truth clean
data has not been released, one can submit the denoising
results to the official online server and obtain the quantita-
tive scores. We further introduced a new dataset, namely ur-
ban nightscape (UrbanN). UrbanN consisted of 50 noisy im-
ages that were acquired by three popular smartphones (i.e.,
iPhone 7 Plus, iPhone 12, and Huawei Mate12) under dif-
ferent urban landscapes at night. Since the noisy images in
UrbanN had no ground truth, the visual comparisons were
the main metric.

Implementation Details
We utilized the Adam optimizer (Kingma and Ba 2014)
to update the network, with β1 = 0.7, β2 = 0.999, and
ε = 10−8. The learning rate was initially set as 0.001 and

DFGS – X X X X
Fourier – – X X X
Spatial – X – X X
Channel – X X – X
PSNR 35.29 39.08 40.19 40.06 41.51
SSIM 0.874 0.972 0.980 0.978 0.992

Table 1: Ablation study of four variations (i.e., DFGS,
Fourier transform, spatial dynamic filter and channel dy-
namic filter) of our FADNet on the Nam dataset.

（a）Input    （b）w/o DFGS （d）Ours （e）GT

     （f）w/o DFGS （g）w/o Fourier （i）w/o channel
     dynamic filter

（j）Ours（h）w/o spatial
     dynamic filter

   （c）w/o Fourier

Figure 4: Visualization (first row: denoising results; second
row: heat maps) of the ablation study. It is worth noting that
the heat maps interpret the representative capability of the
filters generated by the second PDFM for the test image.
Please view in color with zoom.

reduced to 0.0001 when the training errors held steady. In
the dynamic filter generation subnetwork, we employed 2
PDFMs for feature regularization and found that using more
PDFMs led to a slightly better performance, but entailed
more computational loads at runtime. All the experiments
were carried out using the Pytorch library (Paszke et al.
2019) on a machine with an NVIDIA Titan Xp GPU.

Ablation Study
In this subsection, several ablation studies were designed to
investigate the impact of the following components: DFGS,
the Fourier transform, and the generated filters (i.e., spatial
and channel). Results are reported in Table 1 and Fig. 4, re-
spectively.

Efficacy of the DFGS First of all, we validated the utility
of the DFGS. Table 1 shows that excluding the DFGS from
the proposed FADNet caused the largest performance drop,
viz., from 41.51 dB to 35.29 dB. Furthermore, as shown in
Fig. 4 (b), we note that without the DFGS, the network found
it difficult to eliminate the real noise. Considering the com-
plexity of the real noise, training the encoder-decoder archi-
tecture solely was not effective to fully exploit and learn the
image characteristics. Conversely, the proposed FADNet by
featuring the DFGS yielded noticeable improvements in vi-
sual quality, and consequently achieved higher PSNR and
SSIM values, thereby supporting our claim about the advan-
tage of using the DFGS.
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Method
Nam SIDD DND

Flops
Network Running

PSNR / SSIM PSNR / SSIM PSNR / SSIM Parameters Speed
DnCNN-B (Zhang et al. 2017) 37.69 / 0.952 38.56 / 0.910 37.90 / 0.943 146.94 0.56 0.068
FFDNet+ (Zhang, Zuo, and Zhang 2018) 38.81 / 0.957 38.60 / 0.909 37.61 / 0.942 107.29 0.48 0.030
CBDNet (Guo et al. 2019) 39.08 / 0.969 38.68 / 0.909 38.06 / 0.942 144.36 4.34 0.422
RIDNet (Saeed and Nick 2019) 39.20 / 0.972 38.71 / 0.913 39.23 / 0.953 392.53 1.49 0.237
VDN (Yue et al. 2019) 39.68 / 0.976 39.28 / 0.909 39.38 / 0.952 158.49 7.81 0.519
DANet (Yue et al. 2020) 40.15 / 0.978 39.30 / 0.916 39.58 / 0.955 129.27 9.15 0.483
CycleISP (Zamir et al. 2020) 40.09 / 0.978 39.34 / 0.916 39.56 / 0.956 736.81 2.8 0.236
AINDNet (Kim et al. 2020) 39.98 / 0.978 39.45 / 0.915 39.53 / 0.956 271.19 13.76 0.577
MIRNet (Syed et al. 2020) 40.27 / 0.979 39.53 / 0.917 39.88 / 0.956 2372.93 31.78 0.885
InvNet (Liu et al. 2021) 40.15 / 0.978 39.38 / 0.916 39.57 / 0.952 112.49 2.64 0.214
NBNet (Cheng et al. 2021) 40.30 / 0.980 39.62 / 0.919 39.89 / 0.955 316.76 13.3 0.368
FADNet (Ours) 41.51 / 0.992 39.96 / 0.926 40.17 / 0.959 111.35 2.59 0.197

Table 2: Quantitative comparisons (PSNR(in dB) / SSIM, network parameters (in M), floating-point operations (Flops) (in
G) and running speed (in second)) of our FADNet against other competitive approaches. The Flops and running speed were
computed by processing the testing images with a size of 512× 512 on the Nam dataset.

Efficacy of the Fourier transform We next assessed the
necessity of the Fourier transform. In this work, we injected
the amplitude and phase information of the Fourier trans-
form into the filter generation procedure to contextually en-
rich the predicted filters with structures and color informa-
tion. As expected, utilizing the Fourier transform benefited
in handling the complex real noise, which resulted in a 2.43
dB improvement on the Nam dataset. In Fig. 4(c), it is ev-
ident that the absence of the Fourier transform affected the
image restoration quality, where the denoised result tended
to lose some structural contents and fine textural details.
Compared with the heat maps in Fig. 4(g) and Fig. 4(j),
again, one can observe that the Fourier transform was help-
ful in improving the representations with clearer details and
object boundaries.

