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Abstract

Optimising the approximation of Average Precision (AP) has
been widely studied for image retrieval. Limited by the defini-
tion of AP, such methods consider both negative and positive
instances ranking before each positive instance. However, we
claim that only penalizing negative instances before positive
ones is enough, because the loss only comes from these nega-
tive instances. To this end, we propose a novel loss, namely Pe-
nalizing Negative instances before Positive ones (PNP), which
can directly minimize the number of negative instances before
each positive one. In addition, AP-based methods adopt a fixed
and sub-optimal gradient assignment strategy. Therefore, we
systematically investigate different gradient assignment solu-
tions via constructing derivative functions of the loss, resulting
in PNP-I with increasing derivative functions and PNP-D with
decreasing ones. PNP-I focuses more on the hard positive in-
stances by assigning larger gradients to them and tries to make
all relevant instances closer. In contrast, PNP-D pays less atten-
tion to such instances and slowly corrects them. For most real-
world data, one class usually contains several local clusters.
PNP-I blindly gathers these clusters while PNP-D keeps them
as they were. Therefore, PNP-D is more superior. Experiments
on three standard retrieval datasets show consistent results
with the above analysis. Extensive evaluations demonstrate
that PNP-D achieves the state-of-the-art performance. Code is
available at https://github.com/interestingzhuo/PNPloss

Introduction
Image retrieval (Radenović, Tolias, and Chum 2019; Min et al.
2020) refers to finding all images containing relevant content
with the query from the database. One important issue is to
design the training objective. Recently, some works propose
to directly optimize the Average Precision (AP) (Revaud et al.
2019; Brown et al. 2020; Cakir et al. 2019) to achieve end-
to-end training. Considering AP is non-differentiable and
can’t be directly optimized by the gradient descent, these
works leverage some transformations to approximate AP to
make it differentiable. These methods greatly promote the
development of retrieval.

*Work done during an internship at Meituan.
†Corresponding author.
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Figure 1: The functional image of AP-based loss LAP :
R(i, SP ) and R(i, SN ) are the number of positive and nega-
tive instances before the instance i, respectively, where SP

is the similarity set between the query and positive instances
and SN is the similarity set between the query and negative
instances. Arrows are the optimal path of positive instances.

However, there are two problems for AP-based methods:
(1) Redundancy exists in the optimization of AP. Fig. 1
shows the functional image of AP-based loss LAP . As shown
in Fig. 1, the goal of minimizing LAP is equivalent to min-
imize R(i, SN ), because LAP = 0 only when R(i, SN ) =
0. Therefore, the computation of R(i, SP ) is redundant. (2)
Sub-optimal gradient assignment strategy. Limited by the
definition of AP, AP-based methods only adopt one specific
gradient assignment strategy. Specifically, AP-based losses
assign smaller gradient to larger R(i, SN ), as shown in Fig. 1.
Different gradient assignment strategies may result in differ-
ent performance. Therefore, it leaves room for us to systemat-
ically explore different gradient assignment solutions to find
potential better ones.

For the first problem, we propose a novel loss, namely
Penalizing Negative instances before Positive ones (PNP),
which directly minimizes the number of negative instances
before each positive one. Therefore, each negative instance
will receive penalties from all positive ones after it. In terms
of each negative instance, if it ranks before more positive
ones, it will receive more penalties and be corrected more
quickly. As shown in Fig. 2, image (a) will receive more
penalty because there are more positive instances after it
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Figure 2: Penalizing Negative instances before Positive ones (PNP): PNP directly improves the retrieval performance by
penalizing negative instances before positive ones. Each arrow indicates the penalty of each negative instance. Each negative
instance will receive penalties from all positive ones after it, thus the negative instance before more positive ones will receive
stronger penalty and be quickly corrected.

and it will be quickly corrected. In contrast, image (e) will
be slowly corrected because that there are fewer positive
instances (image (f)) after it.

For the second problem, we systematically investigate dif-
ferent gradient assignment solutions. We find that the deriva-
tive function of the loss function defines different gradient
assignment solutions. To this end, we construct different
derivative functions, which result in two different types of
PNP, namely PNP-I with increasing derivative functions and
PNP-D with decreasing ones. PNP-I assigns larger gradi-
ents to the positive instances with more negative ones before
and tries to gather all relevant samples together. In contrast,
PNP-D assigns smaller gradients to such positive instances.
Therefore, PNP-D will slowly correct these instances, which
probably belong to another center of the corresponding cat-
egory. As shown in Fig. 2, PNP-I assigns larger gradients
to image (f) and tries to quickly correct it, because there
are more negative instances before it. In contrast, PNP-D
assigns smaller gradient to image (f) by considering it proba-
bly belongs to another center of the corresponding category.
For the real-world data, one class usually contains several
local clusters, and PNP-D is more suitable for such case,
thus may be more superior. Extensive evaluation on three
standard retrieval datasets shows that PNP-D achieves the
state-of-the-art performance.

