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Abstract

Within the field of face recognition (FR), it is widely accepted
that the key objective is to optimize the entire feature space
in the training process and acquire robust feature representa-
tions. However, most real-world FR systems tend to operate at
a pre-defined False Accept Rate (FAR), and the correspond-
ing True Accept Rate (TAR) represents the performance of
the FR systems, which indicates that the optimization on the
pre-defined FAR is more meaningful and important in the
practical evaluation process. In this paper, we call the pre-
defined FAR as Anchor FAR, and we argue that the existing
FR loss functions cannot guarantee the optimal TAR under
the Anchor FAR, which impedes further improvements of FR
systems. To this end, we propose AnchorFace to bridge the
aforementioned gap between the training and practical eval-
uation process for FR. Given the Anchor FAR, AnchorFace
can boost the performance of FR systems by directly opti-
mizing the non-differentiable FR evaluation metrics. Specifi-
cally, in AnchorFace, we first calculate the similarities of the
positive and negative pairs based on both the features of the
current batch and the stored features in the maintained online-
updating set. Then, we generate the differentiable TAR loss
and FAR loss using a soften strategy. Our AnchorFace can
be readily integrated into most existing FR loss functions,
and extensive experimental results on multiple benchmark
datasets demonstrate the effectiveness of AnchorFace.

Introduction
Face recognition (FR) based on deep learning has been well
investigated for many years (Sun et al. 2014; Sun, Wang,
and Tang 2015). The mainstream of recent studies is to in-
troduce new loss functions (Deng et al. 2019; Wang et al.
2018b; Huang et al. 2020) to maximize the inter-class dis-
criminative ability and the intra-class compactness, which
optimizes the classification accuracy for each identity in the
training process, as shown in Fig. 1a. In other words, the cur-
rent methods mainly focus on optimizing the entire feature
space and generating robust and effective representation.

However, practically, current FR systems usually mea-
sure True Accept Rate (TAR) under a pre-defined False Ac-
cept Rate (FAR) as shown in Fig. 1b. Such measurement
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indicates that the similarity scores distribution of all posi-
tive and negative face image pairs under the realistic pre-
defined FAR, rather than the entire feature distribution, ac-
tually determines the performance of FR systems. Specif-
ically, as shown in Fig. 1c, from the ROC curves of three
typical FR models, we observe that the TAR performance
of MODEL1 outperforms all other models when FAR is
greater than 1e-5, while the TAR performance of MODEL3
is the best under the FAR of 1e-6. In real-world scenarios,
MODEL1 will be deployed when the FR systems fix the
FAR as 1e-4, while MODEL3 would be an ideal option in
the case of FAR as 1e-6. Furthermore, even though the TAR
performance of MODEL2 does not rank the first in a long in-
terval, MODEL2 preserves the best TAR performance when
FAR is fairly small. Thus, optimization on the pre-defined
specific FAR is essential to the training process of the FR
model, which has not been well investigated before.

Motivated by the above analysis, in this work, we aim to
investigate how to optimize the similarity scores distribution
of positive and negative pairs under the pre-defined FAR for
real-world FR systems. In other words, the objective is to
boost the TAR performance under the pre-defined FAR. We
call the pre-defined FAR as Anchor FAR and the whole op-
timization process under the Anchor FAR as Anchor Op-
timization. The biggest challenges of Anchor Optimization
are how to construct the positive and negative pairs in the
training process for the calculation of the evaluation metrics
(i.e., TAR and FAR) and the non-differentiable property of
these evaluation metrics. These two challenges make it dif-
ficult to optimize the TAR under the Anchor FAR directly.

