
SiamTrans: Zero-Shot Multi-Frame Image Restoration
with Pre-trained Siamese Transformers

Lin Liu1, Shanxin Yuan2*, Jianzhuang Liu2, Xin Guo1, Youliang Yan2, Qi Tian3

1EEIS Department, University of Science and Technology of China
2Huawei Noah’s Ark Lab

3Huawei Cloud BU
{ll0825,willing}mail.ustc.edu.cn {shanxin.yuan, liu.jianzhuang, yanyouliang, tian.qi1}@huawei.com

Abstract

We propose a novel zero-shot multi-frame image restoration
method for removing unwanted obstruction elements (such
as rains, snow, and moiré patterns) that vary in successive
frames. It has three stages: transformer pre-training, zero-shot
restoration, and hard patch refinement. Using the pre-trained
transformers, our model is able to tell the motion difference
between the true image information and the obstructing el-
ements. For zero-shot image restoration, we design a novel
model, termed SiamTrans, which is constructed by Siamese
transformers, encoders, and decoders. Each transformer has
a temporal attention layer and several self-attention layers,
to capture both temporal and spatial information of multi-
ple frames. Only pre-trained (self-supervised) on the denois-
ing task, SiamTrans is tested on three different low-level
vision tasks (deraining, demoiréing, and desnowing). Com-
pared with related methods, ours achieves the best perfor-
mances, even outperforming those with supervised learning.

Introduction
Taking clean photographs under bad weather (e.g., snow and
rain) or recovering clean images from occluding elements
(e.g., moiré patterns), is challenging as the scene information
is corrupted by these occluding elements in the captured im-
ages. These occluding elements can change quickly in a very
short time (e.g., snow and rain) or due to the small movement
of the camera (e.g., moiré patterns), making it difficult to do
multi-frame image restoration.

Recovering the underlying clean image from a single de-
graded image is an ill-posed problem due to occlusions.
Most of existing single image restoration methods that fo-
cus on dealing with these types of problem often mine high-
level semantic information of the scene or the properties of
degrading elements (e.g., noise and rain streak). But these
single image restoration methods have difficulty in han-
dling challenging and complex cases. To tackle these prob-
lems, multi-frame-based approaches, which use several im-
ages as input, are proposed to exploit additional information
from supporting frames to the reference frame. Task-specific
multi-frame-based methods include denoising (Liang et al.
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(a) Deraining

(b) Demoireing

(c) Desnowing

Figure 1: Example results of our zero-shot method for multi-
frame deraining (top), demoiréing (middle), and desnow-
ing (bottom). Pre-trained on denoising only, our SiamTrans
model removes unwanted elements while retaining the im-
age details on multiple restoration tasks.

2020; Mildenhall et al. 2018; Godard, Matzen, and Uytten-
daele 2018), demosaicing (Ehret et al. 2019; Kokkinos and
Lefkimmiatis 2019), super-resolution (Farsiu et al. 2014;
El Mourabit et al. 2017; Wronski et al. 2019; Isobe et al.
2020), reflection removal (Li and Brown 2013; Guo, Cao,
and Ma 2014), HDR imaging (Dai et al. 2021; Yan et al.
2019), etc. In addition, a few general frameworks have been
proposed for multiple low-level vision tasks (Xue et al.
2015; Alayrac 2019; Liu et al. 2020d; Fan et al. 2020). The
work in (Alayrac 2019) proposes a generic 3D CNN to es-
timate the foreground layer and (Liu et al. 2020d) estimates
the optical flows of obstruction elements. Both methods can-
not obtain satisfactory results because it is hard to estimate
either obstruction elements or their optical flows that vary
dramatically in successive frames. These supervised meth-
ods require a large amount of annotated training data and
often have problems when applied to new tasks.

