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Abstract

Human-Object Interaction (HOI) detection plays a core role
in activity understanding. As a compositional learning prob-
lem (human-verb-object), studying its generalization matters.
However, widely-used metric mean average precision (mAP)
maybe not enough to model the compositional generalization
well. Here, we propose a novel metric, mPD (mean Perfor-
mance Degradation), as a complementary of mAP to evalu-
ate the performance gap among compositions of different ob-
Jects and the same verb. Surprisingly, mPD reveals that pre-
vious state-of-the-arts usually do not generalize well. With
mPD as a cue, we propose Object Category (OC) Immu-
nity to advance HOI generalization. Concretely, our core idea
is to prevent model from learning spurious object-verb corre-
lations as a short-cut to over-fit the train set. To achieve OC-
immunity, we propose an OC-immune network that decou-
ples the inputs from OC, extracts OC-immune representations
and leverages uncertainty quantification to generalize to un-
seen objects. In both conventional and zero-shot experiments,
our method achieves decent improvements. To fully evaluate
the generalization, we design a new and more difficult bench-
mark, on which we present significant advantage. The code is
available at https://github.com/Foruck/OC-Immunity.

Introduction

Human-Object Interaction (HOI) detection recently attracts
enormous attention. It is generally defined as detecting
(human, verb, object) triplets (Chao et al. 2018) from still
images, which is a sub-task of visual relationship detec-
tion (Lu et al. 2016, 2018). It plays an important role in robot
manipulation (Hayes and Shah 2017), surveillance event de-
tection (Lu, Shi, and Jia 2013; Adam et al. 2008), trajectory
prediction (Sun et al. 2021; Sun, Jiang, and Lu 2020), video
understanding (Pang et al. 2020, 2021), etc.

Recently, impressive progress has been made in this
field (Li et al. 2019c; Hou et al. 2020; Peyre et al. 2019; Li
et al. 2020a), and the most widely-used metric mAP (mean
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Figure 1: Previous HOI learning methods usually generalize
poorly (a) on different object categories; (b) on test set with
different object category (OC) distributions. (a). mPD visu-
alization of VCL (Hou et al. 2020) on verb ride. Lower mPD
indicates better generalization. (b) Object category distribu-
tion and corresponding VCL mAP of different datasets Chao
et al. (2018); Li et al. (2020a, 2019b).

Average Precision) has reached an impressive level. How-
ever, the compositional generalization problem is still open:
they provide limited performance on test samples with the
same verbs but rarely seen or unseen object categories. To
illustrate this phenomenon more clearly, we propose a novel
metric to directly measure generalization in HOI learning,
named mPD (mean Performance Degradation). In detail,
for a given verb and its available objects, we compute the
relative performance gap between the best and the rest verb-
object compositions (i.e., the lower, the better). As illus-
trated in Fig. 1a, previous methods (Hou et al. 2020) usually
fail to achieve satisfying mPD, resulting in limited gener-
alization: polarized performances on datasets with diverse
object distributions, as shown in Fig. 1b.

Previous methods usually seek HOI generalization from
compositional learning (Hou et al. 2020; Bansal et al.
2020). A common way is to import novel objects via
language priors (Peyre et al. 2019; Wang et al. 2020;
Bansal et al. 2020) and model the similarity between seen
and unseen categories, then translate (verb-(seen), object-
(seen)) to (verb-(seen), object-(unseen)). This is intu-
itive but maybe not enough to process the enormous variety:
object categories are inexhaustible. Instead, we propose a
new perspective: object category (OC) immunity: the per-



formance gap among compositions of different objects for
the same verb is a kind of OC-related bias. Due to the im-
balanced verb-object distribution, models could learn spuri-
ous verb-object correlation as a shortcut to over-fit the train-
ing set. To avoid this, we prevent our model from relying
too heavily on OC information. This enables it to generalize
better to rare/unseen objects. In other words, we adopt OC-
immunity to trade-off between fitting and generalization.

