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Abstract

Large deformations of organs, caused by diverse shapes and
nonlinear shape changes, pose a significant challenge for
medical image registration. Traditional registration methods
need to iteratively optimize an objective function via a spe-
cific deformation model along with meticulous parameter
tuning, but which have limited capabilities in registering
images with large deformations. While deep learning-based
methods can learn the complex mapping from input images to
their respective deformation field, it is regression-based and
is prone to be stuck at local minima, particularly when large
deformations are involved. To this end, we present Stochastic
Planner-Actor-Critic (SPAC), a novel reinforcement learning-
based framework that performs step-wise registration. The
key notion is warping a moving image successively by each
time step to finally align to a fixed image. Considering that
it is challenging to handle high dimensional continuous ac-
tion and state spaces in the conventional reinforcement learn-
ing (RL) framework, we introduce a new concept ‘Plan’ to
the standard Actor-Critic model, which is of low dimension
and can facilitate the actor to generate a tractable high dimen-
sional action. The entire framework is based on unsupervised
training and operates in an end-to-end manner. We evaluate
our method on several 2D and 3D medical image datasets,
some of which contain large deformations. Our empirical re-
sults highlight that our work achieves consistent, significant
gains and outperforms state-of-the-art methods.

Introduction
Deformable image registration (DIR) is an important task in
medical imaging and has been actively studied for decades.
DIR consists of establishing a spatial anatomical non-linear
dense correspondence between a pair of fixed and moving
images. The central task of DIR is the estimation of the
ill-posed free-form transformation field that consists of a
combination of global and local displacements (Eppenhof
et al. 2019). Moreover, an accurate DIR on large deforma-
tion is needed due to soft organs (e.g., the brain, liver, and
stomach) may undergo large deformations caused by pa-
tient re-positioning, surgical manipulation, or other physi-
ological differences (Holden 2007). Large deformation dif-
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feomorphic metric mapping (LDDMM) (Beg et al. 2005),
derived from the group structure of the manifold of diffeo-
morphisms, is one of the most popular methods to tackle
large deformations in DIR. However, achieving an optimal
solution of the diffeomorphic image registration is compu-
tationally intensive and time-consuming, attempts at speed-
ing up diffeomorphic image registration have thus been pro-
posed to improve numerical approximation schemes (Wang
and Zhang 2020).

Most existing DL-based solutions (Balakrishnan et al.
2019; Dalca et al. 2019; Mok and Chung 2020) are en-
forced to make a straightforward prediction, which is in-
capable to handle complicated deformations (Zhao et al.
2019). The step-wise image registration methods, such as
R2N2 (Sandkühler et al. 2019) and RCN (Zhao et al. 2019),
have shown the potential in DIR, in which the final deforma-
tion field (probably with large displacements) can be consid-
ered as a composition of the progressively predicted defor-
mation field. But both of them are complex and computa-
tionally costly, and cannot deal with long step-wise regis-
tration. Inspired by the way that a human expert aligns two
images by applying a sequence of local or global deforma-
tions, some RL-based image registration methods have been
introduced in the past (Liao et al. 2017; Ma et al. 2017;
Miao and Liao 2019; Sun et al. 2018; Hu et al. 2021; Luo
et al. 2020). However, most of them merely focus on global
rigid transformation since it only includes rotation and trans-
lation and can be easily represented by a low-dimensional
discrete parametric model. Compared to rigid registration,
DIR has huge, continuous state and action spaces, espe-
cially in 3D, which makes RL training extremely difficult.
Krebs et al. (Krebs et al. 2017) proposed an RL-based ap-
proach for DIR, but their method uses supervised learning
with ground truth deformation field, which is infeasible for
most DIR tasks. And they incorporate the traditional statis-
tical deformation model to reduce and discretize the action
space, which leads to inferior performance in complex de-
formation registration.