The pre-training and fine-tuning strategy is effective to
obtain the natural image prior and adapt to new tasks. This
strategy is often used on high-level vision tasks (Chen et al.
2020b; Grill et al. 2020; He et al. 2020b) showing great per-
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formances, but it has not been widely used in low-level vi-
sion tasks yet. Recently, some studies (Gu, Shen, and Zhou
2020; Pan et al. 2020; Chan et al. 2012; Bau et al. 2020)
use pre-trained GANs to do image restoration, where the
GAN models are trained on large-scale natural images and
can capture rich texture and shape priors. But the spatial in-
formation may not be faithfully kept due to low dimension-
ality of the latent code. Transformer (Vaswani et al. 2017)
has been used in some low-level vision tasks very recently,
such as image super-resolution (Yang et al. 2020a), video
synthesis (Liu et al. 2020e) and video inpainting (Zeng, Fu,
and Chao 2020). Image processing transformer (IPT) (Chen
et al. 2020a) is pre-trained on three low-level vision tasks
and outperforms state-of-the-art methods. It shows that the
transformer is more advantageous than convolutional neu-
ral networks (CNNs) in large-scale data pre-training of low-
level vision. However, IPT requires that the pre-training
and fine-tuning are conducted on the same tasks, having
difficulty in generalizing to completely unseen tasks, e.g.,
desnowing. Our model is a zero-shot learning setting, where
the pre-training is only conducted on image denoising and
the testing (without fine-tuning) is conducted on new tasks.

In this paper, inspired by the advantages of the multi-
frame methods and pre-trained transformers, we propose
a three-stage pipeline for multi-frame image restoration.
This pipeline contains transformer pre-training, zero-shot
restoration, and hard patch refinement. In the first stage,
the transformer is self-supervisedly pre-trained on the de-
noising task on a large scale dataset. The pre-training en-
ables the transformer to learn natural image prior informa-
tion between different frames and to converge fast in down-
stream iterations. In the second stage, we design a model
with Siamese Transformers (SiamTrans) for multiple down-
stream low-level tasks through zero-shot restoration. Note
that the downstream tasks are unknown to the pre-training.
SiamTrans consists of encoders, decoders, temporal atten-
tion modules, and self-attention modules. The aim of the
third stage is to locate and refine hard-case patches.

In summary, we make the following contributions:

• A three-stage pipeline for multi-frame image restoration
is proposed. It consists of transformer pre-training, zero-
shot restoration, and hard patch refinement.

• We design a novel model with Siamese Transformers
(SiamTrans) for zero-shot image restoration. Using pre-
trained transformers with temporal and spatial attentions,
our model is able to tell the motion difference between
the nature image information and the obstructing ele-
ments.

• When tested on three different low-level vision tasks
(deraining, demoiréing, and desnowing; see Fig. 1), our
model achieves the best performances, even outperform-
ing supervised learning methods.

Related Work
In this section, we present the most related works, including
multi-frame image restoration, transformers and pre-training
for low-level vision, and related tasks.

Multi-frame image restoration. Image restoration is an
ill-posed problem and most of single image restoration
methods (Wang et al. 2018; Liu et al. 2019; Pan et al.
2020; Zheng et al. 2020; Chen, Liu, and Wang 2020) often
resort to high-level semantic information of the scenes or
the degrading properties (e.g., noise level and rain streak).
But these single image restoration methods have difficulty
in handling challenging and complex cases. To deal with
these issues, multi-frame-based methods (Godard, Matzen,
and Uyttendaele 2018; Ehret et al. 2019; Farsiu et al. 2014)
have been proposed for low-level vision tasks, such as de-
noising (Liang et al. 2020; Mildenhall et al. 2018; Go-
dard, Matzen, and Uyttendaele 2018), demosaicing (Ehret
et al. 2019; Kokkinos and Lefkimmiatis 2019), super-
resolution (Farsiu et al. 2014; El Mourabit et al. 2017; Wron-
ski et al. 2019) and reflection removal (Li and Brown 2013;
Guo, Cao, and Ma 2014). In addition to these task-specific
multi-frame methods, a few general frameworks have been
proposed for multiple tasks (Xue et al. 2015; Alayrac 2019;
Liu et al. 2020d). Xue et al. (Xue et al. 2015) present a com-
putational approach for obstruction removal, which is ap-
plicable to multiple tasks, e.g., reflection removal and fence
removal. Liu et al. (Liu et al. 2020d) estimate dense optical
flow fields of the background and degrading element lay-
ers and then reconstruct them. Our work is an unsupervised
zero-shot multi-frame image restoration method that can be
applied to multiple low-level vision tasks.