Efficacy of the generated filters Finally, we probed the
effect of the generated filters. Particularly, we conducted ex-
periments with two settings by predicting either the spatial
or channel filter. As visualized in Fig. 4 (h) and Fig. 4(i), em-
ploying the spatial or channel filter individually could not
correctly respond to the semantic information of the heav-
ily structured objects. Meanwhile, some noises were not re-
moved completely. This was mainly ascribed to less of the
network generalizability. When we integrated the two types
of filters together, as shown in Fig. 4(j), the network can
achieve a positive improvement based on its semantic un-
derstanding whilst well eliminating the noise. In short, these
visualizations verified that the generated spatial and channel
filters can jointly bring great benefit to (i) highlight the se-
mantic representations of the image; (ii) boost the network
generalization ability to the unknown real noise.

Main Results
Evaluation on Nam, SIDD and DND The average
PSNR/SSIM results of all the competitive algorithms were
listed in Table 2. From the analysis of the quantitative scores,

Noisy input

RIDNet

OursNBNetInvNetCycleISP

DANetAINDNetVND

35.09 dB 34.22 dB 34.70 dB 36.40 dB

34.30 dB 34.08 dB 34.63 dB 33.73 dB

18.77 dB

Figure 5: Denoised results of different algorithms on the
noisy image from DND. Please view in color with zoom.

it can be easily observed that: (i) The proposed FADNet no-
ticeably advanced other competing methods by consistently
achieving the best PSNR and SSIM values on three groups
of testing data. Notice that in the PSNR metric, we ob-
tained a performant rise over the second best method NBNet,
boosting from 39.62 to 39.96 on the SIDD validation dataset,
and from 39.89 to 40.17 on DND. (ii) Our FADNet excelled
CBDNet, AINDNet and CycleISP by 0.5 dB at least, even
though they embedded the noise information into their rep-
resentation learning paradigms. (iii) The performance gains
of our method over DnCNN-B and FFDNet+ became larger,
possibly due to their overfitting issue to the Gaussian distri-
bution.

We presented visualized comparisons on SIDD and DND
in Figs. 1 and 5, from which we can see that the proposed
FADNet was effective in removing the real noise and deliv-
ering visually pleasant and faithful results. In contrast, other
approaches either compromised structural content, or pro-
duced blurring artifacts. In Fig. 1, though the input image
was contaminated by large noise intensities, the denoised
image by FADNet contained more apparent textural details
than in other approaches. In Fig. 5, it can be seen that FAD-
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(a) Noisy Input (b) CycleISP (c) DANet (d) InvNet (e) NBNet (f) Ours

Figure 6: Comparison on UrbanN in the evaluation of generalization capabilities. The real noisy images, from top to bottom,
were captured by iPhone 7Plus, iPhone 12 and Huawei Mate12, respectively. Despite the large noise discrepancy between the
training and test data, our method consistently exhibited promising generalization abilities to the unknown and sophisticated
real noise. Please view in color with zoom.

Net outperformed other algorithms in restoring more crisp
edges and tiny details.

Evaluation on generalization capability To demonstrate
the practicability, we next inspected the generalization ca-
pability of the proposed denoiser. It is noteworthy that the
recent public benchmarks (i.e., Nam, DND and SIDD) and
UrbanN were collected by different types of cameras. Based
on the discussions in Section I, different camera sensors and
ISP pipelines would give rise to the noise discrepancy. More-
over, since UrbanN did not contain any training images and
ground-truth images, it was suitable for generalization test-
ing.

We applied our FADNet on UrbanN with a comparison to
the recent state-of-the-art methods. Fig. 6 illustrates the vi-
sual results. Notably, our algorithm can handle the unknown
real noise flexibly, suppress the artifacts effectively and pre-
serve the image details well. While for the other competing
techniques, they failed to remove the noise since the noise
domains of the training and test set did not coincide. Further-
more, the first row depicts that FADNet can better recover
the subtle structures and textures, whereas the other methods
suffered from serious blurring artifacts. Overall, compared
with the state-of-the-art on UrbanN, the superiority of FAD-
Net confirmed the better generalization capability to images
with different noise domains.

Evaluation on efficiency In addition to the denoising per-
formance, we also compared the network efficiency of the
competing methods. All experiments were conducted on im-
ages with a size of 512 × 512 from the Nam dataset with

the same GPU. As can be seen from Table 2, FFDNet+ had
the fewset network parameters and Flops. Nevertheless, it
obtained a limited performance. The network efficiency of
our FADNet was more comparable with those of the recent
competitive algorithms. In particular, compared to the most
recently proposed NBNet, we provided much more satisfac-
tory results, i.e., 41.5 dB vs 40.30 dB, by only taking 35.15%
of its computational cost and 19.47% of its number of pa-
rameters, demonstrating appealing efficiency and effective-
ness in real-world applications.

Conclusion
In this paper, we proposed a novel denoiser, termed as FAD-
Net, for flexible and adaptive real-world noisy image denois-
ing. To realize this goal, we applied the encoder-decoder ar-
chitecture, Fourier transform, and dynamic filter techniques
into in the network design. The results from the ablation
study validated the necessity and effect of the key compo-
nents of our network model. The results on Nam, SIDD,
DND and UrbanN showed that the proposed FADNet can
not only cope with the sophisticated real noise, but also ex-
hibit promising generalization abilities to images with noise
discrepancy, achieving superiority over the state-of-the-art
methods. The efficiency comparisons further demonstrated
the need for fewer parameters and lower computational cost
of FADNet against the recent best algorithms. Considering
its robustness, adaptation and efficiency, FADNet is essen-
tially more feasible for practical denoising applications.
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