In this paper, we propose a new RL architecture for unsu-
pervised DIR problems, known as the Stochastic Planner-
Actor-Critic (SPAC), to handle high dimensional contin-
uous state and action spaces. As shown in Figure 1, the
SPAC framework is formed with three core deep neural net-
works: the planner, the actor, and the critic. We introduce
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new a concept ‘plan’ which breaks the decision-making pro-
cess into two steps, state→ plan and plan→ action. We call
this process as meta policy, where the plan is a subspace of
appropriate actions based on the current state, but it is not
applied to the state directly, it is used to guide the actor to
generate a tractable high-dimensional action that applies to
the environment. The plan could be considered as an inter-
mediate transition between state and action. As the input of
the actor, the plan has a much lower dimension comparing
with the state, which is easier for the actor to learn to pre-
dict actions. Meanwhile, the plan can be evaluated by the
critic efficiently, since the Q function is easier to learn in the
low-dimensional latent space. Furthermore, we employ an
unsupervised registration learning strategy to learn the simi-
larity of appearance between fixed and moving image pairs.
The main contributions of our work can be summarized as
follows:
• We describe a new RL framework, stochastic planner-

actor-critic (SPAC), to handle large deformations by de-
composing the monolithic learning process in DIR into
small steps with high-dimensional continuous actions.

• To tackle the high-dimensional continuous action learn-
ing problem, we propose a stochastic meta policy that
breaks the decision-making processing into two steps:
state → low-dimensional plan and plan → deforma-
tion field action. The plan guides the actor to predict a
tractable action, and the critic evaluates the plan, which
makes the whole learning process feasible and computa-
tionally efficient.

• We design an registration environment which incorpo-
rates a K-means clustering module (Dice 1945) to obtain
coarse segmentation maps to compute the Dice reward
in an unsupervised manner, which obviates the need to
collect real data with abundant and reliable ground-truth
annotations. Besides, our method can be applied to entire
3D volumes.

• Experimental results on a variety of 2D/3D datasets show
that the SPAC achieves state-of-the-art performance and
consistently improves the results along with iterations.

Background
Deformable Image Registration
Deformable image registration (DIR) aims to learn a trans-
formation between a fixed image and a moving image (Yang,
Kwitt, and Niethammer 2016; Balakrishnan et al. 2018;
de Vos et al. 2019). The DIR can be defined as an opti-
mization problem. Given a pair of images (IF , IM ), both of
which on the image domain X → Rd, where d is the di-
mension. IF is the fixed image and IM is the moving image.
Denote Ωw as a registration model parameterized by w. The
output of it is a deformation filed, which can be warped on
the moving image to align to the fixed image, denoted as
IM ◦ Ωw(IF , IM ). We formulated the pairwise registration
as a minimization problem based on energy function:

min
w
E(w) := G(IF , IM ◦Ωw(IF , IM ))+λR(Ωw(IF , IM ))

(1)

where G represents a metric quantifying the similarity be-
tween the fixed image and the warped image, R represents a
regularization constraining the deformation field, λ is a hy-
perparameter to balance these two terms. In the DL-based
DIR task, the DL model tries to learn Ωw(IF , IM ) from a
training dataset, which contains a large number of image
pairs (IF , IM ). The potential choice of G could be any sim-
ilarity metric, such as the sum of squared differences (SSD),
the normalized mutual information (NMI), or the negative
normalized cross-correlation (NCC) (Haskins, Kruger, and
Yan 2020; Balakrishnan et al. 2018).

Reinforcement Learning
RL is described by an infinite-horizon Markov decision pro-
cess (MDP), defined by the tuple (S,A,U , r, γ). S is a set of
states, A is action, and U : S × S ×A → [0,∞) represents
the state transition probability density given state s ∈ S
and action a ∈ A. r : S × A → R is the reward emitted
from each transition, and γ ∈ [0, 1] is the reward discount
factor. Standard RL learns to maximize the expected sum
of rewards from the episodic environments under the trajec-
tory distribution ρπ . It can be modified to incorporate an en-
tropy term with the policy. Therefore, the resulting objective
is defined as

∑T
t=1 E(st,at)∼ρπ [rt(st,at) + αH(πφ(·|st))],

where α is a temperature parameter controlling the balance
of the entropyH and the reward rt.

Soft Actor-critic (SAC) (Haarnoja et al. 2018) is a promis-
ing framework for learning continuous actions, which is an
off-policy actor-critic method that uses the above entropy-
based framework to derive the soft policy iteration. Stochas-
tic latent actor-critic (SLAC) improves the SAC by learning
the representation spaces with a latent variable model which
is more stable and efficient for complex continuous control
tasks. It can improve both the exploration and robustness
of the learned model. However, SLAC is far from enough
for handling DIR, which has huge continuous action spaces
such as voxel-wise estimation of a deformation field.

