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Abstract
As a popular deep neural networks (DNN) compression tech-
nique, knowledge distillation (KD) has attracted increasing
attentions recently. Existing KD methods usually utilize one
kind of knowledge in an intermediate layer of DNN for clas-
sification tasks to transfer useful information from cumber-
some teacher networks to compact student networks. How-
ever, this paradigm is not very suitable for semantic segmen-
tation, a comprehensive vision task based on both pixel-level
and contextual information, since it cannot provide rich in-
formation for distillation. In this paper, we propose a novel
multi-knowledge aggregation and transfer (MKAT) framework
to comprehensively distill knowledge within an intermediate
layer for semantic segmentation. Specifically, the proposed
framework consists of three parts: Independent Transform-
ers and Encoders module (ITE), Auxiliary Prediction Branch
(APB), and Mutual Label Calibration (MLC) mechanism,
which can take advantage of abundant knowledge from in-
termediate features. To demonstrate the effectiveness of our
proposed approach, we conduct extensive experiments on three
segmentation datasets: Pascal VOC, Cityscapes, and CamVid,
showing that MKAT outperforms the other KD methods.

Introduction
Semantic segmentation is a crucial and challenging vision
task, which aims to assign a semantic category to each pixel
in an image. With the spectacular advances of deep neu-
ral networks, semantic segmentation has achieved signifi-
cant progress and shown great potential in many practical
applications, such as autonomous driving (Levinson et al.
2011; Huang et al. 2018), scene understanding (Xiao, Si-
gal, and Jae Lee 2017; Sigurdsson et al. 2020), and image
editing (Morel, Petro, and Sbert 2012). The DNN-based seg-
mentation methods, e.g., FCN (Long, Shelhamer, and Darrell
2015), SegNet (Badrinarayanan, Kendall, and Cipolla 2017),
RefineNet (Lin et al. 2017), DeepLab (Chen et al. 2015,
2017a,b), and PSPNet (Zhao et al. 2017), have achieved
remarkable performance but bear up the problems of cumber-
some architectures and expensive computation. This prevents
the segmentation networks from running on mobile or edge
devices, limiting the development of numerous practical ap-
plications in the mobile internet era. To tackle the problems,
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Figure 1: Comparison of the (a) conventional KD methods
and (b) our MKAT framework.

the workflow of compressing a cumbersome network to a
compact network is often leveraged.

In this paper, we investigate knowledge distillation (Hinton,
Vinyals, and Dean 2015), a popular model compression way
in classification tasks (Deng et al. 2009) through transferring
knowledge from a cumbersome teacher network to a compact
student network. Thanks to the simplicity of classification,
which aims to distinguish the classes through image-level
features, existing KD methods (Zagoruyko and Komodakis
2017; Yim et al. 2017; Park et al. 2019; Peng et al. 2019;
Chung et al. 2020) could efficiently train the compact student
network depending on certain knowledge. Numerous distil-
lation methods have been developed and various kinds of
knowledge are available. The selection of distillation strate-
gies and knowledge is usually empirical, and nobody could
guarantee which strategy is the best for a specific task without
experiments (Ji and Zhu 2020; Menon et al. 2020). Different
from classification, semantic segmentation is a high-level and
comprehensive vision task, in which not only the extracted
features but also the contextual relationships parameterized
by the networks are critical for pixel prediction in a full image.
Hence, the student learning a single type of knowledge from
a teacher network’s layer is far from enough in segmentation
task. Although there are tiny methods distilling knowledge
from multiple teachers to supervise the student in classifi-
cation (You et al. 2017; Zhu, Gong et al. 2018; Liu, Zhang,
and Wang 2020), they also only consider a single knowledge
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form, mainly the soft labels. Besides, the multi-teacher KD
methods are very limited due to the dilemma of informa-
tion combination, and more cumbersome teacher networks
cause more computation and storage cost. It’s even impossi-
ble to deploy multi-teacher KD methods for segmentation,
within which the DNNs are expensive to perform inference.
To better explain the necessity of knowledge aggregation for
segmentation distillation learning, we introduce an example
about the physics curriculum learning. As we all know, the
physics curriculum mainly consists of optics, thermodynam-
ics, electricity, magnetism, mechanics, etc. If a student only
learns the knowledge of optics from one or more excellent
physics teachers, he still cannot solve the comprehensive elec-
tromagnetic problems in an exam. So an outstanding student
is supposed to learn as comprehensive knowledge as possible,
analogously in distillation learning.