In summary, our major contributions are as follows:

• We propose a novel loss function named PNP, which can
improve the approximation of AP by simply ignoring
positive instances before the target positive one.

• To our knowledge, we are the first research to design loss
functions via the construction of their derivative functions.
Based on the proposed method, we systematically inves-
tigate different gradient assignment solutions and obtain
more appropriate loss functions.

• Experimental results on three benchmark datasets demon-
strate that the proposed method achieves the state-of-the-
art performance.

Related Work
Image Retrieval. How to obtain a compact image descrip-
tor for retrieval has been widely studied (Radenović, Tolias,
and Chum 2019; Min et al. 2020; Tolias, Jenicek, and Chum
2020; Cao, Araujo, and Sim 2020). Previous works bend their
efforts for generating descriptors through an aggregation of
local features, such as Fisher vectors (Perronnin et al. 2010)
and VLAD (Arandjelovic and Zisserman 2013; Jégou et al.
2010). More recently, CNNs have made impressive progress
for image retrieval (Arandjelović et al. 2018; Babenko et al.
2014; Albert et al. 2016; Radenović, Tolias, and Chum 2016;
Wang et al. 2014), because of their powerful nonlinear fitting
capabilities. Besides studying the design of neural network
structure to generate discriminative descriptors, there are also
many researches on how to design the training objective (Re-
vaud et al. 2019; Hadsell, Chopra, and Lecun 2006; Guiver
and Snelson 2008; Sohn 2016; Sun et al. 2020; Qian et al.
2019; Gu, Ko, and Kim 2021), which brings out another
research topic, deep metric learning.
Deep Metric Learning. Deep metric learning has been
widely studied because of its important role in many tasks
(Kim and Park 2021; Fu et al. 2021), such as image retrieval.
How to design the objective for such task is one important
topic. A wide variety of loss functions have been proposed in
previous works. These loss functions (Schroff, Kalenichenko,
and Philbin 2015; Ji et al. 2017; Engilberge et al. 2019) mini-
mize the intra-class distance while maximize the inter-class
distance by considering the constructed pairs, tuples, etc.
For example, the triplet loss (Schroff, Kalenichenko, and
Philbin 2015) directly optimizes the relative ranking of posi-
tive and negative instances given an anchor. However, there
are too many pairs or tuples, and most of them are useless
for training. To solve this problem, many methods have been
proposed, such as pretraining for classification, combining
multiple losses (Milbich et al. 2020a,b) and using complex
sample mining strategies (Manmatha et al. 2017).
Optimizing Average Precision (AP). Directly optimising
AP has been widely studied in the retrieval community. Vari-
ous methods (Cakir et al. 2019; He et al. 2018; He, Lu, and
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Figure 3: PNP Loss: Derivative functions and loss functions of different variants. PNP-Iu and PNP-Ib have increasing derivative
functions, while PNP-Ds and PNP-Dq have decreasing derivative functions.

Sclaroff 2018; Revaud et al. 2019) have been proposed to
overcome the non-differentiability in optimizing AP, such
as optimizing a structured hinge-loss upper bound to the AP
(Mohapatra et al. 2018), optimizing an approximation of AP
derived from distance quantization (Cakir et al. 2019) and
smoothing the path towards optimization (Brown et al. 2020).
These approximations rely on the definition of AP to achieve
better retrieval performance.

Different from above works, we propose the PNP loss,
which directly minimizes the number of negative instances
before each positive one to improve the retrieval performance.
We further investigate different variants of PNP to explore po-
tential better gradient assignment solutions via the construc-
tion of derivative functions. Extensive evaluations demon-
strate that the proposed PNP loss achieves the state-of-the-art
performance on three benchmark datasets.

Methodology
Given a query, the goal of retrieval systems is to rank all
instances in a retrieval set Ω = {Ii, i = 0, ...,m} based on
their similarities to the query, where Ii is an instance and
m is the size of the retrieval set. For each query Iq, the set
is split into a positive set Pq and a negative set Nq, which
are composed by instances of the same class and of different
classes, respectively.