In light of this, we propose a new HOI learning paradigm
to improve generalization. (1) We introduce OC-immunity,
with which the model could rely less on object category and
provide better performance for unfamiliar objects. In detail,
firstly, we disentangle the inputs of the multi-stream struc-
ture (Chao et al. 2018; Li et al. 2019¢) from object category.
Then, each stream would perform verb classification and
uncertainty quantification (Kendall and Gal 2017) concur-
rently, enabling them to avoid overconfidence when they do
not know. Thus, they are expected to be less confident about
their mistakes, which is meaningful when encountering un-
seen objects. (2) For object feature inherently holding cat-
egory information, we design an OC-immune method via
synthesizing object features of different categories as one
to mix the category information, thus mitigating the spuri-
ous verb-object correlations. Meanwhile, given the compo-
sitional characteristic of HOI, the prediction combination of
multi-stream is crucial. So we propose calibration-aware
unified inference to exploit the unique advantages of differ-
ent streams. That is, first calibrating streams separately by a
variant of Platt scaling (Platt et al. 1999) and then combin-
ing multi-prediction regarding uncertainty. (3) As an extra
benefit, uncertainty quantification provides an option to uti-
lize data without HOI labels, which can reduce bias and
advance generalization. For evaluation, we conduct exper-
iments on HICO-DET (Chao et al. 2018) under both con-
ventional (Chao et al. 2018) and zero-shot settings (Shen
et al. 2018; Hou et al. 2020), showing considerable improve-
ments. To further demonstrate the efficacy of our method,
we design a benchmark for HOI generalization, on which
impressive advantage is also achieved.

Our contribution includes: 1) We propose mean perfor-
mance degradation (mPD) to quantify HOI generalization.
2) Object category immunity is introduced to HOI learning
with a novel paradigm. 3) A novel benchmark is devised to
facilitate researches on HOI generalization. 4) Our proposed
method achieves impressive improvements for both conven-
tional and zero-shot HOI detection.

Related Works

HOI Learning: Large datasets (Chao et al. 2018; Gupta and
Malik 2015; Kuznetsova et al. 2020) have been released.
Meanwhile, many deep learning-based methods (Gkioxari
et al. 2018; Li et al. 2020a; Peyre et al. 2019; Hou et al.
2020; Li et al. 2020c; Fang et al. 2021a,b, 2018a) have been
proposed. Chao et al. (2018) proposed multi-stream frame-
work followed by subsequent works (Gao, Zou, and Huang
2018; Li et al. 2019¢c; Gao et al. 2020; Hou et al. 2020).
Qi et al. (2018) and Wang, Zheng, and Yingbiao (2020)
used graphical model to address HOI detection. Gkioxari
et al. (2018) estimated the interacted object locations. Gao,
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Zou, and Huang (2018) and Wan et al. (2019) adopted self-
attention to correlate the human, object, and context. Li et al.
(2019¢) modeled interactiveness to suppress non-interactive
pairs given human pose (Fang et al. 2017; Li et al. 2019a).
Li et al. (2020a) used 3D human information (You et al.
2021) to enhance HOI learning, while Hou et al. (2020) ex-
ploited the compositional characteristic of HOI. Also, some
works (Peyre et al. 2019; Kim et al. 2020; Zhong et al. 2020)
utilized the relationship between HOIs. Liao et al. (2020)
and Fang et al. (2018b) directly detected HOI pairs.
Zero-shot HOI Detection has become a new focus re-
cently (Shen et al. 2018; Bansal et al. 2020; Peyre et al.
2019; Hou et al. 2020; Wang et al. 2020). Shen (Shen et al.
2018) first proposed to factorize HOI into verb classification
and object classification. Some works (Bansal et al. 2020;
Peyre et al. 2019; Wang et al. 2020) utilized language prior
to reason about the relationship between objects for zero-
shot generalization. Hou et al. (2020) made use of the com-
positional characteristic of HOI to generate novel HOI types.
As described, most of them adopt object knowledge to rea-
son about objects, suffering from inexhaustibility.
Uncertainty Quantification models what a model does not
know. There has been increasing literature in uncertainty
estimation of deep learning models (Bishop et al. 1995;
Kendall and Gal 2017; Gal and Ghahramani 2016; Lee and
AlRegib 2020; Blundell et al. 2015; Lee et al. 2015). Some
methods (Bishop et al. 1995; Blundell et al. 2015) are based
on Bayesian Neural Network, estimating the distribution of
network parameters and producing Bayesian approximation
of epistemic uncertainty. MC-Dropout (Gal and Ghahramani
2016) sampled a discrete model from Bayesian parameter
distribution. Moreover, Kendall and Gal (2017) used direct
estimation for aleatoric uncertainty and MC-Dropout for
epistemic uncertainty. There has also been ensemble-based
methods (Lee et al. 2015) and gradient-based methods (Lee
and AlRegib 2020). In this paper, we adopt the aleatoric un-
certainty estimation in (Kendall and Gal 2017).
Calibration aims to improve the quality of the output con-
fidence of a model. Platt scaling (Platt et al. 1999) has been
shown effective while simple. In this work, we adopt Platt
scaling to calibrate the output probability of our model.