Transformers for low-level vision tasks. Transform-
ers (Vaswani et al. 2017) are a neural network framework
using the self-attention mechanism. They are originally used
in natural language processing, and then used in computer
vision tasks including low-level vision very recently (Yang
et al. 2020a; Chen et al. 2020a; Zeng, Fu, and Chao 2020).
Yang et al. (Yang et al. 2020a) propose a texture transformer
network for image super-resolution. It transfers relevant tex-
tures from reference images to low-resolution images. Chen
et al. (Chen et al. 2020a) develop a pre-trained transformer
called IPT for three low-level vision tasks, which outper-
forms state-of-the-art methods. In low-level video process-
ing, Liu et al. (Liu et al. 2020e) propose ConvTransformer
to synthesize video frames. Zeng et al. (Zeng, Fu, and Chao
2020) propose a spatial-temporal transformer network for
video inpainting, where frames with holes are taken as input
and the holes are filled simultaneously.

Pre-training for low-level vision tasks. The pre-training
and fine-tuning strategy is often used on high-level vision
tasks, showing good performances (Chen et al. 2020b; Grill
et al. 2020; He et al. 2020b). For low-level vision tasks,
the random initialization and end-to-end training strategy
is usually adopted. More recently, some studies (Gu, Shen,
and Zhou 2020; Pan et al. 2020; Chan et al. 2012; Bau
et al. 2020) use pre-trained GANs to do image restoration.
A GAN model trained on a large-scale set of natural im-
ages can capture rich texture and shape priors. The prob-
lem of using pre-trained GANs for image restoration is that
some spatial details may not be faithfully recovered due to
the low dimensionality of the latent code, resulting in arti-
facts compared with ground-truth. Recently, IPT (Chen et al.
2020a) shows that transformers are more advantageous than
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CNNs in large-scale data pre-training for low-level vision.
IPT uses task-specific embeddings as an additional input for
the decoder, where the task-specific embeddings are learned
to decode features for different tasks. Different from IPT,
our SiamTrans is pre-trained for zero-shot image restoration.
We only need to pre-train it on the denoising task and then
apply it to multiple downstream low-level tasks which are
unknown to the pre-training.

Deraining, desnowing, and demoiréing. Deraining
methods can be grouped into single image derainging and
video deraining. The former group focuses on mining the
intrinsic prior of the rain signal (Fu et al. 2017; Yang
et al. 2017; Deng et al. 2018; Li et al. 2018; Guo et al.
2020). Compared with single-image rain removal, video de-
raining utilizes temporal information to detect and remove
rains (Jiang et al. 2019; Li et al. 2019; Yang et al. 2020c; Li
et al. 2021). We take advantage of transformer’s ability to
acquire natural image prior and temporal information after
training on a large scale dataset.

Compared with rain, snow is more complicated due to
its large variations of size and shape, and its transparency
property. Snow removal methods also include single image
desnowing (Chen et al. 2020c; Jaw, Huang, and Kuo 2020;
Liu et al. 2018) and video desnowing (Ren et al. 2017; Li
et al. 2019). For single image desnowing, Liu et al. (Liu et al.
2018) propose a learning based model. Chen et al. (Chen
et al. 2020c) design a desnowing network which contains
three parts: snow removal, veiling effect removal, and clean
image discriminator. For video desnowing, Ren et al. (Ren
et al. 2017) use matrix decomposition to desnow.