In addition, (Liu et al. 2021b) proposed to search the
loss functions automatically for different non-differentiable
computer vision metrics. However, these methods rely on
carefully designed search space and search strategy for dif-
ferent tasks, which are complex and time-consuming. Be-
sides, the lack of Anchor Optimization in the training pro-
cess can be considered as a gap between the training and
evaluation for FR. There are also some works that analyze
the gaps between the training and evaluation for FR. For
example, for most softmax-based loss functions, sample-
to-prototype similarities are optimized in the training pro-
cess, while sample-to-sample similarities are used in prac-
tice (Deng et al. 2021). Furthermore, domain shift is another
common gap (Sohn et al. 2017), where the FR models per-
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Figure 1: (a).The training process of FR. (b).The evaluation process of FR. (c).The ROC curves of different models.

form poorly on unseen ethnicity if the distribution of the
training data is severely biased. When compared to these
works, we mainly focus on Anchor Optimization for FR,
which has not been discussed before.

In our AnchorFace, we introduce a pair of loss functions
(i.e., TAR loss and FAR loss) as the supplement for the
existing softmax-based loss functions in the training pro-
cess, which aims to optimize TAR under the Anchor FAR
directly (i.e., Anchor Optimization) on the training dataset.
To address the aforementioned challenges of Anchor Opti-
mization, we first construct an online-updating set to store
the features of the samples for each identity in the training
dataset, and update the features of the online-updating set in
each iteration. Then, we construct the positive pairs and neg-
ative pairs using the features from the current batch and the
online-updating set. Afterward, we calculate the similarity
scores of the positive pairs and negative pairs and the Anchor
Threshold under the Anchor FAR. Finally, based on the An-
chor Threshold, we use a soften strategy to approximate the
non-differentiable indicator function in the calculation pro-
cess of the TAR and the FAR, and generate the differentiable
TAR loss and FAR loss for FR.

The contributions of our work are summarized as follows:
• We first investigate the limitations of existing loss func-

tions from a new perspective, and then propose a pair of
loss functions (i.e., TAR loss and FAR loss) to directly
optimize the evaluation metrics in the training process
for practical face recognition, which is plug-and-play and
can be easily integrated into most existing loss functions.

• In our AnchorFace, we introduce to construct the positive
pairs and negative pairs by using the features from both
the current batch and the maintained online-updating set,
and utilize a soften strategy to produce the differentiable
TAR loss and FAR loss.

• Extensive experiments on multiple benchmarks demon-
strate the effectiveness of our proposed AnchorFace.

Related Works

Face Recognition. The success of deep face recognition
(FR) can be mainly credited to the following three im-
portant reasons: effective neural networks (Taigman et al.
2014; Sun et al. 2014; Sun, Wang, and Tang 2015; Si-
monyan and Zisserman 2014; Szegedy et al. 2015; Sun et al.
2015), large-scale datasets (Guo et al. 2016; Yi et al. 2014;
Kemelmacher-Shlizerman et al. 2016) and well-designed
loss functions (Wang et al. 2017; Wen et al. 2016; Zhang
et al. 2017; Liu et al. 2016, 2017; Sun et al. 2020; Wang et al.
2018a; Deng et al. 2019; Meng et al. 2021; Peng et al. 2019;
Jin et al. 2019; Liu et al. 2021a; Li et al. 2020; Liu et al.
2022). First, with the development of neural network archi-
tecture, many effective networks (e.g., GoogleNet (Szegedy
et al. 2015) and ResNet (He et al. 2016)) have obtained
promising results for FR. Meanwhile, Neural Architecture
Search was proposed to relieve the burden from the hand-
crafted network design process (Zoph and Le 2017; Liu
et al. 2020). Second, many large-scale FR datasets (e.g.,
CASIA-WebFace (Yi et al. 2014), MS-Celeb-1M (Guo et al.
2016), WebFace260M (Zhu et al. 2021)) are proposed to
improve the robustness and generalization ability for FR
systems. Third, many well-designed loss functions are pro-
posed to improve the generalization and discriminative abil-
ity of the learned feature representation for FR. For exam-
ple, Triplet loss (Schroff, Kalenichenko, and Philbin 2015)
aims to maximize the distances of negative pairs and mini-
mize the distances of positive pairs, and Center loss (Wen
et al. 2016) is proposed to reduce the intra-class varia-
tions by minimizing the distances within each class. Re-
cently, many angular-margin based loss functions (Liu et al.
2016, 2017) are proposed by introducing the angular con-
straints into the cross-entropy loss function. To further in-
crease the feature margin between different classes for en-
hanced discriminability, AM-softmax (Wang et al. 2018a),
CosFace (Wang et al. 2018b), and ArcFace (Deng et al.