To cope with the above issues, we carefully design a
general multi-knowledge aggregation and transfer (MKAT)
framework to leverage multiple types of heterogeneous
knowledge distilled from the teacher backbone to boost the
student comprehensively. Due to different kinds of knowl-
edge may be in various shapes and feature spaces, e.g., gram
matrix (Yim et al. 2017) and correlation matrix (Peng et al.
2019), we develop independent transformers and encoders
(ITE) modules both for the teacher and student to transform
these heterogeneous knowledge into a consist shape. And a
siamese auxiliary prediction branch (APB) is introduced to
agglomerate the comprehensive knowledge and reconstruct
the semantic features with the supervision of the teacher net-
work. Moreover, APB creates a proxy online learning (POL)
environment to improve the student with less computation,
making the student learn from the teacher step-by-step and
mitigating the big gap between two models. In addition, to
leverage the knowledge from the soft labels generated by
the teacher network and avoid conflicts with intermediate
knowledge, we present a mutual label calibration (MLC)
mechanism to assist the learning of the student and APB. We
conduct a detailed ablation study to verify the effectiveness
of each component in our MKAT framework.

The overall contributions of this paper are summarized as
follows:

• We propose a novel multi-knowledge aggregation and
transfer (MKAT) framework for semantic segmentation.
To our best knowledge, it represents the first effort to
exploit multiple knowledge from one intermediate layer
for distillation.

• Two independent transformers and encoders (ITE) mod-
ules and a siamese auxiliary prediction branch (APB)
are developed to distill and aggregate the heterogeneous
knowledge.

• Based on APB, we introduce the proxy online learning
(POL) and mutual label calibration (MCL) mechanisms
to boost the performance of student networks.

• Extensive experiments are conducted on three image seg-
mentation datasets and our proposed approach outper-
forms the state-of-the-art methods.

Related Work
Semantic Segmentation. Semantic segmentation is a foun-
dational but challenging vision task, and has achieved re-
markable results thanks to the rapid development of fully
convolutional networks. Various works such as FCN (Long,
Shelhamer, and Darrell 2015), DeepLab (Chen et al. 2015,
2017a,b) and PSPNet (Zhao et al. 2017), always exploit so-
phisticated backbone networks (e.g., ResNet (He et al. 2016),
DenseNet (Huang et al. 2017)) to learn discriminative feature
representations for dense prediction. And exploiting multi-
scale context also benefits segmentation, for example, atrous
convolution (Chen et al. 2015, 2017a,b), pyramid pooling
module (Zhao et al. 2017), context encoding (Yu et al. 2020),
etc, has been developed in recent years. However, these ap-
proaches always involve unbearable storage or expensive
computation for mobile applications.

Meanwhile, designing highly efficient segmentation net-
works attracts much attention from the community. In addi-
tion to adopting some lightweight feature extraction networks
(e.g., MobileNet (Sandler et al. 2018), ShuffleNet (Ma et al.
2018)), most works pay attention to explore efficient con-
volutional segmentation architectures (e.g., ENet (Paszke
et al. 2016), ERFNet (Romera et al. 2017), ESNet (Lyu et al.
2019)). With the proliferation of mobile applications, the
demand for efficient segmentation increases, and knowledge
distillation is a potential way.

Knowledge Distillation. As a popular model compres-
sion (Ba and Caruana 2014) paradigm, knowledge distilla-
tion (KD) (Hinton, Vinyals, and Dean 2015; Wang and Yoon
2020) has made significant progress in visual classification,
mainly through distilling probability soft targets (Park et al.
2019; Sarfraz, Arani, and Zonooz 2019; Xie et al. 2020;
Zhang et al. 2020) or intermediate features (Zagoruyko and
Komodakis 2017; Huang and Wang 2017; Tung and Mori
2019; Heo et al. 2019). More and more applications are aris-
ing, including object detection (Dai et al. 2021; Guo et al.
2021), person re-identification (Wu et al. 2019; Porrello,
Bergamini, and Calderara 2020), pose estimation (Weinza-
epfel et al. 2020; Zheng et al. 2021) and so on.