For the query Iq, the similarity set SΩ of all instances in
the retrieval set are measured via a chosen similarity. In this
paper, we use the cosine similarity, and SΩ can be defined as:

SΩ = {si = cos(vq, vi), i = 0, ...,m} (1)

where vq, vi are the embeddings of Iq and Ii, respectively.
SΩ can be divided into SP and SN , i.e., SΩ = SP ∪ SN ,
where SP = {si, ∀i ∈ Pq} and SN = {si, ∀i ∈ Nq} denote
the positive and negative similarity set, respectively.

Based on the similarity set, the number of negative in-
stances before Ii can be defined as:

R(i, SN ) =
∑

j∈SN ,j ̸=i

I{sj − si > 0} (2)

where I{·} is an Indicator function.

Note that R(i, SN ) is not differentiable due to the Indi-
cator function. Similar to (Brown et al. 2020), we relax the
Indicator function with a sigmoid function G(·; τ), where τ
refers to the temperature for adjusting the sharpness:

G(x; τ) =
1

1 + e−
x
τ

(3)

Substituting G(·; τ) into Eq. 2, we can easily make R(i, SN )
differentiable.

Definition of PNP
AP-based loss is defined as Eq. 4. The goal of minimizing
LAP is equivalent to minimize R(i, SN ), and thus the com-
putation of R(i, SP ) in Eq. 4 is redundant.

LAP = 1− 1

|SP |
∑
i∈SP

1 +R(i, SP )

(1 +R(i, SP ) +R(i, SN ))
(4)

Therefore, we propose a PNP loss to directly minimize
R(i, SN ). An intuitive loss function LO can be defined as
the number of negative instances before each positive one:

LO =
1

|SP |
∑
i∈SP

R(i, SN ) (5)

where |SP | is the normalization factor to remove the influ-
ence of the number of positive instances in each mini-batch.
Substituting Eq. 2 into Eq. 5, we can get the original PNP. As
shown in Fig. 2, each negative instance will receive penalties
from all the positive ones ranking after it. Therefore, nega-
tive instance with more positive ones after will receive more
penalties and will be quickly corrected. The PNP-O and its
derivative function are shown in Fig. 3 (a), and the gradient
assignment of PNP-O is constant.

Variants of PNP
Different gradient assignment strategies can result in different
performance. In this section, we systematically investigate
different gradient assignment solutions. Specifically, we de-
sign different variants of PNP by constructing their derivative
functions, resulting in PNP-Increasing (PNP-I) with increas-
ing derivative functions and PNP-Decreasing (PNP-D) with
decreasing ones.
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PNP-Increasing (PNP-I) According to the above defini-
tion, we should guarantee that the derivative function of
PNP-I is increasing. Without losing generality, we can di-
vide PNP-I into PNP-Iu with unbounded derivative function
and PNP-Ib with bounded derivative functions.

As for PNP-Iu, we use Eq. 6 as its derivative functions.
The value of this function will go down to zero when the loss
is zero and go up to infinite when the loss tends to be infinity.
Then we get PNP-Iu via infinitesimal analysis, shown in
Eq. 7. LIu has no hyper-parameters, and thus reduces the
difficulty of training.

∂LIu

∂R(i, SN )
= log(1 +R(i, SN )) (6)

LIu =
1

|SP |
∑
i∈SP

(1 +R(i, SN )) ∗ log(1 +R(i, SN )) (7)

As for PNP-Ib, in order to satisfy the two requirements:
increasing and bounded, we use Eq. 8 as its derivative func-
tion. We introduce the parameter b to achieve an adjustable
boundary. Then we can also get PNP-Ib as Eq. 9.

∂LIb

∂R(i, SN )
=

R(i, SN )

1 + bR(i, SN )
(8)

LIb =
1

|SP |
∑
i∈SP

1

b2
(bR(i, SN )− log(1+bR(i, SN ))) (9)

Loss functions and their derivative functions are shown in
Fig. 3 (b)&(c). The derivative functions of these two functions
are both increasing, which means that positive instances with
more negative ones before will receive more penalties and
these two loss functions will try to make such hard positive
instances closer to the query.

PNP-Decreasing (PNP-D) Specifically, we choose a com-
mon used decreasing function as the derivative functions of
PNP-D, shown in Eq. 10 and Eq. 11. The introduced parame-
ter α controls the speed of the descent, and larger α leads to
faster speed. These two derivative functions result in PNP-Ds

with slow speed and PNP-Dq with fast speed. After infinites-
imal analysis, the PNP-Ds and PNP-Dq will be Eq. 12 and
Eq. 13, respectively.