Method

In this section, we first formulate the proposed HOI gener-
alization metric. With the metric, our goal is improving gen-
eralization by introducing OC-immunity to HOI learning.
To this end, we modify the multi-stream structure (Li et al.
2019c; Chao et al. 2018) to realize OC-immunity by disen-
tangling the inputs and devising a new OC-immune learning
method. Furthermore, we utilize uncertainty quantification
to unify multi-stream concerning calibration.

Generalization Quantification in HOI

Generalization has been a central obstacle to HOI under-
standing. Though previous methods (Li et al. 2020a; Hou
et al. 2020) provide impressive results of mAP, the general-
ization performance is still limited in transfer experiments
and zero-shot settings (Hou et al. 2020; Bansal et al. 2020;
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Figure 2: Overview of our pipeline. We design a multi-stream structure facilitated with uncertainty quantification, then
calibration-aware unified inference unifies multi-stream into the final prediction P. s”, s°, s°P are the verb classification logits,

and e’ e°, eP are the predicted log variances.

Peyre et al. 2019; Shen et al. 2018). In other words, the re-
lation between mAP and the generalization ability is not as
explicit as we expect. This reminds us that widely-used mAP
might not be sufficient to evaluate the performance of HOI
detection, especially for generalization. To quantify the gen-
eralization ability of an HOI learning model, we propose a
novel metric, mPD (mean Precision Degradation). For verb
v € V, we denote the object categories available for v as
Oy, AP, ) as the average precision for HOI composition
(v,0). Then mPD is formulated as:

i Z AP<U7Omaz> — APU
Vi AP, ’
veV

V,0maa)

mPD

ey

where 0y qp=argmax, AP, o, APU=|O—1U| > oco, AP0
is the mean AP for compositions (v, o) with o € O,. mPD
measures performance gap between the best-detected com-
position and the rest. The higher the mPD is, the larger per-
formance gap a model might present on different objects, in
other words, worse generalization. As shown in Fig. 1a and
Fig. 6, mPD reveals previous method (Hou et al. 2020) has
huge performance gap among different objects with the same
verb, which limits generalization.To address this, we utilize
OC-immunity as a proxy to narrow the generalization gap.

OC-Immune Network

The performance gap could result from spurious object-verb
correlations learned by model as a short-cut to over-fit the
training set. Previous methods intend to achieve generaliza-
tion by taking more object categories (OC) into considera-
tion with the help of language priors (Hou et al. 2020; Peyre
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et al. 2019; Bansal et al. 2020), learn the unseen objects via
their similarity with the seen objects. However, there exists
an inherent limitation: We can not exhaust all the objects due
to their variety and visual diversity. While we take this from
another view: an inherently OC-immune representation
of HOI. The idea is to encourage the model to focus more on
interaction-related information instead of OC-related infor-
mation, thus weakening the influence of object categories.
To achieve this, we resort to the multi-stream structure in
HOI learning (Chao et al. 2018; Li et al. 2019c¢). Despite the
relatively poor generalization of previous methods, we find
this structure has an inherent relation to OC-immunity.