However, all the above KD methods only pay attention to
single intermediate knowledge or just jointly exploit soft la-
bels and intermediate feature maps. Though some researchers
propose to distilling knowledge from multiple teachers (You
et al. 2017; Liu, Zhang, and Wang 2020), they mainly collect
one kind of knowledge, i.e., soft labels, and do not apply to
complex tasks due to the huge computation of teachers.

There are tiny KD methods for segmentation (Liu et al.
2019; He et al. 2019), in which Liu et al. (Liu et al. 2019) pre-
sented two structured knowledge distillation schemes, pair-
wise distillation and holistic distillation, while He et al. (He
et al. 2019) optimized the feature similarity with adaptive
auto-encoder to handle the inconsistency between the fea-
tures of the student and teacher network. In fact, the pair-wise
and pixel-wise knowledge introduced by Liu et al. (Liu et al.
2019) or the adaptation mechanism (He et al. 2019) can
be regarded as a special form under our MKAT framework.
They notice structured information, but ignore the diversity
of knowledge in feature maps, which is critical for dense
prediction tasks like semantic segmentation.
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Figure 2: Overview of our proposed framework.

Proposed Approach
Preliminaries and Motivation
Semantic Segmentation is a densely pixel-level prediction
task for each RGB image X ∈ R3×H×W with C categories,
and the soft targets distillation loss for segmentation can be
formulated as:

Lkl(P
s, P t) =

HW∑
i

DKL

(
softmax(P s

i /τ)||softmax(P t
i /τ)

)
,

(1)
where P s, P t ∈ RC×H×W are the prediction maps out-

put by student S and teacher T respectively, DKL is the
Kullback-Leibler (KL) Divergence, and τ is the distillation
temperature. P s and P t are given as: P s = S(X;θs) , P t =
T (X;θt), where θs and θt are the parameters of the student
and teacher networks. Usually, only θs is learnable while θt

is fixed in distillation learning.
Meanwhile, the intermediate features based distillation

aims to transfer the high-level information extracted from a
teacher’s layers to a student. Various intermediate knowledge
forms are available as summarized in Table 1, and they are
with different shapes and representation spaces. Moreover,
different knowledge forms express information in different
perspectives. For instance, the similarity matrix (Tung and
Mori 2019) measures the similarity among pixels in the im-
age, Gram matrix (Yim et al. 2017) establishes the association
between feature channels and conveys the style of the image,
and channel and spatial attention maps represent the long-
range dependence among pixels on the channel and space
respectively. To take advantage of various useful informa-
tion for segmentation, we propose the MKAT framework as
shown in Figure 2.

Method Knowledge Form Shape
AT Feature Norm H ′ ×W ′

AFD Feature Norm C ′ ×H ′ ×W ′

SP Similarity Matrix C′ ×H ′(W ′)×H ′(W ′)
FSP Gram Matrix C ′ × C ′

CAD Channel Attention C ′ × C ′

SAD Spatial Attention H ′W ′ ×H ′W ′

Table 1: Six kinds of knowledge adopted in our framework.
C ′,H ′ and W ′ are the channel, width and height of the feature
maps, respectively.

Knowledge Aggregation

We denote the knowledge set distilled from the feature
maps output by the backbone of the teacher segmenta-
tion network as Ωt = {Kt

1,K
t
2, · · · ,Kt

n}, while Ωs =
{Ks

1 ,K
s
2 , · · · ,Ks

n} is from the student network. n is the
number of the employed knowledge, and different knowl-
edge forms are in different sizes and representation spaces
as listed in Table 1. To transfer them to a unified feature
space and preserve the specific information, we propose the
independent transformers and encoders (ITE) module for a
teacher and a student respectively. It is noteworthy that the
teacher and student backbones with different architectures
(e.g., ResNet (He et al. 2016) and MobileNet (Sandler et al.
2018)) may output feature maps in inconsistent sizes, which
causes the inconsistency of aggregating knowledge between
the teacher and student, and an adaptive average pooling layer
can optionally be employed following the teacher’s backbone
before ITE. In addition, the inconsistent channels of the fea-
ture maps can be ignored, because our ITE will transform the
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distilled knowledge by channel dimension.
Firstly, we define a series of transform operations