1712



2019) introduce a margin item based on the aforementioned
methods. Moreover, CurricularFace (Huang et al. 2020) and
MV-Arc-Softmax (Wang et al. 2020) are used to introduce
the mining-based strategies to emphasize the mis-classified
samples. The recent work VPL (Deng et al. 2021) first an-
alyzes the limitations of previous methods, which employ
sample-to-prototype comparisons during training without
considering sample-to-sample comparisons, and then intro-
duces the sample-to-sample comparisons into the classifica-
tion framework for FR. In contrast to existing works, our
proposed AnchorFace discusses the necessity of the opti-
mization under the Anchor FAR (i.e., Anchor Optimization)
for practical FR from a new perspective, and introduces a
pair of loss functions to and reduce the gap of the training
and evaluation for FR.
Optimization on evaluation metrics. Owing to the non-
differentiable property of most evaluation metrics, some loss
functions have been proposed to simulate the evaluation
metrics to improve the performance of different computer
vision tasks (Berman, Triki, and Blaschko 2018; Eban et al.
2017; Brown et al. 2020; Zheng et al. 2020; Puthiya Param-
bath, Usunier, and Grandvalet 2014; Zheng et al. 2020).
For example, the Lovasz-Softmax loss (Berman, Triki, and
Blaschko 2018) for semantic segmentation and Distance-
IoU loss (Zheng et al. 2020) for object detection. In con-
trast to previous works, our work aims at designing loss
functions to directly optimize the evaluation metrics for
face recognition, which has not been investigated before.
Meanwhile, to remove the manual effort of designing these
metric-approximating losses, (Liu et al. 2021b) proposed
to search the loss functions automatically for object detec-
tion. However, these methods have the weaknesses that the
elaborate design of search space and search strategy needs
to be taken into account, which limits the application in real
scenarios.

Method
The overall pipeline of our proposed AnchorFace is illus-
trated in Fig. 2. Specifically, for each iteration in the training
process, we first extract the features of the current batch and
update the online-updating set using the extracted features.
Then, we construct the positive and negative pairs based on
the features of the current batch and the stored features of
the online-updating set. Afterward, we compute the cosine
similarity scores of all pairs, and obtain the Anchor Thresh-
old under the pre-defined Anchor FAR. Finally, we use the
soften strategy to generate the TAR loss and FAR loss based
on the Anchor Threshold.

Preliminary
True Accept Rate (TAR) and False Accept Rate (FAR) are
the most commonly used evaluation metrics for practical FR
systems, and we first describe the evaluation protocols of
these two metrics.

Given Nn negative pairs, the FAR is computed as follows:

FAR =
1

Nn

Nn∑
i=1

L(sin > t), (1)

where t is the chosen similarity score threshold, sin is the
similarity score of the i-th negative pair, and L(x) is the in-
dicator function, as shown in Fig. 3, which is not compatible
with gradient based optimization.

Similarly, given Np positive pairs, the TAR is defined as
follows:

TAR =
1

Np

Np∑
j=1

L(sjp > t), (2)

where sjp is the similarity score of the j-th positive pair.
In practice, we usually fix a pre-defined FAR (e.g., 1e-

4), and the corresponding TAR represents the performance
of the FR models. Specifically, the quantile of the similarity
scores of all negative pairs determines the threshold of the
specific FAR. When the threshold is obtained, we can calcu-
late the TAR based on the similarities of all positive pairs. In
our work, we call the pre-defined FAR as Anchor FAR and
the corresponding threshold as Anchor Threshold.