In the multi-stream structure, each stream is designed to
perform inference based on one specific element: human,
object, or spatial configuration, while the human stream and
spatial stream are inherently object-immune by ideal de-
sign. However, in previous works, this structure performs
poorly as an OC-immune model (Fig. 1a). This is because
though the separated streams seem to ignore the object cate-
gory information, the features used are still entangled with
object. Previous works (Chao et al. 2018; Gao, Zou, and
Huang 2018; Li et al. 2019¢) usually adopt pre-trained ob-
ject detectors (Ren et al. 2015) as feature extractor, and uti-
lize ROI pooling to get features for different elements. Some
of them (Gao, Zou, and Huang 2018; Li et al. 2019c¢) also
enhance spatial stream with human ROI feature. These vi-
olate the object-immune principle in two aspects. First, the
object detector extracted features are trained to classify ob-
ject categories, e.g., COCO (Lin et al. 2014) 80 objects, thus
inevitably strongly correlated to OC. Second, human and ob-
ject boxes in HOI pairs usually overlap, therefore, ROI pool-



ing may introduce OC information to human features. To
address these violations, we disentangle the feature used by
each stream and design different structures for each stream
correspondingly, as shown in Fig. 2. Especially, since the
object feature inherently holds category information, a new
OC-immune learning method is designed for object stream.
Human Stream For human stream, we use COCO (Lin
et al. 2014) pre-trained DensePose (Alp Giiler, Neverova,
and Kokkinos 2018) to extract human feature. It provides
a pure geometric encoding of human information, which
is totally object-immune. As shown in Fig. 3(a), the con-
ventional ROI pooling feature and DensePose feature dis-
tribute diversely, while DensePose feature is more robust to
the overlap with objects. We use multiple convolution lay-
ers with batch normalization and ReLLU activation, followed
by global average pooling to encode the input into features,
then employ an MLP to perform verb classification.

Object Stream To obtain OC-immune representations, we
design a new OC-immune learning method including an ob-
ject feature synthesizer, an object classifier, and a verb clas-
sifier, which are all MLP-based. With two object ROI fea-
tures as input, the synthesizer outputs a synthesized feature,
which is expected to be the intermediate of the two inputs.
That is, for example, if we employ the synthesizer to syn-
thesize an object feature with object category labels of “ap-
ple” and another with “pear”, the expected result that object
classifiers provide for this synthesized vector should be 0.5
for “apple” and “pear”. To achieve this, we first train an ob-
ject classifier with original data. Then, we freeze the object
classifier and train the synthesizer to follow the above rules.
Finally, we train our verb classifier with the synthesizer. In
detail, for a training object feature, we would randomly du-
plicate it or sample another object feature of similar object
categories (those could be imposed similar verbs, e.g., eat-
ing apple and banana), then feed them to the synthesizer and
verb classifier, use their intermediate verb label as super-
vision. In inference, the object feature would be duplicated
and fed into the synthesizer and the verb classifier. The idea
is to expose the verb classifier to feature with ambiguous or
corrupted object category information, while still keeping
the verb semantics within the feature. This weakens the cor-
relation between verb and OC that could be perceived by the
verb classifier, encouraging the classifier to resort to other
clues. Thus, the influence imposed by OC on the verb clas-
sifier would be weakened. To show the immunity of our verb
classifier, we visualize features extracted by COCO (Lin
et al. 2014) pre-trained Faster-RCNN (Ren et al. 2015) and
the last FC of our verb classifier in Fig. 3(b). As illustrated,
the latter is less correlated with OC than the former.

Spatial Stream Previously, some works (Chao et al. 2018;
Li et al. 2019c) directly concatenate human features with
spatial configuration features for spatial stream, which vio-
lates the object-immune principle as stated before. There-
fore, we employ only human and object bounding boxes
b" b° € R2*2 and 2D human pose b? € R**? to encode
the HOI spatial information, where & is the number of hu-
man keypoints. We normalize the coordinates of bounding
boxes and pose into feature vector f*°P. In detail, denote the
tight union bounding box of b",b° as b* € R2*2 (repre-
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(a) Human feature involving HOI ride bicycle, extracted by
ROI Pooling and DensePose. The more a human instance over-
laps with an object, the brighter it is painted.

Object Feature from object detector (Faster-RCNN) Object feature from verb classifier
banana banana
knife knife

tennis racket tennis racket

(b) Object feature of banana, knife, tennis racket, from
COCO pre-trained Faster-RCNN and the last FC of our verb
classifier. Different colors indicate different object categories.