{Transi(·)|i ∈ {1, 2, · · · , n}} to transform all kinds of
knowledge maps in Ωt and Ωs to the same width and height,
i.e., H ′ and W ′, which is written as the following:

K̂t
i = Transi(K

t
i ) , K̂

s
i = Transi(K

s
i ) , (2)

in which K̂t
i and K̂s

i are the transformed knowledge matri-
ces from teacher and student respectively. Each Transi(·)
works for a kind of knowledge Ki, and if the Ki has been
in the target size, Transi(·) will do nothing, such as fea-
ture normalization maps (Zagoruyko and Komodakis 2017;
Wang et al. 2019). And other transform operations mainly
work through multiplying the extracted knowledge matrix
Ki and the reshaped original feature maps following (Liu,
Zhang, and Wang 2021). Specifically, for the similarity matrix
(SP) (Tung and Mori 2019), which could be in two different
shapes, the Transi(·) works by adding the two results of the
above multiplications.

Then, each transformed knowledge matrix K̂i will be pro-
jected into a latent space f i by the encoder Ei(K̂i;θi) with
learnable parameters θi. In order to preserve information, the
encoders only involve spatial transformation through a pro-
jection layer. We denote the encoders on the side of teacher
or student as

f t
i = Et

i (K̂
t
i ;θ

te
i ) = relu(norm(conv1×1(K̂

t
i ;θ

te
i ))) ,

fs
i = Es

i (K̂
s
i ;θ

se
i ) = relu(norm(conv1×1(K̂

s
i ;θ

se
i ))) ,

(3)

in which f t
i,f

s
i are the latent knowledge output by encoder

Et
i , Es

i with learnable parameters θte,θse, respectively. The
encoders all only consist of a 1×1 convolution layer, followed
by a batch normalization layer and ReLU function.

At last, we collect and stack the latent knowledge f t
i,f

s
i

from the teacher and student respectively, obtaining two com-
prehensive knowledge matrices F t and F s

i :

F t = [f t
1,f

t
2, · · · ,f

t
n] , F

s = [fs
1,f

s
2, · · · ,f

s
n] . (4)

But in this situation, there is lack of learning objective
for the ITE modules and the stacked knowledge needs to be
associated and amalgamated. To cope with these challenges,
we present an elegant solution by introducing an auxiliary
prediction branch consisting of two decoders and a shared
auxiliary head.

Auxiliary Prediction Branch
Although comprehensive knowledge matrices are distilled
and transformed by ITEs, each latent knowledge is indepen-
dent. To aggregate the stacked latent knowledge, we conduct
two unified decoders following the ITEs respectively, which
are similar to the encoders in architectures. Through a 1× 1
convolution layer, the decoder can project the comprehensive
knowledge to a unified feature space, achieving knowledge
aggregation. We denote the two decoders as:

At = Dt(F t;θtd) = relu(norm(conv1×1(F
t;θtd))) ,

As = Ds(F s;θsd) = relu(norm(conv1×1(F
s;θsd))) ,

(5)

in which At,As are the aggregate knowledge matrices out-
put by decoders Dt,Ds with learnable parameters θtd,θsd
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Figure 3: Vanilla online and our POL mechanism.

respectively. It is worth mentioning that the parameters of the
encoders and decoders are very small, and only tiny amount
of computation is added compared with the segmentation
network.

With these insights, we can establish the distillation loss
based on knowledge aggregation:

Lka(A
s,At) =

∣∣∣∣As −At
∣∣∣∣
1
. (6)

The loss function for student network is given as follows,

LS = Lce(P
s, Y ) + αLka(A

s,At) , (7)

where Lce is the cross entropy loss, α is the coefficient.
Now, we have addressed the knowledge aggregation chal-

lenge, but a new issue has arisen — the learnable encoders
and decoders in the teacher side need a training objective
to preserve and aggregate different knowledge. Hence, we
employ a fully-convolutional auxiliary head H following the
decoders, which usually works as classifier on the top of
segmentation network, such as PSPNet (Zhao et al. 2017),
DeepLab (Chen et al. 2015, 2017a,b). In this way, the com-
prehensive knowledge is involved in the segmentation task
through the auxiliary prediction branch (APB) and all the
ancillary components could update via gradient descent. The
prediction map Pht from the teacher side output by APB
is denoted as Pht = H(At;θh), where At is the aggregate
knowledge matrix from the teacher and θh is the parameters
of the auxiliary head. APB learns from not only the ground
truth, but also the soft labels from the teacher network. The
loss function of APB or auxiliary head is given as follows:

LH = Lce(P
ht, Y ) + βLkl(P

ht, P t) , (8)

in which β is a hyperparameter for balancing the cross en-
tropy and KL loss.