AnchorFace
In this section, we first describe the necessity of sufficient
positive and negative pairs, and introduce the construction
scheme of the online-updating set. Then, we describe how to
construct the positive pairs and negative pairs in the training
process. Finally, we introduce the soften strategy to produce
the TAR loss and FAR loss.
Necessity of sufficient positive and negative pairs. For An-
chor Optimization, our proposed AnchorFace aims to di-
rectly optimize the TAR under the Anchor FAR (e.g., 1e-
4). Therefore, to calculate the TAR and FAR in the train-
ing process, the construction of positive and negative pairs
are needed. In addition, if the numbers of positive pairs and
negative pairs are insufficient, the threshold estimation is not
robust, which leads to an inaccurate TAR estimation and de-
grades the performance of our proposed AnchorFace. Thus,
it is necessary to generate sufficient positive and negative
pairs to ensure the effectiveness of our AnchorFace.
Construction scheme of the online-updating set. Inspired
by MOCO (He et al. 2020) for unsupervised learning, which
constructs a dynamic queue (i.e., memory bank) from the
previous mini-batches to generate sufficient negative sam-
ples, we propose to maintain an online-updating set S ∈
RN×K×d in Fig. 2, where N is the number of identities
of the training dataset, K is the maximum number of fea-
tures for each identity, and d represents the dimension of
the feature representation extracted by the neural network
for each face image. In each iteration, we first update the
online-updating set S, and then utilize the stored features of
S to construct the positive pairs and negative pairs with the
features of the current batch.

Meanwhile, as discussed in VPL (Deng et al. 2021), fea-
tures drift slowly for FR models, which indicates that fea-
tures extracted previously can be considered as an approx-
imation of the output of the current network within a cer-
tain number of training steps. Therefore, we also create a
validness indicator V ∈ RN×K to represent the validness
of each feature in the online-updating set S. Each item in
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Figure 2: The overall framework of our proposed AnchorFace. N is the number of identities of the training dataset. K is the
maximum number of features for each identity. sn and sp represent the similarity scores of the negative and positive pairs,
respectively. tA denotes the Anchor Threshold under the Anchor FAR.

V is a scalar value, which denotes the remaining valid steps
for the corresponding feature in the online-updating set S.
The maximum number of valid steps for each feature is M ,
and we initialize all items of V as 0 at the beginning of the
training process. In each iteration, in our AnchorFace, we
first extract the features {fi}mi=1 of the current batch, where
m denotes the number of samples of this batch, and yi is
the corresponding label of the feature fi. Then, we update
the online-updating set S based on {fi}mi=1. Specifically,
for i-th feature fi, when the number of the stored features
for the corresponding identity yi is smaller than K, we di-
rectly insert fi into S based on the identity yi. When the
number of the stored features is equal to K for identity yi,
we first find out the index idxi of the most oldest feature
in S[yi], which is also the index of the smallest value in
V[yi]. Then, we replace the oldest feature with the newly ex-
tracted feature fi based on the index idxi, which means we
set S[yi][idxi] = fi. After that, we set the number of valid
step for fi as M , which means we set V[yi][idxi] = M . Af-
ter each training step, V is updated by V = V − 1, which
decreases the valid steps of all stored features in S.
Construction of the positive and negative pairs. After
the updating process for the online-updating set S, the
number of valid features in the online-updating set S is∑N

i=1

∑K
j=1 L(V[i][j] > 0), where L(x) is the indicator

function. We can easily construct the positive and negative
pairs for TAR and FAR calculation. Specifically, for each
feature fi in the current batch, the positive pairs are con-
structed by using fi and the stored valid features of the cor-
responding identity yi in the online-updating set S, while the
negative pairs are constructed by using fi and all other valid
features with different identity labels in the online-updating

Figure 3: The illustrations of different functions in (a) and
their derivations in (b).

set S. Finally, we calculate the similarity scores for all pos-
itive and negative pairs, and obtain the TAR and the corre-
sponding Anchor Threshold tA under the Anchor FAR.
TAR loss and FAR loss. As shown in Eq. 1 and Eq. 2, due
to the non-differentiable property of the indicator function
L(x), we cannot directly optimize the TAR under the An-
chor FAR based on gradient methods.