∂LDs

∂R(i, SN )
=

1

(1 +R(i, SN ))
(10)

∂LDq

∂R(i, SN )
=

α

(1 +R(i, SN ))α+1
(α ≥ 1) (11)

LDs
=

1

|SP |
∑
i∈SP

log(1 +R(i, SN )) (12)

LDq = 1− 1

|SP |
∑
i∈SP

1

(1 +R(i, SN ))α
(α ≥ 1) (13)

Loss functions and their derivative functions of PNP-D are
shown in Fig. 3 (d)&(e). The derivative functions of these
two functions are both decreasing, which means that positive
instances with fewer negative ones before will receive more
penalties and these two loss functions will quickly correct
such instances.

Figure 4: Comparison between PNP-I and PNP-D: The
dashed arrows represent the directions of optimization. Dif-
ferent colors represent different categories. b and y represent
centers of different categories. It is worth mentioning that b1
and b2 are different centers of class b. PNP-I blindly makes
b1 and b2 closer while PNP-D keeps such instances distribute
into two clusters.

Figure 5: Relation between PNP and AP-based loss: The
gradients of AP-based loss with respect to R(i, SN ) when
R(i, SP ) = 0,1,2,3. The gradients of PNP-D (α = 2) is steeper
than AP-based loss.

Discussion PNP-I assigns larger gradients to positive in-
stances with more negative ones before, while PNP-D assigns
smaller gradients to such positive instances. PNP-I tries to
make all the relevant instances together. In contrast, PNP-D
only quickly corrects positive instances with fewer negative
ones before, because such samples are considered to belong
to the same center with the query. As shown in Fig. 4, if b1
and b2 are sampled into one batch. PNP-I will try to make
them gather by assigning larger gradients. In contrast, con-
sidering too many negative instances (yellow) between them,
PNP-D will assign smaller gradients to them and keep the
multi-center distribution for the blue class. PNP-D can sat-
isfy such distribution which is also mentioned by (Qian et al.
2019), and thus is superior to PNP-I. Such analysis has been
further verified via our comprehensive experimental evalua-
tion.

We just conduct above four variants of PNP. Actually, our
proposed design strategy is general and similar strategies can
be further explored to find more solutions.

Relation between PNP and AP

In this section, we investigate the relation between PNP and
AP. The derivative function of AP-based loss with respect
to R(i, SN ) is shown in Eq. 14 and its functional image is
shown in Fig. 5. AP-based methods have similar gradient
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Method R@1 (%) R@10 (%) R@100 (%) R@1K (%) Dists@intra Dists@inter NMI (%)
PNP-O 77.9 90.5 96.3 98.9 0.318 0.793 90.0
PNP-Iu 76.3 89.6 96.0 98.9 0.301 0.771 89.6
PNP-Ib 77.9 90.4 96.3 98.9 0.302 0.756 90.0
PNP-Ds 79.6 91.4 96.6 99.0 0.363 0.849 90.3
PNP-Dq 80.1 91.5 96.7 99.0 0.380 0.946 90.4

Table 1: Results on different variants of the PNP loss on SOP (BS = 112).

Method
Small (%) Medium (%) Large (%)

Dists@intra Dists@inter NMI (%)
R@1 R@5 R@1 R@5 R@1 R@5

PNP-O 93.6 97.1 91.6 95.9 89.2 95.4 0.165 0.791 90.5
PNP-Iu 92.4 96.9 90.4 95.4 87.6 94.8 0.137 0.727 90.0
PNP-Ib 94.0 97.3 92.0 96.0 89.9 95.4 0.144 0.674 90.6
PNP-Ds 94.3 97.3 92.7 96.4 91.0 95.9 0.203 0.865 90.8
PNP-Dq 94.6 97.4 92.9 96.3 91.4 95.9 0.204 0.974 91.0

Table 2: Results on different variants of the PNP loss on VehicleID (BS = 112).

assignment with PNP-D.

∂LAP

∂R(i, SN )
=

1 +R(i, SP )

(1 +R(i, SP ) +R(i, SN ))2
(14)

However, AP-based methods use different gradient assign-
ments by considering the positions of positive instances.
When too many positive instances rank before the target posi-
tive instance (R(i, SP ) = 3), the gradient respect to R(i, SN )
is almost to be equal for different R(i, SN ). It weakens the
advantage of such gradient assignment, probably leading to
worse retrieval performance for AP. In contrast, PNP can fur-
ther enhance such advantage and finally achieve competitive
performance.