Moiré artifacts are not unusual in digital photography,
especially when photos are taken of digital screens. Moiré
patterns are mainly caused by the interference between the
screen’s subpixel layout and the camera’s color filter ar-
ray. Recently, some deep learning models (He et al. 2020a;
Zheng et al. 2020; Yang et al. 2020b; He et al. 2019; Liu
et al. 2020a,b; Zheng et al. 2021; Yuan et al. 2019b,a, 2020)
are proposed for single image demoiréing. For multi-frame
demoiréing, Liu et al. (Liu et al. 2020c) use multiple images
as inputs and design multi-scale feature encoding modules to
enhance low-frequency information. Unlike their approach,
our method is unsupervised and does not need to train with
a large number of moiré and moiré-free image pairs. We
only need pre-training on denoising and then do zero-shot
restoration with multiple moiré frames.

Proposed Method
In this section, we first introduce our basic network archi-
tecture and then present the three stages of our method, in-
cluding transformer pre-training, zero-shot restoration with
SiamTrans, and hard patch refinement. This basic network
is the building block of our SiamTrans.

Basic Network Architecture
As shown in Fig. 2, our basic network includes two weight-
sharing CNN encoders each corresponding to an input, and
a CNN decoder to generate the final output. Between the
encoders and the decoder, we construct a transformer that

has a temporal attention module and six spatial self-attention
modules.

Temporal attention module. In multi-frame image
restoration, information from supporting frames can help to
restore the corrupted reference frame. Given the input im-
ages x1 and xk (k ∈ {2, . . . , N}), we present the process of
the encoding as:

y1 = E(x1), y2 = E(xk), (1)
where y1, y2 ∈ RC×H×W denote the output feature maps
of the encoders, C is the number of feature channels, H and
W are the height and width of the feature map, respectively.

After feature extraction, the obtained feature maps, yj ,
j ∈ {1, 2} is reshaped into a sequence of flattened
patches (vectors), yjp = {yjp1

, yjp2
, . . . , yjpm

}, where yjpi
∈

RCP 2

, i ∈ {1, . . . ,m}; m = HW
P 2 is the total number of

patches and P ×P is the patch size. The process of the tem-
poral attention module is formulated as:

z0 = (MHA
(
NL(y1p),NL(y2p),NL(y2p)

)
+ y1p, (2)

z1 = FF (NL(z0)) + z0, (3)
where MHA(Q,K, V ) denotes the multi-head attention
module with Q = NL(y1p), K = NL(y2p), and V =

NL(y2p) corresponding to the three basic transformer ele-
ments Query, Key, and Value, respectively, NL denotes the
operation of the normalization layer, and FF is a feed for-
ward network (Dosovitskiy et al. 2021; Vaswani et al. 2017).

Self-attention module & decoder. After the fusion of
two corresponding frames by the temporal attention module,
the self-attention module uses the self-attention mechanism
to extract useful spatial information from zi. In our work, six
self-attention modules are employed, each with a multi-head
self-attention layer and a feed forward network. The process
is represented as:
z′i = (MHA(NL(zi),NL(zi),NL(zi)) + zi, i = 1, 2, ..., 6,

(4)
zi+1 = FF (NL(z′i)) + zi, i = 1, 2, ..., 6. (5)

Finally the output z7 is reshaped to g ∈ RC×H×W . The
output of the decoder is o = D(g) ∈ R3×H×W .

Transformer Pre-Training
We pre-train the basic network in Fig. 2 such that it can cap-
ture the intrinsic properties and transformations of various
images, i.e., image prior. The pre-training task is denoising
with the Place365 dataset (Zhou et al. 2017). We choose
328,000 images for the pre-training. In each iteration, we
randomly choose an image I and a noise level σ ∈ [1, 50]
and synthesize two degraded images by:

x1 = I +N1, x2 = I +N2, (6)
where N1 and N2 are two different samples from the Gaus-
sian noise distributionN (0, σ). The loss function in the pre-
training stage is,