To this end, in our work, we introduce a soften strategy by
replacing the indicator function 1(x) with the differentiable
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sigmoid function, which is illustrated as follows:

Sigmoid(x; τ) =
1

1 + e−
x
τ
, (3)

where the temperature value τ is the hyper-parameter to
control the approximation sharpness and the operating re-
gion with gradients. As shown in Fig. 3, we observe that the
curves and derivatives of the sigmoid function and the indi-
cator function are closer when the τ is smaller.

Thus, we can re-formulate Eq.1 and Eq.2 to generate the
differentiable FAR loss Lf and TAR loss Lt as follows:

Lf =
1

Nn

Nn∑
i=1

1

1 + e−
sin−tA

τ

, (4)

Lt = 1− 1

Np

Np∑
j=1

1

1 + e−
s
j
p−tA

τ

, (5)

where tA is the aforementioned Anchor Threshold for each
iteration under the Anchor FAR, which is a scalar value.
When minimizing the FAR loss Lf , we will reduce the sim-
ilarities of negative pairs, and when minimizing the TAR
loss, we will generate higher similarities of positive pairs.
In this way, our proposed Lf and Lt simulate the evaluation
metrics (i.e., FAR and TAR) well, which can be optimized
with gradient methods. In order to maintain the discrimina-
tive ability of the learned representation, we also adopt the
recent softmax-based FR loss function (e.g., ArcFace) in the
training process, which is denoted as face loss Lcls. There-
fore, the final loss function L of AnchorFace is as follows:

L = Lcls + λ1 · Lf + λ2 · Lt, (6)

where λ1, λ2 are used to balance the losses.
As shown in Alg. 1, the algorithm pipeline of our Anchor-

Face is also provided for better clarification.

Discussion
Limitations of the existing loss functions. Softmax-based
loss functions (e.g., ArcFace) have been widely adopted for
FR model training, which aims to maximize the intra-class
similarity and minimize the inter-class similarity. However,
the gap between the training process and evaluation metric
limits the further improvements of these methods for prac-
tical FR. The gap lies in two folds. First, the optimization
target of the training process is not consistent with the eval-
uation metrics, as shown in Fig. 1. The softmax-based loss
functions aim to improve the discriminative capability of
the learned representation in the entire feature space and
increase the classification accuracy in the training process.
However, most FR systems are evaluated by TAR under pre-
defined FAR (i.e., Anchor FAR), which reveals that the sim-
ilarities distribution of all positive and negative pairs is more
important in practice. Therefore, the optimization on the An-
chor FAR (i.e., Anchor Optimization) is ignored for existing
loss functions. Second, the sample-to-prototype similarities
are used in the training process for most existing loss func-
tions, while the sample-to-sample similarities are used in
the evaluation process. This kind of gap is not considered

in most existing loss functions, which is also mentioned in
the recent work VPL (Deng et al. 2021). The loss functions
in our AnchorFace consider the sample-to-sample compari-
sions in the training process.
The Strengths of AnchorFace. First, for face verification,
the TAR performance will be drastically boosted if the sim-
ilarities of the positive pairs slightly lower than the thresh-
old can be shifted higher than the threshold and similarities
of the negative pairs with slightly higher than the thresh-
old can be shifted lower than the threshold. Our Anchor-
Face simulates the evaluation process by directly optimiz-
ing TAR under the Anchor FAR in each training iteration.
Thus, we will pay more attention to those pairs that greatly
affect the performance of FR systems. Besides, based on
the property of sigmoid function, gradients usually vanish
when the absolute value of the input is large, which indicates
that AnchorFace mainly optimizes these pairs with similari-
ties around the Anchor Threshold, instead of the hard pairs
with similarities far from the Anchor Threshold. Second, in
TAR loss and FAR loss, we optimize the similarities be-
tween the features of the current batch and the stored fea-
tures of the online-updating set, which provides sample-to-
sample comparisons in the optimization process. Therefore,
our AnchorFace is able to directly optimize the evaluation
metrics and introduce the sample-to-sample similarities op-
timization into the training process, which is an effective
supplement for existing loss functions. Finally, in our An-
chorFace, no extra costs (e.g., memory, time) are required at
inference for FR verification, and the GPU memory usage in
training are also acceptable.