Experiment
Dataset
We use the following three popular datasets as the benchmark
datasets.
Stanford Online Products (SOP) (Song et al. 2016) contains
120,053 product images divided into 22,634 classes. The
training set contains 11,318 classes with 59,551 images and
the rest 11,316 classes with 60,502 images are for testing.
VehicleID (Liu et al. 2016) contains 221,736 images of
26,267 vehicle categories, where 13,134 categories with
110,178 images are used for training. Following the same test
protocol as (Liu et al. 2016), three test sets of increasing sizes
are used for evaluation (termed small, medium, large), which
contain 800 classes (7,332 images), 1,600 classes (12,995
images) and 2,400 classes (20,038 images), respectively.
INaturalist (Van Horn et al. 2018) is a large-scale animal
and plant species classification dataset with 461,939 images
from 8,142 classes. We follow the setting from (Brown et al.
2020) by keeping 5,690 classes for training, and 2,452 unseen
classes for testing.

Experimental Setup
We use the convolutional layers of ResNet-50 pretrained on
ImageNet (He et al. 2016) to perform the training. The mod-
els are optimized using Adam (Kingma and Ba 2015), we set

the initial learning rate 10−5, weight decay 4 × 10−4. During
training, we randomly sample k classes and |P | samples per
class to form each mini-batch. Following standard practice,
we resize images to 256 × 256, and randomly crop them
to 224 × 224 as input. Random flipping (p = 0.5) is used
during training for data augmentation, and a single center
crop of 224 × 224 is used during evaluation. We use 0 as the
fixed random seed for all experiments to avoid seed-based
performance fluctuations. During training, we directly set τ
in Eq. 3 to 0.01 which is explored in (Brown et al. 2020).

For all the datasets, every instance from each class is used
in turn as the query Iq, and the retrieval set Ω is formed as
all the remaining instances. Recall@k (R@k) is adopted as
the main evaluation metric. In order to evaluate the gener-
alization of the model, we also display dists@intra (Mean
Intraclass Distance), dists@inter (Mean Interclass Distance)
(Roth et al. 2020) and Normalized Mutual Information (NMI)
(Schütze, Manning, and Raghavan 2008) for further perfor-
mance analysis. BS represents mini-batch size.

Performance of Different PNP Variants
In this section, we investigate different variants of PNP on
two popular benchmark datasets. The batch size of experi-
ments in Table 1 and Table 2 are both 112. We report the best
performance of different variants and the impact of hyper-
parameters is shown in Fig. 8.

We present R@k, Distance and NMI in Table 1 and Table 2.
PNP-D consistenly outperforms PNP-O and PNP-I on two
benchmark datasets for R@k and achieves larger dists@intra,
dists@inter and NMI, which shows better generalization of
the model (Roth et al. 2020). Specifically, PNP-D is 2.1%
higher than PNP-O on SOP benchmark and 0.9% higher on
VehicleID for R@1. In contrast, PNP-I is worse than PNP on
R@1, and it is about 1% lower than PNP on SOP benchmark
1-2% on VehicleID for R@1.

PNP-I assigns larger gradients to positive instances which
have more negative ones before, thus it will enforce rele-
vant images to gather and result in smaller dists@intra and
dists@inter. In contrast, PNP-D assigns smaller gradients
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Figure 6: Illustration of the effect of different variants. (a)
training and test data (b) The network trained with PNP-I
fails to separate all test classes due to the aggregation of all
relevant instances. (c) The PNP-D successfully separates the
test classes by keeping the intra-class variance.

Figure 7: Image retrieval examples on three datasets. Images
with green border are positive instances and these with red
border are negative ones for the query.

to such instances and slowly optimizes them by consider-
ing that they have a high probability of belonging to other
centers of the corresponding category, and therefore it has
larger dists@intra and dists@inter. By this strategy, PNP-D
can adaptively achieve “multi-centers” for each category if
necessary and automatically adjust the number of clusters.
Such strategy also solves the error correction of noise by
considering the noisy data as another center.

Previous works have found that larger dists@intra and
dists@inter will produce better generalization (Roth et al.
2020). The results shown in Table 1 and Table 2 further
confirm such conclusion. Compared to PNP-I, PNP-D has
larger dists@intra and dists@inter, and results in larger NMI,
which shows better generalization of the model. Similar to
(Roth et al. 2020), we conduct one experiment to illustrate
the performance of two loss functions. Specifically, we use
a fully-connected network with two layers and 30 neurons
for each layer. The dimensions of input and embeddings are
both 2D, and the embeddings are normalized on a unit circle.
As shown in Fig. 6 (a), each of four training and test classes
contains 150 samples, respectively. We train the networks
using PNP-Ib and PNP-Dq , respectively. Fig. 6 illustrates the
effect of two loss functions. PNP-I fails to separate all test
classes in Fig. 6 (b) while PNP-D successfully separates them
(with larger intra-class variance) in Fig. 6 (c) . It shows that
PNP-D enables the model to capture more information and
exhibits stronger generalization to the unseen test classes by
retaining the variance within the class in the training process.