Stochastic Planner-Actor-Critic
Concretely, in our framework, the SPAC is formed with
three core deep neural networks: the planner, the actor, and
the critic with parameters ψ, φ, and θ, respectively (see Fig-
ure 1). The planner aims to generate a high-level plan in
the low-dimensional latent space to guide the actor. In some
sense, the plan can be considered as action clusters or ac-
tion templates, which are high-level crude actions. Differ-
ent from classic actor-critic models, the input of the actor
is a stochastic plan instead of the state. That is, the gen-
erated plan is forwarded to the actor to further create the
high dimensional action for DIR, and meanwhile, this plan
is evaluated by the critic. We also add skip-connections from
each down-sampling layer of the planner to the correspond-
ing up-sampling layer of the actor. The information passed
by skip-connections contains the details of the state st that
are needed to reconstruct a natural-looking image. Using the
proposed stochastic planner-actor-critic structure and super-
vision of similarity of appearance between fixed and moving
image, SPAC could extend readily to complex DIR tasks.
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Figure 1: The network architecture of the proposed SPAC for DIR problem. At time step t, the registration environment receives
action at, and outputs state and reward (st, rt). The plan pt is sampled from the planner and evaluated by the critic. The action
at is actually an immediate deformation field based on state st. The spatial transformer network (STN) is used as the warping
function.

Problem Formulation
In forming SPAC, we apply the same notations as we de-
fined for the conventional reinforcement learning in back-
ground section and introduce an additional component P for
the continuous plan space to the infinite-horizon Markov de-
cision process (MDP). Therefore, the MDP for SPAC can
be defined by the tuple (S,P,A,U , r, γ). S is a set of
states, P is continuous plan, A is continuous action, and
U : S × P × S × A → [0,∞) represents the state tran-
sition probability density of the next state st+1 given state
st ∈ S , plan pt ∈ P and action at ∈ A.

Step-wise Deformable Registration. Leveraging the se-
quential characteristic of reinforcement learning, we decom-
pose the registration into T steps instead of predicting the
deformation field in one-shot. At time step t, action at is the
current deformation field generated by the Planner κψ and
Actor πφ based on fixed image IF and intermediate mov-
ing image IMt . Let Ωtψ,φ represents the accumulated defor-
mation field composed by at and the previous deformation
field Ωt−1

ψ,φ . We can compute Ωtψ,φ with a recursive composi-
tion function:

Ωtψ,φ =

{
0 if t = 0,
C(at,Ωt−1

ψ,φ) otherwise,
(2)

where

C(at,Ωt−1
ψ,φ) = Ωt−1

ψ,φ + (at ◦ Ωt−1
ψ,φ). (3)

To eliminate the warping bias in the multi-step recursive
registration process (Zhao et al. 2019), we warp the initial
moving image IM using accumulated the deformation field
Ωtψ,φ. Then the warped image IMt+1

is used as the next
moving image in time step t + 1. Therefore, the registra-
tion result can be progressively improved by predicting de-
formation from coarse to the local refined. Using the notion
of step-wise, the DIR optimization problem (Eq.(1)) in our
SPAC framework can be rewritten as

min
ψ,φ

E(ψ, φ) :=
1

T

T∑
t=1

G(IF , IMt
◦ Ωtψ,φ) + λR(Ωtψ,φ),

(4)
where we use a tuple (ψ, φ) instead of the parameter w in
Eq.(1) since the deformation field will be learned from the
SPAC framework. In the following, we provide the details
of the environment and policy in our method.

DIR Environment
The overview of the step-wise deformable registration en-
vironment is shown in Figure 2. In the beginning, the en-
vironment only contains an image pair (IF , IM ), then we
performs K-means (MacQueen et al. 1967) with three clus-
tering labels to obtain the corresponding segmentation maps
(UF , UM ) in an unsupervised manner. The generated seg-
mentation map assigns each voxel to a virtual anatomical
structure, which facilitates computing rewards. At time step
t, the state st is the pair of fixed image IF and moving im-
age IMt

, st = (IF , IMt
). The next state st+1 is obtained by

warping IM with composed deformable field Ωtψ,φ: st+1 =

(IF , IM ◦ Ωtψ,φ). We incorporate the widely used spatial
transformer network (STN) (Jaderberg et al. 2015) as the
warping operator. The reward rt is defined based on the Dice
(Dice 1945) score:

rt = Dice(UF , UM ◦Ωtψ,φ)−Dice(UF , UM ◦Ωt−1
ψ,φ), (5)

where Dice(U1, U2) = 2 · |U1∩U2|
|U1|+|U2| . This reward function

explicitly assesses the improvement of the predicted defor-
mation field Ωtψ,φ.