Experiments
In this section, we first conduct extensive experiments on
multiple benchmark datasets to demonstrate the effective-
ness of our proposed AnchorFace. Then, we perform a de-
tailed ablation study to further analyze the contributions of
different components of AnchorFace.

Implementation Details
Datasets. For the training dataset, we follow many exist-
ing works to employ the refined version of MS-1M (Guo
et al. 2016) dataset provided by (Deng et al. 2019), which
consists of about 85k identities with 5.8M images. For the
testing datasets, we use the following benchmark datasets,
including IJB-B (Whitelam et al. 2017), IJB-C (Maze et al.
2018), and IFRT (InsightFace 2021).
Experimental setting. For the pre-processing of the train-
ing data, we follow the recent works (Deng et al. 2019; Kim,
Park, and Shin 2020; Deng et al. 2020) to generate the nor-
malized face crops (112× 112). For the backbone network,
we utilize the widely used neural networks(e.g., ResNet-50,
ResNet-100 (He et al. 2016)), in which we follow (Deng
et al. 2019) to produce 512-dim (i.e., d=512) feature em-
bedding representation. For the training process of Anchor-
Face, the initial learning rate is 0.1 and divided by 10 at the
110k, 190k, 220k iterations. The batch size and the total it-
eration are set as 512 and 240k, respectively. For the online-
updating set S, by default, we set the maximum number of
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Algorithm 1: AnchorFace

Input: FR model E ; Classifier C; Current batch data B
with m face images; The dimension of each feature d;
The maximum number of features for each identity K;
The number of identities N ; The online-updating set
S ∈ RN×K×d; The validness indicator V ∈ RN×K

corresponding to the validness of the stored features in
S; The maximum number of valid steps M ;

1: Randomly initialize E , C, and S;
2: Zero initialize V;
3: for each iteration in the training process do
4: Get batch features {fi}mi=1 = E(B);
5: for each feature fi in {fi}mi=1 do
6: Select the index idxi to insert fi into S based on

V and the corresponding label yi;
7: S[yi][idxi] = fi;
8: V[yi][idxi] = M ;
9: end for

10: V = V − 1;
11: Construct the positive pairs and negative pairs using

{fi}mi=1 and the valid features S[V > 0];
12: Calculate {sjp}

Np

j=1 and {sin}
Nn
i=1 of the positive pairs

and negative pairs, respectively, and obtain tA
under the Anchor FAR;

13: Calculate FAR loss Lf and TAR loss Lt based on
Eq.4 and Eq.5;

14: Calculate Lcls based on {fi}mi=1 and C;
15: Update parameters in E and C based on the loss

function L = Lcls + λ1 · Lf + λ2 · Lt;
16: end for
Output: The optimized FR model E ;

features of each identity (i.e., K) and the maximum number
of valid steps for each feature (i.e., M ) as 5 and 1000, re-
spectively. We set τ as 0.01 in Eq. 4 and Eq. 5. Besides, the
loss weights of FAR loss Lf (i.e., λ1) are set as 1k for the
Anchor FARs of 1e-4. The loss weight of TAR loss Lt (i.e.,
λ2) is set as 10. To maintain the stability of the training pro-
cess, we only use the face loss Lcls to train the FR model at
the first 20k iterations. In the following experiments, we call
our AnchorFace combined with ArcFace as AF-ArcFace.