With the assistance of APB, all kinds of the distilled knowl-
edge are transformed and aggregated for a common objective,
making the knowledge aggregation and transfer more reliable.
Moreover, the lightweight APB and ITE on the teacher side
bring an additional benefit for the student network learning
— it creates a proxy online learning (POL) environment with
lightweight components for the student network, shown in
Figure 3. Online learning (Zhao et al. 2020; Yang et al. 2019;
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Xie et al. 2019) is an efficient distillation strategy by guiding
the student step-by-step with less gaps. However, the vanilla
online learning methods (Zhao et al. 2020; Yang et al. 2019;
Xie et al. 2019) require the cumbersome teacher network up-
dating parameters synchronously, the Achilles’ heel of which
is the expensive memory and computation. Our POL mecha-
nism could guide the student with Lka step-by-step via only
updating the lightweight components.

Mutual Label Calibration
Following previous distillation methods (Ahn et al. 2019; Liu
et al. 2019; Chung et al. 2020), we also attempt to enhance
the performance by leveraging soft labels information ex-
cept intermediate features. However, the offline soft targets
learning is inconsistent with the online knowledge aggrega-
tion learning and degrades the performance unexpectedly, as
shown in Table 5. Specifically, the student is supposed to
learn from the gradually updated and aggregated knowledge
(or in POL), while the additional soft labels are ultimate and
fixed (or for offline learning). To tackle the problem, we pro-
pose a mutual label calibration (MLC) algorithm, adopting
the extra prediction map Phs output by the siamese auxiliary
head forward on the student side.

Phs = H(As;θh) , (9)

where As is the aggregate knowledge from the student output
by Ds. To separate the pixels predicted correctly guided by
the aggregate knowledge, a calibration mask map M c is
computed by:

M c
i =

{
1 , if ϕ(Phs

j ) = ϕ(Pht
j ) and ϕ(Pht

j ) = Yj

0 , otherwise ,
(10)

where j ∈ {1, 2, · · · , HW} is the pixel index, Y is the
ground truth and ϕ(·) is the label generation function with
the prediction maps output by segmentation networks, e.g.,
argmax. Meanwhile, the complementary map of M c is
Mr = 1−M c. For the student, it’s supposed to learn from
the soft labels P t where the aggregate knowledge cannot
cover. Hence, the loss function of the student is rewritten as:

LS = Lce(P
s, Y ) + αLka(A

s,At)

+ βLkl(P
s ⊙Mr ⊕M c, P t ⊙Mr ⊕M c) ,

(11)

in which ⊙ is the Hadamard product, and ⊕ is the matrix
addition operation.

In addition, to promote the ITE and APB on the teacher
side to pay attention to the pixel-level soft labels that the
student ignores in soft labels learning, we reformulate the
calibrated loss function of the auxiliary head as:

LH = Lce(P
ht, Y )+βLkl(P

ht ⊙Mc ⊕Mr, P t ⊙Mc ⊕Mr) .
(12)

Training Pipeline
In distillation procedure, all the ancillary components, i.e.,
ITEs and APB, and the student network update parameters
synchronously. We update the ITE on the teacher side and
APB by minimizing the loss LH , and the gradients will be
backpropagated to θte by the following formulas:

∂LH

∂θte
i

=
∂(Lce + βLkl)

∂H(At;θh)

∂H(At;θh)

∂Dt(F t;θtd)

∂Dt(F t;θtd)

∂Et
i (K̂

t
i ;θ

te
i )

∂Et
i (K̂

t
i ;θ

te
i )

θte
i

, i ∈ {1, 2, · · · , n} . (13)

The student is trained by minimizing LS , and the n en-
coders and the decoder on the student side are updated by:

∂LS

∂θs =
∂Lce

∂S(X;θs)

∂S(X;θs)

∂θs + β
∂Lkl

S(X;θs)

∂S(X;θs)

∂θs

+ α

n∑
i

∂Lka

∂Ds(As;θsd)

∂Ds(As;θsd)

∂Es
i (K̂

s
i ;θ

se
i )

∂Es
i (K̂

s
i ;θ

se
i )

∂K̂s
i

∂K̂s
i

∂θs .