Stochastic Meta Policy
In our formulation, we have a meta policy (κ, π), where the
stochastic plan is modeled as a subspace of the deforma-
tion field that gives low-dimensional vector pt given state
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Figure 2: The architecture of the step-wise deformable regis-
tration environment. When the environment receives an ac-
tion at, it outputs the next state st+1 and reward rt. Specif-
ically, the environment is composed by a pair of image (IF ,
IM ), and generates the corresponding segmentation maps
(UF , UM ) with K-means clustering. C(at,Ωt−1

ψ,φ) is the com-
pose function which composes action at to the accumulated
deformation field Ωtψ,φ. The next state st+1 is obtained by
concatenating IF and the warped moving image IM ◦Ωtψ,φ.
The reward rt is obtained by Eq. (5) which represents the
improvement of Dice score.

st. While the actor’s action is actually a deterministic de-
formation field at determined by the plan pt. Consider a
parameterized planner κψ and actor πφ, the stochastic plan
is sampled as a representation: pt ∼ κψ(pt|st), and the ac-
tion is generated by decoding the plan vector pt to a high-
dimensional deformation field: at = πφ(at|pt) In prac-
tice, we reparameterize the the planner and the stochastic
plan jointly using a neural network approximation pt =
fψ(εt, st), known as reparameterization trick (Kingma and
Welling 2013), where εt is an input noise vector sampled
from a fixed Gaussian distribution. Moreover, we maximize
the entropy of plan to improve exploration and robustness.
The augmented objective function is formulated as:

max
ψ,φ

T∑
t=1

E(st,pt,at)∼ρ(κ,π)
[rt(st,pt,at) + αH(κψ(·|st))] .

where α is the temperature and ρ(κ,π) is a trajectory distri-
bution under κψ(pt|st) and πφ(at|pt).

Learning Planner and Critic
Different from conventional RL algorithms, the critic Qθ
evaluates plan pt instead of action at. since learning a low-
dimensional plan in the DIR problem is easier and more
effective. Specifically, the low-dimensional plan is concate-
nated to the downsampled vector of the critic and outputs

soft Q function Qθ(st,pt) which is an estimation of the cur-
rent state plan value, as shown in Figure 1.

When the critic is used to evaluate the planner, the re-
wards and the soft Q values are used to iteratively guide the
stochastic policy improvement. In the evaluation step, fol-
lowing SAC (Haarnoja et al. 2018), SPAC learns a policy
κψ (planner) and fits the parametric Q-function Qθ(st,pt)
(critic) using transitions sampled from the replay pool D by
minimizing the soft Bellman residual:

JQ(θ) =

E(st,pt)∼D

[
1

2

(
Qθ(st,pt)−

(
rt + γEst+1

[Vθ̄(st+1)]
))2
]
,

where Vθ̄(st) = Ept∼κψ [Qθ̄(st,pt)− α log κψ(pt|st)]. We
use a target network Qθ̄ to stabilize training, whose param-
eters θ̄ are obtained by an exponentially moving average
of parameters of the critic network (Lillicrap et al. 2015):
θ̄ → τθ + (1− τ)θ̄. The hyper-parameter τ ∈ [0, 1]. To op-
timize the JQ(θ), we can do the stochastic gradient descent
with respect to the parameters θ as follows,

θ = θ − ηQOθQθ(st,pt)
(
Qθ(st,pt)− rt

− γ [Qθ̄(st+1,pt+1)− α log κψ(pt+1|st+1)]
)
.

(6)

Since the critic works on the planner, the optimization pro-
cedure will also influence the planner decisions. Following
(Haarnoja et al. 2018), we can use the following objective to
minimize the KL divergence between the policy and a Boltz-
mann distribution induced by the Q-function,

Jκ(ψ) =Est∼D
[
Ept∼κψ [α log(κψ(pt|st))−Qθ(st,pt)]

]
=Est∼D,εt∼N (µ,σ)

[
α log(κψ(fψ(εt, st)|st))

−Qθ(st, fψ(εt, st))
]
.