Main Results
IJB-B (Whitelam et al. 2017) is composed of 67k face im-
ages, 7k face videos and 10k non-face images. Compared
with IJB-B, IJB-C (Maze et al. 2018) includes new individ-
uals with increased occlusion and diversity of geographic
origin and is composed of 138k face images, 11k face videos
and 10k non-face images. As shown in Table 1, we provide
the results of AnchorFace using ResNet-100 trained on MS-
1M dataset on the challenging IJB-B (Whitelam et al. 2017)
and IJB-C (Whitelam et al. 2017) datasets. Since our method
can be readily integrated into different existing loss func-
tions, we conduct detailed experiments by combining An-
chorFace with three popular functions (i.e., CosFace (Wang
et al. 2018b), ArcFace (Deng et al. 2019) and Curricular-
Face (Ranjan, Castillo, and Chellappa 2017)), and optimize

AnchorFace under the Anchor FAR of 1e-4. In Table 1, we
name AnchorFace combined with three baseline methods as
AF-ArcFace, AF-CosFace and AF-CurricularFace, respec-
tively, and observe that our method achieves significant per-
formance improvements to existing popular loss functions
on IJB-B and IJB-C datasets, which shows that AnchorFace
is robust and orthogonal for different loss functions. To

Methods IJB-B IJB-C
CosFace (Wang et al. 2018b) 94.20 95.85

AF-CosFace 94.38 96.09
ArcFace (Deng et al. 2019) 94.25 95.91

AF-ArcFace 94.42 96.22
CurricularFace (Huang et al. 2020) 94.85 96.13

AF-CurricularFace 94.97 96.32

Table 1: 1:1 verification TAR(@FAR=1e-4) on the IJB-B
and IJB-C datasets with different loss functions.

evaluate the effectiveness of our proposed AnchorFace on
face recognition across races, we also conduct experiments
on more challenging and large-scale InsightFace Recogni-
tion Test (IFRT) (InsightFace 2021), which consists of 1.6M
images of 242K identities (non-celebrity) covering four de-
mographic groups: African, Caucasian, Indian and Asian.
For each demographic group, all pairs between gallery and
probe sets are used for the 1:1 face verification, which eval-
uates the TAR performance under the FAR of 1e-6. Based
on the ArcFace baseline of ResNet-100 trained on MS-1M
dataset, we combined our AnchorFace with ArcFace loss to
optimize the TAR under Anchor FAR of 1e-6. As shown in
Table 2, our AF-ArcFace achieves consistent improvements
on all races, which further demonstrates the effectiveness of
our proposed AnchorFace.

Ablation Study
The effect of each component in AnchorFace. We first
conduct the experiments based on ResNet-100 with MS-1M
dataset to demonstrate the contributions of each loss in our
AnchorFace, and the results on IJB-C dataset are reported in
Table 3. Specifically, in AnchorFace (w/o TAR), we only use
FAR loss without TAR loss. In AnchorFace (w/o FAR), we
only use TAR loss without FAR loss. In Table 3, we observe
that our AF-ArcFace is better than two alternative methods
(i.e., AF-ArcFace (w/o TAR) and AF-ArcFace (w/o FAR)),
which demonstrates that it is necessary to utilize both TAR
loss and FAR loss.
The effect of the hyper-parameters. To investigate the per-
formance variation of our method with respect to the hyper-
parameters (i.e., the maximum number of features for each
identity K and the maximum number of valid steps M ), we
evaluate AnchorFace on IJB-C dataset using different val-
ues of K and M . Specifically, to reduce the time and GPU
costs of these experiments, we leverage a relatively small
model (i.e., ResNet-50) as an example, which is trained on
MS-1M dataset using ArcFace loss. In Table 4, we set M
as 1000, and use different values of K. When the maximum
number of features for each identity K increases from 1 to
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Methods African Caucasian Indian Asian All
ArcFace 79.228 86.718 85.405 58.341 81.235

AF-ArcFace 79.314 87.001 85.593 59.702 82.062

Table 2: 1:1 verification TAR(@FAR=1e-6) on the IFRT dataset.