Figure 3: t-SNE (Maaten and Hinton 2008) visualization of
differently extracted features.

sented by the upper-left and bottom-right points), we get

h 10 u .
f5p=Flatten(C°n°af)E‘?l ’}]’_’ll)’: [)07:]]0 1) where Flatten(:) in-
dicates the transformation to a vector. Finally, f*? is fed into

an MLP to classify the verbs.

Uncertainty Quantification Module Moreover, we corpo-
rate an additional MLP as uncertainty quantification module
in each stream, following the aleatoric uncertainty estima-
tion in (Kendall and Gal 2017). Each data point is assumed
to possess a fixed uncertainty. Then, each stream not only
outputs a logit s for verb v € V/, but also estimates the un-
certainty by log variance e. Thus, loss for a sample of verb v
is L=|| Z(;T)(;;“’ ||2+ Le following the logistic regression set-
ting in (Kendall and Gal 2017), where y indicates whether
sample has verb v. Concurrent with the correct prediction,
the loss encourages the model to have higher uncertainty on
unfamiliar samples while avoiding being uncertain to all the
samples. Overall, the model would output higher uncertainty
for samples of unfamiliar object categories, thus reduce the
overconfident mistakes and advance generalization.
Calibration-Aware Unified Inference. With separately
trained three streams, we need to unify them into one fi-
nal result without loss of immunity and detection perfor-
mance. Given the inherent compositional characteristic of
HOI, it is crucial to explore how to unify multi-stream
knowledge. To this end, instead of simple addition or mul-
tiplication (Li et al. 2019¢; Gao, Zou, and Huang 2018),
we propose calibration-aware unified inference as shown
in Fig. 2, which exploits the learned uncertainty quantifi-




cation, imports more flexibility, and preserves unique ad-
vantages of each stream. Denote the output logit vectors
of three streams as s* and the log variance vectors as e,
where * is h, o or sp. First, separate calibration is imposed
on three streams. Intuitively, the more uncertain a predic-
tion is, the less it should contribute to the final result. Thus,
the calibrated prediction of the streams are formulated as

p*=Sigmoid(“g%zet‘;*) - det" - det®, w*, ¢* are learnable

scaling parameters following (Platt et al. 1999), and det”,
det® are the object detection confidences from the object
detector. The parameters are trained to minimize the BCE
loss as Eq. 6 on the validation set, thus helping each sepa-
rate stream to achieve well-calibration. The objective is for-
mulated as L* = Len(p*,y), y € [0,1]IV] is the label
vector. Second, we impose a distributional agreement loss
among the three streams, which is formulated as Ly gpce =

|mean(pj’-l — pJ)|+|mean(py — p;p)\+|mean(p;p — p]h)\,
where p? denotes all the predictions of p" for verb vj, the

same is for p7 and p;p . This constraint does not require dif-
ferent streams output same value for the same data point
like (Li et al. 2020a). Instead, it expects different streams
to have similar average outcomes for a set of data points,
which is more flexible. Finally, to achieve better overall per-
formance and calibration, we learn fusion factors f", f°
and f*P on the validation set, where f”, f°, f > 0 and
f* + f° + f°P = 1. The final unified inference score is
formulated as P=f" - p" + fo . p° + fP . p*P. We use
a BCE loss Lyn;=—(log(l — P)(1 — y) + log(P)y) as
the objective. The total calibration loss is formulated as
Leai=B(L"+L°+L*)+yLogrec+Luni, where 3 and 7 are
both weighting factors. The parameters of each stream are
frozen during calibration.

Overall, we introduce OC-immunity to the multi-stream
structure, encouraging it to be insensitive to object cat-
egories while keeping representative to verbs. Thus, our
model is robust against different object distributions. Mean-
while, the uncertainty quantification module provides clues
on how much the model output could be trusted. It prevents
the model from committing over-confident mistakes, boost-
ing its generalization on unfamiliar objects. Finally, the pro-
posed calibration-aware unified inference helps exploit most
of each stream in the result, bringing better generalization.

Experiment

In this section, we first introduce our uncertainty-guided
training strategy. Then, we introduce the adopted datasets,
metrics and implementation details. Next, we compare our
method with previous state-of-the-arts on multiple HOI
datasets (Chao et al. 2018; Li et al. 2020a, 2019b). At last,
ablation studies are conducted.