The last equation holds because pt can be evaluated by
fψ(εt, st) as we discussed before. It should be mentioned
that the hyperparameter α can be automatically adjusted by
using one proposed method from (Haarnoja et al. 2018).
Then we can apply the stochastic gradient method to opti-
mize parameters as follows,

ψ =ψ − ηψ
(
Oψα log(κψ(pt|st))+(

Optα log(κψ(pt|st))− OptQθ(st,pt)
)
Oψfψ(εt, st)

)
.

(7)

Learning Planner and Actor with Unsupervised
Registration
After getting action at and following meta policy (κψ, πφ),
we can obtain Ωtψ,φ based on Eq.(2). We learn the similar-
ity of appearance between the fixed image and the warped
image using local normalized cross-correlation (NCC) (Bal-
akrishnan et al. 2018):G(IF , IMt

) = NCC(IF , IM◦Ωtψ,φ).
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Figure 3: Left: The plot box of Dice scores over 9 fixed digits. Center: Step-wise comparison of our method and VoxelMorph
(VM) (Balakrishnan et al. 2018). Right: Visual comparison of our method with VM. The scaled and rotated digits are trans-
formed to other fixed digits. The Deformation Filed (DF) column shows the visualized deformable fields of our method.

Algorithm 1: Stochastic Planner-Actor-Critic
Input: IF , IM , UF , UM , replay pool D
Init: ψ, φ, θ, θ̄, D and environment E
for each iteration do

for each environment step do
pt ∼ κψ(pt|st), at ∼ πφ(at|pt)
st+1, rt ∼ U(st+1|st,pt,at)
D = D ∪ {(st,pt,at, rt, st+1)}

end
for each gradient step do

Sample from D
Update θ, ψ, φ with Eq.(6), Eq.(7), Eq. (8)

end
end

A higher value of the NCC indicates a better alignment.
In order to generate realistic warped images, we use a to-
tal variation regularizer (Rudin, Osher, and Fatemi 1992)
to smooth the deformation field on its spatial gradients:
R(Ωtψ,φ) = ‖∇Ωtψ,φ‖22 . The final registration loss Jreg is
defined as

Jreg(ψ, φ) =Est∼D[−NCC(IF , IM ◦ Ωtψ,φ) + λ‖∇Ωtψ,φ(st)‖22].

We can update ψ and φ from the planner and the actor by
performing the following steps:

ψ = ψ − ηOψJreg(ψ, φ), φ = φ− ηOφJreg(ψ, φ) (8)

The pseudo-code of optimizing SPAC is described in Algo-
rithm 1. All parameters of SPAC are optimized base on the
samples from replay pool D.

Experiments
Experimental Settings
Datasets. We evaluate our method on three types of im-
ages: MNIST digits, 2D brain MRI scans, and 3D liver CT
scans. MNIST (LeCun et al. 1998) is regarded as a stan-
dard sanity check for the proposed registration method. The

goal is to transform between two different 28×28 images of
handwritten digits. In testing, we fixed ten digits from 0 to 9
as the atlases, and select 1000 randomly scaled and rotated
digits as moving images to be aligned with the atlas.

The 2D brain MRI training dataset consists of 2302
pre-processed 2D scans from ADNI (Mueller et al. 2005),
ABIDE (Di Martino et al. 2014) and ADHD (Bellec et al.
2017). The evaluation dataset uses 40 pre-processed slices
from LONI Probabilistic Brain Atlas (LPBA) (Shattuck
et al. 2008), each of which contains a segmentation ground
truth of 56 manually delineated anatomical structures. All
images are resampled to 128× 128 pixels. The first slice of
LPBA is served as the atlas, and all the remaining images
are used as the moving image. For 3D registration, we use
Liver Tumor Segmentation (LiTS) (Bilic et al. 2019) chal-
lenge data for training, which contains 131 CT scans with
the segmentation ground truth manually annotated by ex-
perts. The SLIVER (Heimann et al. 2009) dataset has 20
scans with liver segmentation ground truth. We divide them
into 10 pairs as the regular testing data. We also evaluated
our method on the challenging Liver Segmentation of Pigs
(LSPIG) (Zhao et al. 2019) dataset, which contains 17 paired
CT scans from pigs, along with liver segmentation ground
truth. All 3D volumes are resampled to 128 × 128 × 128
pixels and pre-affined as standard pre-processing steps.