Lpre-train = ‖M(x1, x2)− I‖1 , (7)
where M denotes the basic network. After the pre-training,
the network learns the feature correlation of different frames
and the natural image prior. The ablation study in Sec.
shows that the pre-training cannot only make SiamTrans
converge faster but also improve its performance.
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Figure 2: The architecture of our basic network, which consists of three parts: two CNN encoders, a transformer with both
temporal and spatial attention modules, and a CNN decoder. Note that we also add learnable position embeddings (Dosovitskiy
et al. 2021) to the input sequence of the transformer, which are not displayed here.
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Figure 3: The architecture of our SiamTrans for zero-
shot restoration. It includes Siamese transformers, four en-
coders and two decoders. x

′

2, ..., x
′

N are obtained by warping
x2, ..., xN towards x1. Two same-location patches p1 and
pk, k ∈ {2, 3, ..., N}, are randomly cropped and served as
the inputs to SiamTrans.

SiamTrans for Zero-Shot Restoration
The SiamTrans model is shown in Fig. 3, which is formed
by two basic networks, with four weight-sharing CNN en-
coders, two weight-sharing transformers and two weight-
sharing CNN decoders. Suppose we have a short se-
quence of images {x1, x2, ..., xN}, where x1 is the refer-
ence frame. The task of multi-frame image restoration is
to recover a clean image o1 corresponding to x1. The im-
ages {x2, ..., xN} are first warped to x1 by FlowNet (Ilg
et al. 2017), resulting in the aligned images {x′2, ..., x′N}.
In each iteration, we randomly crop the patches p1 and pk
( k ∈ {2, 3, ..., N}) of the same location from x1 and x′k re-
spectively. p1 and pk are then sent to SiamTrans. We define
the loss function for the restoration as,
Lzero-shot = ‖M1(p1, pk)−M2(pk, p1)‖1

+ λ (‖M1(p1, pk)−p1‖1+‖M2(pk, p1)−pk‖1) ,
(8)

where the first term is the consistency loss, and the second
term is the fidelity loss, and op1

= M1(p1, pk) and opk
=

M2(pk, p1) are the outputs of the two basic networks M1

and M2, respectively.
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Figure 4: Procedure of our hard patch refinement, where one
example with patch p31 is given.

After a number of iterations with different random patch
pairs, SiamTrans has learnt how to restore the clean images
from x1, x

′
2, ..., x

′
N . Then, we use M1 or M2 to obtain the

restored images o1, o2, ..., and oN from x1, x′2, ..., and x′N ,
respectively.

Hard Patch Refinement

After the initial restoration described in Sec. , SiamTrans
with learned image prior can recover a good result for a spe-
cific scene. However, due to the variety of degradation, it
is difficult to get a completely clean image in the zero-shot
setting. So we design a hard patch refinement to locate and
recover the patches where the degradation has not been well
tackled.

Localization. As shown in Fig. 4, to localize the hard
patches in the frame x1, we generate a residual map r =
‖o1 − x1‖1. On the residual map r, we select n points with
the highest values, where the patches of size s × s centered
at these points are non-overlapping.

Refinement. After locating the hard patches that are not
well restored, we extract n s× s patches p1j , p

2
j , ..., p

n
j at the

n centers of oj , j = 1, 2, ..., N . We update each patch in
each frame iteratively. For every patch pk1 in o1, we update
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pk1 as follows:

pk1 ← α× pk1 +
1− α
N − 1

(
N∑

m=2

W1(p
k
m ↑)

)
↓, (9)

where α, W1, ↑, and ↓ denote the balancing parameter,
warping towards o1, upsampling, and downsampling, re-
spectively. We use the pre-trained LIIF model (Chen, Liu,
and Wang 2020) to perform upsampling and downsampling.
The upsampling is for better alignment of the frames. Then,
for every patch pkj in oj , j = 2, 3, ..., N , we update pkj as
follows:

pkj ← α× pkj +
1− α
N − 2

 N∑
m=2,m 6=j

Wj(p
k
m ↑)

↓, (10)

where Wj denotes warping towards oj .