Method R@1 R@10 R@100 R@1K
Hist. (Ustinova and Lempitsky 2016) 72.4 86.1 94.1 98.3
Margin (Manmatha et al. 2017) 72.7 86.2 93.8 98.0
Divide (Sanakoyeu et al. 2019) 75.9 88.4 94.9 98.1
FastAP (Cakir et al. 2019) 76.4 89.0 95.1 98.2
MIC (Brattoli et al. 2019) 77.2 89.4 95.6 -
SoftTriplet (Qian et al. 2019) 78.3 90.3 95.9 -
RankMI (Kemertas et al. 2020) 74.3 87.9 94.9 98.3
Blackbox AP (Rolı́nek et al. 2020) 78.6 90.5 96.0 98.7
Cont. w/M (Wang et al. 2020) 80.6 91.6 96.2 98.7
Pnca++ (Teh, DeVries, and Taylor 2020) 80.7 92.0 96.7 98.9
Smooth-AP (Brown et al. 2020) 80.1 91.5 96.6 99.0
DCML-MDW (Zheng et al. 2021) 79.8 90.8 95.8 -
PNP-Dq (BS = 112) 80.1 91.5 96.7 99.0
PNP-Dq (BS = 384) 81.1 92.2 96.8 99.0

Table 3: Performance comparison on SOP (%).

Method Small Medium Large
R@1 R@5 R@1 R@5 R@1 R@5

Divide (Sanakoyeu et al. 2019) 87.7 92.9 85.7 90.4 82.9 90.2
MIC. (Brattoli et al. 2019) 86.9 93.4 - - 82.0 91.0
FastAP (Cakir et al. 2019) 91.9 96.8 90.6 95.9 87.5 95.1
Cont. w/M (Wang et al. 2020) 94.7 96.8 93.7 95.8 93.0 95.8
Smooth-AP (Brown et al. 2020) 94.9 97.6 93.3 96.4 91.9 96.2
PNP-Dq (BS = 112) 94.6 97.4 92.9 96.3 91.4 95.9
PNP-Dq (BS = 384) 95.5 97.8 94.2 96.9 93.2 96.6

Table 4: Performance comparison on VehicleID (%).

Comparison with State-of-the-art
We compare PNP loss to the recent AP-based methods and
a series of state-of-the-art deep metric learning methods on
three standard benchmarks.

SOP For fair comparison, we use the same setting with
(Brown et al. 2020). Table 3 shows the performance on SOP,
we observe that PNP-Dq achieves the state-of-the-art results.
In particular, our model outperforms other methods on all
evaluation metrics and outperforms AP approximating meth-
ods by 0.5 - 4% on R@1 when the same batch size (384) and
dimension (512) are used. Note that, although current work
(Cont. w/M (Wang et al. 2020)) uses memory techniques
to sample from many mini-batches simultaneously for each
iteration, our best model still outperforms this method, only
using a single mini-batch on each iteration.

VehicleID We further conduct experiments on VehicleID
to verify the performance of PNP on large-scale retrieval
datasets. Table 4 shows the results on the VehicleID dataset.
For the same batch size (384) and dimension (512), we
observe that PNP-Dq again achieves state-of-the-art perfor-
mance on the large-scale VehicleID dataset on all the evalua-
tion metrics. Such result shows that PNP-D also works better
on large-scale datasets.

INaturalist As shown in Table 5, our method also outper-
forms the best method by 0.7% on R@1 for the experiments
on INaturalist with the same batch size (224) and dimension
(512). These results demonstrate that PNP is particularly suit-
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Method R@1 R@4 R@16 R@32
Triplet (Manmatha et al. 2017) 58.1 75.5 86.8 90.7
Proxy NCA (Yair et al. 2017) 61.6 77.4 87.0 90.6
FastAP (Cakir et al. 2019) 60.6 77.0 87.2 90.6
Blackbox AP (Rolı́nek et al. 2020) 62.9 79.0 88.9 92.1
Smooth-AP (Brown et al. 2020) 65.9 80.9 89.8 92.7
PNP-Dq (BS = 224) 66.6 81.1 89.7 92.6

Table 5: Performance comparison on INaturalist (%).