(14)

Note that the gradients of decoder Dt(·,θtd) and Dt(·,θsd)
have been calculated during backpropagating encoders
(Eq. 13) and student (Eq. 14), so we omit them in this section.

Experiments
Datasets
Pascal VOC 2012. It (Everingham and Winn 2011) contains
20 foreground object classes and an extra background class.
Following (Chen et al. 2017a; Zhao et al. 2017), we use the
additional annotation provided by (Hariharan et al. 2011),
resulting in 10,582 labeled images for training.

Cityscapes. Cityscapes (Cordts et al. 2016) is for urban
scene understanding and contains 30 classes with only 19
classes used for evaluation. It contains 2,975 fine annotation
images for training, 500 for validation, and 1,525 for testing.

CamVid. CamVid (Brostow et al. 2008) is an automotive
dataset, containing 367 training and 233 testing images, each
with 720 × 960 pixels. Methods are evaluated on the most
frequent 11 classes.

Implementation Details
Training setup. Our approach is implemented by PyTorch.
We employ DeelpLabV3 with ResNet101 as a teacher net-
work on Cityscapes, while DeelpLabV3 with ResNet50
for VOC and CamVid. The student networks are default
DeelpLabV3 architecture with compact backbones (i.e.,
ResNet18 or MobileNet). All the models are trained alone or
with different KD methods by mini-batch stochastic gradient
descent (SGD) with the momentum (0.9) and the weight de-
cay (0.0005) for 120 epochs. Following (Chen et al. 2017b),
we employ a poly learning rate policy where the initial learn-
ing rate is multiplied by (1− iter

total iters )
0.9 after each iteration.

And, the initial learning rate of the backbone and encoders
is set to 0.007 which is 0.1 times that of the auxiliary head
or classifier. The batch size is set to 8, but 4 when testing on
Cityscapes due to the super resolution. For data augmentation,
we apply random horizontal flipping and random cropping
(crop-size 513/768/540 for VOC/Cityscapes/CamVid) during
training. The hyperparameters {τ, β} are set to {6.0, 0.5} for
CamVid and {10.0, 0.5} for VOC/Cityscapes, respectively.
And α is chosen from [10,15], default by 10. The channel of
the latent knowledge is set to 256 in all the experiments.
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Method Type mIoU(%) #Params #FLOPs
ResNet50 Teacher 75.80 39.64M 51.29G
MobileNet Student 68.87

5.11M 22.24G

KL L 70.42
AT F 69.85

Hint F 69.00
AFD F 70.77
SP S 70.14

VID F,L 70.74
FSP S 69.59
SAD S 70.21
CAD S 69.20

mKD6 F,S,L 68.98
mKD3 F,S,L 69.75

mKD+KL F,S,L 68.87
Ours F,S,L 71.86

ResNet18 Student 69.38

15.90M 11.37G

KL L 70.45
MT3 L 71.54
KA F 71.11

SKD F,L 71.73
Ours F,S,L 72.42

Table 2: Comparison of different KD methods on VOC. The
symbols ‘F’, ‘S’ and ‘L’ denote different types of knowledge,
i.e., intermediate Feature, Structural relation and soft Label.

Metrics. We employ mean Intersection over Union (mIoU)
to measure the performance. Floating point operations
(FLOPs) and parameters (Params) are adopted to measure the
computation and storage cost of the segmentation networks.