Baselines. This work focus on unsupervised deformable
registration. We compare our method with several deep
learning based image registration (DLIR) methods:
VoxelMorph (VM) (Balakrishnan et al. 2019), VM-
diff (Dalca et al. 2019), SYMNet (Mok and Chung 2020),
R2N2 (Sandkühler et al. 2019) and RCN (Zhao et al. 2019).
VM employs a U-Net structure with NCC loss to learn
deformable registration, and VM-diff is a probabilistic
diffeomorphic variant of VM. SYMNet is a state-of-the-art
single-pass 3D registration method. R2N2 and RCN are
sequence-based methods for 2D and 3D registration,
respectively. To illustrate the effectiveness of the proposed
method, we use the same network structure as VM. We also
compare with two top-performing conventional registration
algorithms, SyN (Avants et al. 2008) and Elastix (Klein et al.
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Method 2D Registration 3D Registration
LPBA Time(s) #Params SLIVER LSPIG Time(s) #Params

SyN (Avants et al. 2008) 55.47±3.96 4.57 - 89.57±3.34 81.83±8.30 269 -
Elastix (Klein et al. 2009) 53.64±3.97 2.20 - 90.23±2.39 81.19±7.47 87.0 -
LDDMM (Beg et al. 2005) 52.18±3.48 3.27 - 83.94±3.44 82.33±7.14 41.4 -
VM (Balakrishnan et al. 2019) 55.36±3.94 0.02 105K 86.37±4.15 81.13±7.28 0.13 356K
VM-diff (Dalca et al. 2019) 55.88±3.78 0.02 118K 87.24±3.26 81.38±7.21 0.16 396K
R2N2 (Sandkühler et al. 2019) 51.84±3.30 0.46 3,591K - - - -
RCN (Zhao et al. 2019) - - - 89.59±3.18 82.87±5.69 2.44 21,291K
SYMNet (Mok and Chung 2020) - - - 86.97±3.82 82.78±7.20 0.18 1,124K
SPAC (t=20, SSIM reward) 56.43±3.76 0.16 107K 90.27±3.85 83.69±6.74 1.05 458K
SPAC (t=1, Dice reward) 55.21±3.55 0.02 107K 84.81±4.42 80.61±7.94 0.07 458K
SPAC (t=10, Dice reward) 56.12±3.68 0.08 107K 90.01±3.79 84.67±6.05 0.55 458K
SPAC (t=20, Dice reward) 56.57±3.71 0.16 107K 90.28±3.66 84.40±6.24 1.05 458K

Table 1: Dice score (%) results of our SPAC (t indicates the t-th step) with other methods over all datasets. The running times
of 3D registration is test on SLIVER dataset. Note that R2N2 works only for 2D registration. The official RCN and SYMNet
are implemented only for 3D registration.

Fixed Moving GT

OursRCN

Elastix

VM-diff SYMNet

SyN

LDDMM

Figure 4: Visual results of our SPAC with other methods on
3D liver dataset. The warped moving image obtained by our
SPAC is closer to the ground truth.

2009) with B-Spline (Rueckert et al. 1999). In addition, we
provide the result of using SSIM as the reward function. We
use Dice score as the evaluation metric.

Experimental Results
MNIST Digits Transform. Figure 3 shows the represen-
tative results and average Dice scores on MNIST digits
transforms. In testing, the moving images are randomly
scaled and rotated, which results in a larger and more chal-
lenging deformation field. Our method outperforms VM
over all kinds of digits with significant improvements quan-
titatively and qualitatively, which also demonstrates that the
proposed method has better generalizability and can work
well on image pairs with large deformations.