Method R@1 R@10 R@100 R@1K
Smooth-AP 73.2 86.4 93.6 97.5
PNP-Iu 67.5 82.7 92.3 97.5
PNP-Dq 73.8 87.1 94.2 98.0

Table 6: Evaluation of robustness on SOP (%).

able for large-scale retrieval datasets, which demonstrates its
scalability to real-world retrieval problems.

Impact of Hyper-parameters
To investigate the effect of different hyper-parameter settings,
i.e., steepness α in Eq. 13, boundary b in Eq. 8, samples per
class |P |, we train ResNet-50 on SOP and VehicleID. The
random seed is fixed to 0 and the batch size is set to 112 for
all experiments in this section.
Steepness α: The influence of α of PNP-Dq is shown in
Fig. 8 (a). We can find that larger α results in larger R@1.
It can be explained that larger α corresponds to more sta-
ble optimization (correct positive instances with sufficient
confidence), and thus achieves better performance. However,
when α is too large, the training phrase will crash due to the
gradient exploding. Therefore, we use as larger α as possible
to get better performance.
Boundary b: The influence of b for PNP-Ib is shown in Fig. 8
(b). b = 4 is the best on SOP while b = 1 is the best on
VehicleID. b controls the biggest gradient of the PNP-Ib with
respect to R(i, SN ), and different datasets require different
adjusting range. We report the best value for the comparison
of different variants.
Samples Per Class |P |: The influence of the samples per
class |P | in a mini-batch is shown in Fig. 8 (c). We observe
that |P | = 4 results in the highest R@1. The probable rea-
son is that mini-batches are formed by sampling from each
class, where a low value means a larger number of sampled
classes and a higher probability of sampling hard-negative
instances that violate the correct ranking order. Increasing
the number of classes in the batch results in a better batch
approximation of the true class distribution, allowing each
training iteration to enforce a more optimally structured em-
bedding space. However, too small value (|P | = 2) leads to
worse performance because it can not give enough positive
instances to violate the correct ranking order for training.

Evaluation of Robustness
In order to evaluate the robustness and the performance of
multi-centers per class, we perform extensive experiments
on constructed datasets in this section. Specifically, we use

Method Small Medium Large
R@1 R@5 R@1 R@5 R@1 R@5

Smooth-AP 89.9 95.8 88.6 94.3 85.2 93.2
PNP-Iu 86.9 94.0 85.0 92.6 80.8 90.7
PNP-Dq 92.6 96.3 90.8 95.3 88.6 94.6

Table 7: Evaluation of robustness on VehicleID (%).

Figure 8: Impact of different hyper-parameters on SOP and
VehicleID. (a) steepness α, (b) boundary b, (c) samples per
class during mini batch sampling |P |.

the train set of SOP and VehicleID as benchmark datasets
and merge every three categories to form one new class with
multi-centers (at least three centers per class). As for eval-
uation, we still use original test set to evaluate the model.
During the training, we use PNP-Ib, PNP-Dq and Smooth-AP
as loss functions.

The results are shown in Table 6, 7. Compared with using
original training set, these three methods all have perfor-
mance loss on two benchmark datasets. Generally, PNP-Dq

and Smooth-AP with similar gradient assignment strategy
have less performance loss than PNP-Ib because of their
adaptability to multi-centers, and PNP-D achieves the best
performance. Specifically, for VehicleID, PNP-D exceeds
the performance of Smooth-AP by 2 - 3% and PNP-I by a
significant 6 - 8% on R@1.

The above results show better robustness of PNP-D. Noisy
data is inevitable in the real-world data and it will leads to
the instability of training. The above experiments show that
PNP-D can achieve comparable performance, even if there
are a lot of wrong annotations in datasets. This is because
PNP-D can automatically remove the interference of noisy
data by putting it in a single center.