Comparison with the State-of-the-Arts
Results on VOC. For the VOC dataset, we evaluate our ap-
proach on DeelpLabV3 with MobileNetV2 and ResNet18
backbones. The size of the two student networks are only
about 13% and 30% of the teacher respectively while the com-
putation are about 44% and 30% of the teacher. As shown
in Table 2, we compare our proposed approach with various
KD algorithms in different types, including intermediate fea-
ture based KD (Hint (Romero et al. 2015), AT (Zagoruyko
and Komodakis 2017), AFD (Wang et al. 2019), VID (Ahn
et al. 2019)), structural relation based KD (FSP (Yim et al.
2017), SP (Tung and Mori 2019)) and soft labels based KD
(KL (Hinton, Vinyals, and Dean 2015)). In addition to the
common KD methods, we also test the multi-teacher KD
method (You et al. 2017) and methods specific to segmenta-
tion tasks (KA (He et al. 2019), SKD (Liu et al. 2019), SAD
and CAD (Liu, Zhang, and Wang 2021)). ‘MT3’ (You et al.
2017) is the multi-teacher KD method with three teachers
with the same architecture. ‘mKD’ is implemented by simply
combining different distillation losses (default six, similar
to our MKAT) without knowledge aggregation, specifically,
‘mKD3’ indicates three distillation losses are employed. Our
approach can boost the performance of the students by about
3%, and outperform existing KD methods. However, simply
combining different distillation losses cannot take advantage
of all the knowledge, and the additional soft targets loss (KL)

Method
ResNet18 MobileNet ENet ERFNet
15.90M 5.11M 0.36M 2.07M

Student 67.77 71.61 60.14 67.68
KL 69.12 72.52 60.65 68.63
AT 69.54 72.40 60.67 68.19

Hint 68.97 71.98 60.91 68.71
AFD 68.95 72.26 61.36 68.95
SP 69.48 72.69 61.60 68.84

VID 69.58 72.90 61.77 69.96
FSP 68.84 72.35 60.86 68.71
SAD 69.17 72.71 61.88 69.08
CAD 68.54 72.54 61.49 68.83
MT3 69.49 72.83 61.38 68.82
KA 69.05 72.62 61.25 68.59

SKD 69.73 73.33 61.93 69.18
mKD6 69.31 73.05 61.44 68.79
mKD3 69.58 72.97 61.59 68.87
Ours 71.34 73.98 62.77 69.63

Table 3: Comparison of different KD methods on Cityscapes.

makes the results worse.
Results on Cityscapes. Table 3 lists the detailed quantita-

tive results of 4 architectures with different KD methods on
Cityscapes. For ResNet18, the original student yields 67.7%
mIoU, and our method amazingly boosts the performance
to 71.34% (3.57% improved). The two real-time segmenta-
tion architectures are improved by about 2 points with our
approach. More visualizations of results are presented in ap-
pendix. The multi-teacher method ‘MT3’ averages the soft
labels of three teachers to enhance the knowledge, but it costs
more computation and storage due to the employed cum-
bersome teacher networks. As for ‘mKD’ strategy, we find
it’s difficult to select and balance each distillation loss, and
the student cannot capture the relationships among various
knowledge and unify them.

Results on CamVid. We further carry out experiments on
CamVid to further verify the distillation ability of the pro-
posed MKAT on real autonomous driving dataset, as shown in
Table 4. We adopt two kinds of ResNet18-based segmentation
architectures: PSPNet (‘PSP-R18’) (Zhao et al. 2017) and
DeelpLabV3 (‘DP-R18’) (Chen et al. 2017b), both of which
are improved by about 2 points. In particular, the MobileNet
has only about 13% parameters of the teacher ResNet50, but
achieves more than 97% performance of ResNet50. More
visualizations of results on CamVid are available in appendix.

Ablation Study
We conduct three sets of ablation studies based on
DeelpLabV3 (with ResNet18) on Cityscapes and PSPNet
(with ResNet18) on CamVid.

Effectiveness of POL & MLC. We introduce the POL
and MLC mechanisms to guide the student learning and cali-
brate features and labels knowledge learning. To verify the
performance of them, we conduct experiments with different
settings on three datasets. As shown in Table 5, compared
with the online setup, the offline setup, which means adopting
well-trained and fixed ITEs and APB, could reduce at least
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Method #Params #FLOPs mIoU (%)
ENet 0.36M 5.54G 58.24
ESNet 1.66M 32.02G 66.58
ResNet50(teacher) 39.64M 128.15G 67.18
MobileNet 5.11M 56.40G 63.74
MobileNet(ours) 5.11M 56.40G 65.18
DP-R18 15.90M 28.39G 60.30
DP-R18(ours) 15.90M 28.39G 62.47
PSP-R18 12.92M 26.04G 60.22
PSP-R18(ours) 12.92M 26.04G 62.19

Table 4: The performance on the CamVid val set.