Uncertainty-Guided Training

Besides conventional fully-supervised training, we could en-
hance our model with data without HOI labels as an ex-
tra benefit. Previous methods fail to exploit unlabeled data
since only verb predictions are provided, but no clue is there
for correctness. While our uncertainty quantification could
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Figure 4: With uncertainty estimation, we are enabled to uti-
lize data without HOI label as an extra benefit.
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Figure 5: We divide unlabeled samples into TP, TN, FP,
and FN according to the output confidence and uncertainty.
Based on this, loss is designed to tune the model.

additionally provide ambiguous but trustworthy pseudo la-
bel of correctness, enabling the model to generate pseudo
labels for the unlabeled data and further boost both verb
classification and uncertainty quantification in a self-training
manner. We collect data from validation set of Openlm-
age (Kuznetsova et al. 2020) as extra unlabeled data and ex-
tract the required features for different streams. With these,
we can operate uncertainty-guided training using unlabeled
data as shown in Fig. 4.

A mini-batch B is mixed of labeled data B*={b*} and
unlabeled data B*={b"}. For labeled sample b° € B?® and
verb v, the model outputs logit s° and log variance e®. Thus,
the loss for b° is calculated following L° as stated before.
For unlabeled sample b* € B* and verb v, we define the
result evaluation (true positive, false positive, true negative
and false negative) with respect to B*, then calculate loss L
for them as shown in Fig. 5. First, we compute thresholds p?,
p", p™, € as Eq. 2-5, where () = L

14+exp(—z) :

p’ = max(mean (6(s%)), max (c(s%))), (2)

bs ys=1 bs,y5=0
p" = min(mean (c(s*)), min (c(s°))), (O3)

bs,ys=0 bs,ys=1

1

o= S0+, )
€ = mgsan(exp(es)). %)
Then, for unlabeled instance b*, if o(s*) is higher than

o(s®) of all labeled negative samples (b° € B*, y°=0) and



the mean o (s®) of all labeled positive samples (b° € B®,y*
= 1), formulated as o(s*) > pP, we define it as a positive
sample. Similarly, if o(s*) is lower than o (s®) of all labeled
positive samples and the mean o(s*) of all labeled negative
samples, we define it as a negative sample. Next, if the vari-
ance exp(e¥) is lower than the mean variance of all labeled
samples b®° € B?, we define it as a true sample, otherwise a
false sample. With these definitions, we construct loss based
on BCE loss (Eq. 6) for the unlabeled samples as Eq. 7:

Le(p,y) = —(log(1 — p)(1 — y) + log(p)y)

Le(o(s“),pm) e, o(s*)>pP,o(e") > ¢,
Le(a(s),1), o(s") >pP,o(e") <e

L = Le(a(s“),p ) —e%, o(s") <p" o(e") > ¢,
Le(o(s"),0), o(s") <p",o(e") <k,

0, otherwise
(N
The loss is straightforward: For TP/TN samples, we suppose
these samples are labeled with corresponding y*, and im-
pose BCE loss on them, while we neither punish nor en-
courage the uncertainty estimation to avoid bias. For FP/FN
samples, we expect the model to be uncertain and the pre-
diction to be mediocre. For the samples defined neither pos-
itive nor negative, we identify them as unfamiliar samples
and impose no loss on them, since they receive expected
mediocre prediction. The overall loss of mini-batch B for
each stream is represented as L q; = |V‘( > \gl +
bseBsveV

oy 2 BT Bu ~), where « is a weighting factor. With the de-
bueB* veEV
signed loss, our model could generate trustworthy pseudo-
label, regularize the verb classification and uncertainty esti-
mation, and further boost generalization.

Dataset and Metric

We adopt three large-scale HOI detection benchmarks:
HICO-DET (Chao et al. 2018), Ambiguous-HOI (Li et al.
2020a), and self-compiled HAKE (Li et al. 2019b) test set.
The detailed statistics of the datasets are illustrated in the
supplementary material. For all three datasets, we evalu-
ate our HICO-DET trained model using mAP following
Chao et al. (2018): true positive should accurately locate
human/object and classify the verb. The proposed mPD is
evaluated under Default mode on verbs available for multi-
ple object categories.