Medical Image Registration. Table 1 summarizes the
performance of our method with other state-of-the-art meth-
ods. The SPAC outperforms other methods over all 2D and
3D datasets. Moreover, the LSPIG dataset has large defor-
mation fields and is quite different from the training dataset
(LiTS) in structure and appearance. The quantitative re-
sults on LSPIG illustrate that our framework works well
in large deformation dataset and has better generalizability
than other conventional DL-based methods. Note that our
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Figure 5: Step-wise registration results overall datasets. The
RL-based methods (Our SPAC and PPO) perform more sta-
ble than other DL-based methods, and our SPAC achieved
the best performance.

method performs registration in a step-wise manner, which
results in a slower speed than most one-step methods such as
VM and SYMNet. But SPAC is still faster than other multi-
step methods such as R2N2 and RCN. The SSIM reward
based SPAC achieve good result on SLIVER but performs
worse on LSPIG dataset compared with Dice reward based
SPAC . We visualized an example of registration results on
the LSPIG dataset by overlaying the warped moving seg-
mentation map on the fixed image in Figure 4. The result
shows that our model successfully learns registration even
with a challenging, large deformation. The SPAC exceeds
the performance of another step-wise method RCN, which
demonstrates the effectiveness of our framework.

Analysis
Step-wise registration. The key idea of our method is to
decompose the monolithic registration process into small
steps by a lighter-weight CNN and progressively improves
the transformed results. Figure 6 shows an example of step-
wise registration process. The deformation fields visualized
on the upper row illustrate that our method predicts trans-
formation from coarse to the local refines step by step. We
compared our method with PPO (Schulman et al. 2017) and
other DL-based methods using step-wise registration in Fig-
ure 5. As the registration step increases, the performance of
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Figure 6: A step-wise registration example of our method on the LPBA dataset. Top row is the visualized displacement field,
where deep color represents a large deformation. The Dice score (red) keeps increasing along the steps.

Figure 7: Learning curves of several RL-based methods on
LPBA dataset.

DL-based methods gets worse, while the RL-based methods
are more stable. The Dice score of SPAC is increasing all
the time on LPBA and SLIVER datasets.

Compare with other RL methods. To demonstrate our
method in the reinforcement learning side. We modify our
framework with other popular RL algorithms such as PPO
(Schulman et al. 2017) and DDPG (Lillicrap et al. 2015)
in Planner-Critic learning process. Moreover, we compare
with the method discarding DL-based unsupervised regis-
tration loss (SPAC w/o Reg). The qualitative result of PPO-
modified is shown in Table 2. The training curves of each
method are shown in Figure 7. Our SPAC achieves batter
performance than PPO. And the DDPG which uses deter-
ministic policy is failed to convergence. The results also in-
dicate that the RL agent can hardly deal with the DIR prob-
lem without unsupervised registration loss.

Ablation Experiments. We study the effect of some im-
portant settings in our framework, such as reinforcement
learning, unsupervised registration learning, and evaluating
plan with the critic. Note that in the settings without us-

LPBA SLIVER LSPIG

PPO-modified 55.82±3.49 89.30±3.63 83.55±6.24
SPAC-action 55.58±3.70 88.75±3.69 81.80±7.51
SPAC w/o RL 54.89±3.80 85.43±4.14 80.72±7.34
SPAC w/o Reg 44.67±3.74 79.34±4.02 72.45±6.25
SPAC 56.57±3.71 90.28±3.66 84.40±6.24

Table 2: Dice score (%) over several variants of our methods.
‘SPAC-action’ indicates that the critic evaluates the actor’s
action instead of planner in SPAC.

ing registration loss, we evaluate the deformation field as
the only action, and both the planner and actor are trained
with the RL objective. As summarized in Table 2, the re-
sult is unsatisfactory if we train SPACwithout reinforcement
learning, and it becomes worse if the training discards un-
supervised registration loss. Critic evaluates actor’s action
(SPAC-action) results in an inferior performance compared
with the SPAC (critic evaluates planner).

Conclusion

In this paper, a step-wise registration network based on rein-
forcement learning is proposed to handle large deformation
problem which is especially observed in soft tissues. This
method, SPAC, an off-policy actor-critic model, can effi-
ciently learn good policies in spaces with high-dimensional
continuous actions and states. Central to SPAC is the pro-
posed component ‘plan’ which is defined in latent subspace
and can guide the actor to generate high-dimensional ac-
tions. To the best of our knowledge, we are the first to pro-
pose a pure RL model to deformable medical image registra-
tion. Experiments based on diverse medical image datasets
demonstrate that this architecture achieves significant gains
over state-of-the-art methods, especially for the case with
large deformations. With the superiority of good perfor-
mance, we expect that the proposed architecture can poten-
tially be extended to all deformable image registration tasks.
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