Experiments and Analysis
In this section, we show ablation study and comparison with
state-of-the-art methods. Our algorithm is implemented on a
NVIDIA Tesla V100 GPU in PyTorch. The network is op-
timized with the Adam (Kingma and Ba 2015) optimizer.
In both the pre-training and zero-shot restoration, the batch
size is set to 1 and the initial learning rate is 1 × 10−5.
The algorithm runs for 20 epochs and 20 iterations for the
pre-training and the hard patch refinement, respectively. For
zero-shot restoration, it takes 200, 500, and 1000 iterations
for demoiréing, desnowing, and deraining, respectively. The
λ and α in Eqn. 8 and Eqn. 9/Eqn. 10 are empirically set to 5
and 0.9 respectively. Besides, the feature map sizeH×W in
Sec. is 128×128, the patch size p×p in Sec. is 32×32, the
patch size s× s in Sec. is also 32× 32, and the patch num-
ber n in Sec. is 50. The structures of the CNN encoders and
decoders can be found from the supplementary materials.

Datasets and State-of-the-Arts
Datasets. 1) Deraining. Since there is no existing short-
sequence deraining dataset, we build our multi-frame de-
raining test set through extracting adjacent frames from the
NTURain dataset (Chen et al. 2018), where the images are
taken from an unstable panning camera with slow move-
ments. In total, we extract 40 synthetic rain sequences (de-
noted as NTURainSyn) and 12 real rain sequences (denoted
as NTURainReal), where each sequence contains 8 consec-
utive frames. The training set for the compared supervised
methods is Rain100L (Yang et al. 2017), which contains
1800 scenes and rain maps1.

2) Demoiréing. We create a multi-frame demoiréing
dataset (MFMoiré) to evaluate our method quantitatively
and qualitatively. We collect 146 high quality images from
the Internet as ground truth. To get pre-aligned moiré se-
quences, we adopt the method in (Sun, Yu, and Wang 2018)
to align the ground truth and corresponding moiré images.
Each moiré sequence contains 10 moiré images. Note that

1The detailed information about how to synthesize rain se-
quences is described in the supplementary materials.

Method DGP MSPFN MS-CSC FastDeRain

(a) PSNR↑ 20.67 25.16 24.78 25.75
SSIM↑ 0.5291 0.8497 0.7344 0.8991

(b) NIQE↓ 4.051 3.462 3.368 3.627

Method SelfDeRain MLVR LSTO SiamTrans

(a) PSNR↑ 26.81 26.78 24.72 27.02
SSIM↑ 0.8935 0.8678 0.8853 0.9024

(b) NIQE↓ 3.322 3.316 3.354 3.302

Table 1: Quantitative deraining comparison. The best results
are in bold. (a): NTURainSyn; (b): NTURainReal.

Method PSNR↑ SSIM↑ LPIPS↓

MFMoiré

LSTO 21.51 0.6504 0.3573
MLVR 19.87 0.5904 0.5022

MMDM 21.61 0.6476 0.3710
SiamTrans (Ours) 22.26 0.6642 0.3197

MFSnow

LSTO 23.41 0.8228 0.2056
MLVR 21.88 0.8064 0.2233

MS-CSC 23.16 0.8201 0.2137
OTMSCSC 24.21 0.8332 –

SiamTrans (Ours) 26.05 0.8605 0.1323

Table 2: Quantitative demoiréing and desnowing compari-
son. The best results are in bold.

the moiré patterns vary a lot within a sequence and across
different sequences. We split the 146 sequences into the
training set with 116 sequences (for compared supervised
methods) and the testing set with 30 sequences.

3) Desnowing. We create a multi-frame desnowing
dataset (MFSnow) to evaluate our method. We use the
ground-truth images in NTURainSyn as snow-free images
and synthesize corresponding snow frames using the method
in (Liu et al. 2018). Finally, 3000 training snow sequences
(for compared supervised methods) and 30 testing snow se-
quences are collected.