Implementation Details

We re-split HICO-DET training set into train set and valida-
tion set, roughly a 6:4 split. And we collect 10,434 images
from Openlmage validation set (Kuznetsova et al. 2020) as
extra unlabeled data, containing 43,553 human instances,
77,485 object instances and 636,649 pairs. In the following,
‘train‘ refers to training on the train set and unlabeled data,
while ‘calibrate‘ refers to calibrating on the validation set.
All three streams are separately trained by SGD optimizer
with learning rate of 7e-3. We train human stream for 50
epochs, the other two for 40 epochs. The unified calibration
takes 2 epochs with SGD optimizer, learning rate of le-3, 8
=1, and v = 0.1. All experiments are conducted on a single
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mPD | mAP Default
Method Full Rare Non-Rare
Liet al. (2019¢) 0.4313 17.03 13.42 18.11
Zhou and Chi (2019) - 17.35 12.78 18.71
Wan et al. (2019) - 17.46 15.65 18.00
Peyre et al. (2019) 0.4314 19.40 14.60 20.90
Li et al. (2020a) 0.4121 21.34 18.53 22.18
Ours 0.3836 21.95 20.89 22.27
Liao et al. (2020) 0.3930 21.73 13.78 24.10
Hou et al. (2020) 0.4106 23.63 17.21 25.55
Li et al. (2020b) 0.3876 26.29 22.61 27.39
Ours 0.3905 25.44 23.03 26.16
Liet al. (2019¢) 0.3421 34.26 2290 37.65
Peyre et al. (2019) 0.3203 34.35 27.57 36.38
Hou et al. (2020) 0.3097 38.97 29.99 41.65
Li et al. (2020b) - 43.98 40.27 45.09
Ours 0.2971 41.32 35.57 43.03

Table 1: Results on HICO-DET (Chao et al. 2018). The first
part adopted COCO pre-trained detector. HICO-DET fine-
tuned detector is used in the second part. GT human-object
pair boxes are used in the last part. Results under Known
Object setting are in the supplementary materials.

NVIDIA Titan Xp GPU. Please refer to the supplementary
material for more details.

Results on Conventional HOI Detection

HICO-DET: Quantitative results are demonstrated in
Tab. 1, compared with previous state-of-the-art methods us-
ing different object detectors. The results are evaluated fol-
lowing HICO-DET: Full (600 HOIs), Rare (138 HOIs), and
Non-Rare (462 HOIs) in Default and Known Object mode.
Also, we compare mPD with some open-sourced algorithms
in Tab. 1. As shown, our method provides an impressive
mAP of 21.95 (Default Full) and outperforms all previous
algorithms on mPD (0.3836) with COCO pre-trained object
detector. And it achieves similar performance with Li et al.
(2020b) using HICO-DET fine-tuned object detector and GT
human-object pairs. It is even comparable with very recent
transformer-based methods (e.g., Kim et al. (2021): mAP
25.73, mPD 0.3978) with much larger capacity.
Ambiguous-HOI (Li et al. 2020a) is adopted to further eval-
uate our model on unfamiliar data. As shown in Tab. 2,
our model provides competitive mAP and considerable im-
provement on mPD over previous state-of-the-arts, proving
its robustness against object category distribution.

HAKE test set: Results are illustrated in Tab. 2. Some pre-
vious open-sourced SOTA are compared. We could observe
the superior performance of our method even with domain
shift, demonstrating the generalization ability of our model.

Results on Zero-shot HOI Detection

To demonstrate the generalization ability of our method, we
evaluate our method under zero-shot settings. 120 HOI cate-
gories in HICO-DET are selected as unseen categories (Shen
et al. 2018; Hou et al. 2020). We adopt the non-rare first se-
lection (Hou et al. 2020). Instances of the unseen categories



Ambiguous-HOI ~ HAKE test set
Method mPD| mAP1T mPD]| mAP*?
Lietal. (2019¢c) 04890 822 04792 1045
Peyre et al. (2019) 0.4935 9.72  0.5132  12.03
Li et al. (2020a) 0.4800 10.37 - -
Ours 04715 1045 04736 14.26