5, our method achieves better performance. However, when
we continue to increase the value of K, the improvement
of performance becomes relatively stable. In Table 5, we set
K as 5, and use different values of M . When M increases
from 400 to 1000, our method achieves better performance,
which indicates that it is effective to generate more pairs for
our AnchorFace. However, when M continues to increase,
the performance begins to gradually degrade. It is reason-
able that the quality of feature representations begins to de-
crease when M is larger, which causes inaccurate threshold
and TAR estimation. Therefore, to reduce the computation
cost and maintain the performance of AnchorFace, by de-
fault, we set K as 5 and M as 1000, respectively.

Methods IJB-C
ArcFace (Deng et al. 2019) 95.91

AF-ArcFace (w/o TAR) 96.02
AF-ArcFace (w/o FAR) 96.05

AF-ArcFace 96.22

Table 3: 1:1 verification TAR(@FAR=1e-4) on the IJB-C
dataset of different methods.

K 1 3 5 7 9
TAR (%) 94.28 95.01 95.23 95.22 95.25

Table 4: 1:1 verification TAR(@FAR=1e-4) on the IJB-C
dataset of AF-ArcFace when using different values of K.

M 400 800 1000 1200 1400
TAR (%) 95.09 95.16 95.23 95.20 95.18

Table 5: 1:1 verification TAR(@FAR=1e-4) on the IJB-C
dataset of AF-ArcFace when using different values of M .

Further Analysis
Effectiveness of the online-updating set. We propose a
variant of our proposed AnchorFace (i.e., AF-ArcFace-FC).
For the AF-ArcFace-FC, we use the weights of the last FC
layer and the features of the current batch to construct the
positive pairs and negative pairs, which can also calculate
the TAR loss and FAR loss. As shown in Table 6, we ob-
serve that AF-ArcFace-FC achieves marginal performance
improvement when compared with ArcFace baseline. It is
reasonable because the weights of the FC layer are updated
slowly as discussed in VPL (Deng et al. 2021), which re-
sults in fewer variations of different iterations. Besides, in

Figure 4: Cosine similarity distributions of the positive pairs
and negative pairs between ArcFace and AF-ArcFace.

AF-ArcFace-FC, the number of positive and negative pairs
are also insufficient, which makes the threshold and TAR
estimations inaccurate.

Methods IJB-C
ArcFace (Deng et al. 2019) 95.91

AF-ArcFace-FC 95.98
AF-ArcFace 96.22

Table 6: 1:1 verification TAR(@FAR=1e-4) on the IJB-C
dataset of different methods.

Visualization. We visualize the distributions of similarity
scores on the IJB-C testing set of different methods (i.e.,
ArcFace, and AF-ArcFace) in Fig. 4. As shown in Fig. 4,
when compared to ArcFace baseline, the similarity distribu-
tions of the positive pairs and the negative pairs in our AF-
ArcFace are more compact, and the margin between the pos-
itive pairs and negative pairs of our proposed AF-ArcFace is
more distinct, which further demonstrates the effectiveness
of our proposed AF-ArcFace.

Conclusion
In this paper, we first investigate the limitations of existing
loss functions for practical face recognition, where the op-
timization on the specific Anchor FAR (i.e., Anchor Opti-
mization) is ignored. Besides, we propose the AnchorFace
to directly optimize the non-differentiable evaluation met-
rics in the training process, where the online-updating set
and soften strategy are introduced. Finally, we calculate a
pair of loss functions (i.e., TAR loss and FAR loss). Ex-
tensive experiments on multiple face recognition benchmark
demonstrate the effectiveness of our proposed AnchorFace.
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