State-of-the-art methods. 1) For multi-frame derain-
ing, we compare with nine state-of-the-art methods, includ-
ing three supervised single-image deraining methods (RES-
CAN (Li et al. 2018), MSPFN (Jiang et al. 2020), and DID-
MDN (Zhang and Patel 2018)), one unsupervised image
restoration method (DGP (Pan et al. 2020)), three unsuper-
vised video deraining methods (MS-CSC (Li et al. 2019),
FastDerain (Jiang et al. 2019), and SelfDerain (Yang et al.
2020c)), and two supervised multi-frame image restora-
tion methods (MLVR (Alayrac 2019) and LSTO (Liu
et al. 2020d)). 2) For multi-frame demoiréing, we com-
pare with five state-of-the-art methods, including two super-
vised single-image demoiréing methods (MopNet (He et al.
2019) and HRDN (Yang et al. 2020b)) and three multi-frame
demoiréing methods (MMDM (Liu et al. 2020c), MLVR,
and LSTO). 3) For multi-frame desnowing, we compare
with one single-frame desnowing method (JSTASR (Chen
et al. 2020c)) and three video desnowing methods (MS-
CSC, MLVR, and LSTO). Except MS-CSC, the other three
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Input DGP RESCAN MSPFN DID-MDN LSTO

MLVR FastDerain SelfDerain MS-CSC SiamTrans Ground truth-------------------------------------------------------------------------------------------------------------------------------

Figure 5: Visual deraining comparison among our method and other methods including deraining-specific methods (RESCAN,
MSPFN, DID-MDN, FastDerain, SelfDerain, and MS-CSC) and general restoration methods (DGP, LSTO, and MLVR), eval-
uated on NTURainSyn. The second and the last rows are the differences between the predicted images and the ground truth.

Model PSNR↑ SSIM↑ LPIPS↓
W/o pre-training 18.92 0.535 0.6248

W/o Hard Patch Refinement 22.23 0.663 0.3244
W/o TA Modules 21.68 0.653 0.3402
two SA Modules 21.87 0.658 0.3387
four SA Modules 22.01 0.661 0.3270

UNet 21.56 0.649 0.3570
SiamTrans 22.26 0.664 0.3197

Table 3: Ablation study on MFMoiré.

desnowing methods are supervised. For all the methods, we
use their default parameters to generate the results.

Comparison with State-of-the-Arts
Quantitative results. On the datasets with ground
truth (e.g., NTURainSyn and MFMoiré), we use PSNR,
SSIM (Wang et al. 2004), and Learned Perceptual Image
Patch Similar (LPIPS) (Zhang et al. 2018) to compare the
restored images. LPIPS measures perceptual image similar-
ity using a pre-trained deep network. On the dataset with-
out ground truth (NTURainReal), we evaluate all generated
images using a no-reference quality metric, NIQE (Mittal
et al. 2012). As shown in Table 1 and Table 2, the proposed
method obtains the best scores on all the evaluation metrics
and on all the datasets. More details about the comparison
can be found from the supplementary materials.

Qualitative results. As shown in Fig. 5, the first and
third rows are the predicted results except the input and the

ground truth. The second and the last rows are the differ-
ences between the predictions and the ground truth. Through
a pre-trained model, the output of DGP losses many im-
age details. The single-image deraining methods, RESCAN,
MSPFN and DID-MDN, cannot remove the rain streaks
thoroughly because of the limitation of their generalization
ability. Our method removes the rain streaks and retains the
image details at the same time.

For image demoiréing, as shown in Fig. 6(a), the out-
put results of the single-image demoiréing methods (Mop-
Net and HRDN) may keep some noise or moiré artifacts.
Fig. 6(b) shows that the multi-frame methods, MLVR and
MMDM, face the color-shift and color artifact problems, re-
spectively. The visual results of desnowing are shown in the
supplementary materials.