0.3% mIoU. And, the MLC, the part in the orange box in Fig-
ure 2, helps the student selectively learn from the teacher’s
soft labels and brings improvements of 0.3 ∼ 0.6 points. In
addition, when adopting the whole pixel-level soft labels of
each image from the teacher network (‘w/ KL’: replace MLC
with KL loss), it will cause serious damage to the perfor-
mance of the student, shown in the last column of the table.
This verifies the necessity of the MLC mechanism for a stu-
dent to take advantage of more comprehensive and consistent
knowledge. The MLC takes KA as premise, so we abandon
the ablation analysis of KA.

Dataset online offline w/o MLC w/ KL
Cityscapes 71.34 70.85 70.89 68.92

CamVid 62.19 61.90 61.82 60.12

Table 5: Ablation study of POL and MLC. The ‘online’ means
updating the student and other ancillary modules (i.e., ITE,
APB) synchronously, while the ‘offline’ means complying
distillation with pre-trained ancillary modules.

Different strategies of knowledge aggregation. In our
framework, there are six kinds of knowledge adopted, and
up to

∑6
i=1

(
i
6

)
combinations of them. Hence, it’s impossi-

ble to test all the combination strategies. Under the premise
of different amounts of knowledge, we randomly select 6
combinations for each strategy and average the test results,
as shown in Figure 4a. We can see that as the amount of
aggregate knowledge increases, the performance of our ap-
proach gradually improves on all three datasets. Meanwhile,
when the number of selected knowledge forms is less than
three, the performance level could be close to previous distil-
lation methods. It is worth noting that even under the same
knowledge amount setting, different choices may lead to big
differences. Even so, our framework can make full use of the
information by assembling as many kinds of knowledge as
possible, avoiding manual selection and combination.

The sensitivity of hyperparameters. The channel of each
latent knowledge directly affects the representation space,
which in turn affects the distillation effect. To study the sen-
sitivity of the hyperparameter m, we apply a hierarchy of
grids of different channels {64, 128, 256, 512, 1024}. Ex-
perimental results of the auxiliary head and student network
are shown in Figure 4b. Since the auxiliary head is trained
directly based on the teacher’s deep features, it has higher per-

1 2 3 4 5 6
strategy

60
62
64
66
68
70
72

m
Io
U VOC

CityScapes
CamVid

(a) aggregation strategy

64 128 256 512 1024
channel

69
70
71
72
73
74
75
76

m
Io
U

Aux
student
teacher

(b) latent channel

Figure 4: Training with different numbers of knowledge types
and channels.

formance. Generally, the more channels of the latent knowl-
edge, the stronger the ability to express various information,
but too many channels could lead to insufficient distillation.

Built upon the baseline, an additional ablation study on
other three hyperparameters α, β, and τ is shown in Figure 5.
For vanilla knowledge distillation, β and τ are critical for
soft labels learning. And in our approach, α is employed
for balancing the intermediate learning. After a simple grid
search optimizing for α and τ , we choose several groups
of them, and adjust the α various from 0.1 to 20. Under a
suitable setting of β and τ , α ∈ [10, 12] could stabilize the
performance at 61.5% ∼ 62.0% mIoU.
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Figure 5: Impacts of different hyperparameters on CamVid.

Conclusion
In this paper, we present a novel multi-knowledge aggre-
gation and transfer framework (MKAT) tailed for seman-
tic segmentation. Different from the existing KD methods,
MKAT explicitly distills multiple knowledge from a teacher’s
interminable layer to guide a student network at different per-
spectives. The proxy online learning (POL) and mutual label
calibration (MLC) mechanisms both are the additional bene-
fits brought by the auxiliary prediction branch, and can boost
the student network without specific design. MKAT achieves
comparable performance with state-of-the-art KD methods in
several benchmarks. In the future, we could consider utilizing
more kinds of knowledge and develop more efficient metric
methods between the aggregate knowledge. Moreover, it’s
meaningful to extend the proposed approach to other high-
level vision tasks, such as object detection (Guo et al. 2021)
and pose estimation (Zheng et al. 2021).
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