Table 2: Results comparison on Ambiguous-HOI (Li et al.
2020a) and newly designed test set from HAKE.

mPD | mAP 1

Method Full Seen  Unseen
Shen et al. (2018) - 6.26 - 5.62
Hou et al. (2020) 0.4877 1276 13.67 9.13
Ours 0.4415 1480 15.70 11.21
Bansal et al. (2020) - 1226 12.60 10.93
Hou et al. (2020) 0.4531 18.06 18.52 16.22
Ours 0.4194 19.85 20.23 18.34

Table 3: Results of zero-shot HOI detection. The first part
adopted COCO pre-trained detector. HICO-DET fine-tuned
detector is used for the second part.
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Figure 6: mPD comparison of VCL and ours.

are removed during training, while the test set is unchanged.
mAP is reported under three settings (Full, Seen, Unseen)
with Default mode. mPD is evaluated for Hou et al. (2020)
and our method. Comparison is conducted among several
previous methods under the same setting. As in Tab. 3, our
method considerably outperforms previous methods.

Visualization

We visualize mPD comparison of VCL (Hou et al. 2020) and
ours in Fig. 6. As shown, our method shows similar or even
lower best AP while still outperforming VCL (Hou et al.
2020) by providing less performance degradation, implying
that we manage to achieve a better trade-off. More visual-
izations are included in the supplementary material.
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mPD | mAP Default
Method Full Rare  Non-Rare
Ours 0.3836 21.95 20.89 22.27
w/o OIL 0.4001 21.34 18.46 22.20
w/o UQM 0.3860 21.43 19.86 21.90
w/o CUIL 0.3871 21.16 20.31 21.42
w/o Extra Data 0.3987 20.05 18.66 20.47
Human stream 0.4927 10.81 10.09 11.03
Object stream 0.4891 10.29 11.15 10.03
Spatial stream 0.4487 15.61 13.81 16.15
w/o Lagree 0.3860 21.71 20.20 22.17
Lagree from Li et al. (2020a)  0.3855  21.81  20.50 22.21

Table 4: Ablation study results.

Ablation Study

We conduct ablation studies on HICO-DET (Chao et al.
2018) with COCO pre-trained Faster-RCNN. For more ab-
lation studies please refer to the supplementary material.
OC-immune learning (OIL):. We remove the synthesizer
and train the verb classifier directly with raw data. As shown,
the performance for Non-rare set barely hurts, while both
mPD and Rare mAP decrease substantially. This sustains the
effectiveness of OIL in mitigating the performance gap be-
tween different objects with same verb.

Uncertainty quantification module (UQM): Its removal
results in a 0.52 mAP drop and marginal mPD increase. The
performance on Rare hurts more than that on Non-Rare, in-
dicating the importance of UQM for unfamiliar samples.
Calibration-aware unified inference (CUI): If we jump
the calibration stage, and directly fuse the three streams,
mAP suffers by 0.79, proving the crucial role of CUIL
Extra data: Without the extra data, we get mAP of 20.05
and mPD of 0.3987, which is still competitive. In additional,
we achieve 25.44 mAP and 0.3905 mPD using HICO-DET
fine-tuned detector with no extra data, which is compara-
ble with even very recent transformer methods (Kim et al.
(2021) with mAP of 25.73 and mPD of 0.3978).

Different streams: Spatial stream provides the best individ-
ual result, despite its simplicity. The three streams on their
own do not provide superior performance, while the combi-
nation stands out. Meanwhile, individual streams are of high
mPD, while the final result gives significantly lower mPD,
indicating the importance of combination. Impressively, ob-
ject stream performs better on Rare set than on Non-Rare
set, implying the effectiveness of the OC-immune learning.
Lagree: We evaluate Lggree by removing it and replace it
with that in (Li et al. 2020a). As shown, L g,¢. mostly ben-
efits performance on Rare set, and our distributional agree-
ment loss is slightly better than the point-level agreement.

Conclusion

In this paper, we proposed a novel metric mPD as a com-
plement of mAP for measurement of generalization. Based
on mPD, we raised to seek generalization via OC-immunity,
and designed a new OC-immune network, achieving impres-
sive improvements for both conventional and zero-shot gen-
eralization HOI detection.
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