Ablation Study
To illustrate the contributions of the three stages in our
pipeline, we conduct ablation study on MFMoiré. The quan-
titative comparisons are shown in Table 3, where the first
row are different variants of our model described below.

Importance of the stages. Although the second stage
(zero-shot restoration) is the core of our pipeline, the first
and third stages are also important.

Pre-training. The model of ‘W/o pre-training’ means
the model is randomly initialized without going through
the pre-training stage. Compared with the final full model
‘SiamTrans’, it shows that removing the pre-training stage
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Figure 6: Visual demoiréing comparison among our method and other algorithms including three demoiréing-specific methods
(MopNet, HRDN and MMDM) and a general image restoration method (MLVR), evaluated on MFMoiré.
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Figure 7: Demoiréing comparison between our two models
with and without the pre-training stage.

Input Input W/o HPR With HPR

Figure 8: One example of the desnowing results of our
method with HPR and without HPR.

leads to significant performance drop of 3.34dB on PNSR.
As shown in Fig. 7(a), the results of ‘W/o pre-training’ are
blurry and lose some details. These results indicate that the
pre-training is important for the later stages. Without the
pre-training, even if we train the later stages longer (e.g.,
increasing the number of iterations for zero-shot restoration
ten times to 2000), the network still cannot capture the de-
tails. Fig. 7(b) illustrates the numbers of iterations for both
models (with and without the pre-training) needed to reach
convergence for the zero-shot restoration stage. It clearly
shows that the pre-training enables the network to converge
much faster and perform much better in this stage.

Hard patch refinement (HPR). To verify the contribu-
tion of the HPR, we remove the 3rd stage from the whole
pipeline (indicated as ‘W/o HPR’ in Table 3). Although its
performance drop is not as serious as ‘W/o pre-training’ in
terms of the metrics in Table 3, its visual quality is degraded
obviously in many cases. As shown in Fig. 8, SiamTrans can
better recover the image occluded by the snow.

The Network Architecture. We also conduct a study to
analyze the effectiveness of the network architecture.

Temporal attention module & self-attention module.
In Table 3, ‘W/o TA’ means that in the basic network, the
temporal-attention module and one encoder are removed and
the input is a single frame. The performance drop in Ta-
ble 3 verifies the necessity of the temporal-attention module.
The self-attention module in the transformer can be stacked
to enhance the learning ability. We verify the effectiveness
of using multiple self-attention modules. In Table 3, ‘n SA
Modules’ means the transformer of our basic network has n
self-attention modules. Comparing ‘2 SA Modules’, ‘4 SA
Modules’, and SiamTrans that uses 6 modules, we find that
more self-attention modules can get better results.

Transformer or CNN. We replace the transformer with
the UNet (Ronneberger et al. 2015) which has the same
model size with the transformer in the basic network (de-
noted as ‘UNet’ in Table 3). Two feature maps outputed from
the encoders are concatenated and served as the input of the
UNet. The result shows that using the transformer is better
than using the UNet in the basic network.

Practical Applications of our Method
From the above experiments, our multi-frame method per-
forms better than previous single- or multi-frame methods.
It requires to use multiple consecutive frames. In practice,
it is easy to obtain multiple frames from modern cameras
or mobile phones. These equipments have the burst mode
and we can get multiple images from one scene in a short
period. These multiple frames can also be extracted from
videos, like the NTURainReal dataset we obtain in Sec. .

Conclusions
In this paper, we have proposed a zero-shot multi-frame im-
age restoration method for removing unwanted obstruction
elements that vary in successive frames. Our method con-
tains three stages. After self-supervisedly pre-trained on the
denoising task, our SiamTrans model is tested on three tasks
unseen during the pre-training. The results of SiamTrans
are further improved by the hard patch refinement. Com-
pared with a number of supervised or unsupervised, single-
frame or multi-frame state-of-the-arts, our method achieves
the best performance on all the tasks and on all the datasets.
The future work includes applying SiamTrans to other tasks
to explore more of its capacity.
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