Conclusions

In this paper, we propose a novel PNP loss, which directly
improves the retrieval performance by penalizing negative
instances before positive ones. Moreover, we find that dif-
ferent derivative functions of losses correspond to different
gradient assignments. Therefore, we systematically investi-
gate different gradient assignment solutions via constructing
derivative functions of losses, resulting in PNP-I and PNP-D.
PNP-D consistently achieve state-of-the-art performance on
three benchmark datasets. We just provide four variants and
will explore more forms via similar strategy in the future. In
addition, we hope the proposed strategy for designing loss
functions can also be applied to other tasks.
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Arandjelović, R.; Gronat, P.; Torii, A.; Pajdla, T.; and Sivic, J.
2018. NetVLAD: CNN Architecture for Weakly Supervised
Place Recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(6): 1437–1451.
Babenko, A.; Slesarev, A.; Chigorin, A.; and Lempitsky, V.
2014. Neural Codes for Image Retrieval. In European Con-
ference on Computer Vision, 584–599.
Brattoli, B.; Roth, K.; Ommer; and Bjorn. 2019. MIC: Mining
Interclass Characteristics for Improved Metric Learning. In
IEEE International Conference on Computer Vision, 7999–
8008.
Brown, A.; Xie, W.; Kalogeiton, V.; and Zisserman, A. 2020.
Smooth-AP: Smoothing the Path Towards Large-Scale Image
Retrieval. In European Conference on Computer Vision, 677–
694.
Cakir, F.; He, K.; Xia, X.; Kulis, B.; and Sclaroff, S. 2019.
Deep Metric Learning to Rank. In IEEE Conference on
Computer Vision and Pattern Recognition, 1861–1870.
Cao, B.; Araujo, A.; and Sim, J. 2020. Unifying Deep Local
and Global Features for Image Search. In European Confer-
ence on Computer Vision, 726–743.
Engilberge, M.; Chevallier, L.; Perez, P.; and Cord, M. 2019.
SoDeep: A Sorting Deep Net to Learn Ranking Loss Surro-
gates. In IEEE Conference on Computer Vision and Pattern
Recognition, 10792–10801.
Fu, Z.; Li, Y.; Mao, Z.; Wang, Q.; and Zhang, Y. 2021. Deep
Metric Learning with Self-Supervised Ranking. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, 1370–
1378.
Gu, G.; Ko, B.; and Kim, H.-G. 2021. Proxy Synthesis:
Learning with Synthetic Classes for Deep Metric Learning. In
Proceedings of the AAAI Conference on Artificial Intelligence,
1460–1468.
Guiver, J.; and Snelson, E. 2008. Learning to rank with
SoftRank and Gaussian processes. In Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, 259–266.
Hadsell, R.; Chopra, S.; and Lecun, Y. 2006. Dimensionality
Reduction by Learning an Invariant Mapping. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 1735 –
1742.

He, K.; Cakir, F.; Bargal, S.; and Sclaroff, S. 2018. Hashing
as Tie-Aware Learning to Rank. In IEEE Conference on
Computer Vision and Pattern Recognition, 4023–4032.
He, K.; Lu, Y.; and Sclaroff, S. 2018. Local Descriptors
Optimized for Average Precision. In IEEE Conference on
Computer Vision and Pattern Recognition, 596–605.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In IEEE Conference on
Computer Vision and Pattern Recognition, 770–778.
Ji, X.; Wang, W.; Zhang, M.; and Yang, Y. 2017. Cross-
Domain Image Retrieval with Attention Modeling. In Pro-
ceedings of the ACM Multimedia Conference, 1654–1662.
Jégou, H.; Douze, M.; Schmid, C.; and Perez, P. 2010. Aggre-
gating local descriptors into a compact image representation.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, 3304 – 3311.
Kemertas, M.; Pishdad, L.; Derpanis, K. G.; and Fazly, A.
2020. RankMI: A Mutual Information Maximizing Ranking
Loss. In IEEE Conference on Computer Vision and Pattern
Recognition, 14362–14371.
Kim, Y.; and Park, W. 2021. Multi-level Distance Regular-
ization for Deep Metric Learnin. In Proceedings of the AAAI
Conference on Artificial Intelligence, 1827–1835.
Kingma, D.; and Ba, J. 2015. Adam: A Method for Stochas-
tic Optimization. In International Conference on Learning
Representations, 1–15.
Liu, H.; Tian, Y.; Wang, Y.; Pang, L.; and Huang, T. 2016.
Deep Relative Distance Learning: Tell the Difference Be-
tween Similar Vehicles. In IEEE Conference on Computer
Vision and Pattern Recognition, 2167–2175.
Manmatha, R.; Wu, C.-Y.; Smola, A.; and Krahenbuhl, P.
2017. Sampling Matters in Deep Embedding Learning. In
IEEE International Conference on Computer Vision, 2859–
2867.
Milbich, T.; Roth, K.; Bharadhwaj, H.; Sinha, S.; Bengio, Y.;
Ommer, B.; and Cohen, J. P. 2020a. DiVA: Diverse Visual
Feature Aggregation for Deep Metric Learning. In European
Conference on Computer Vision, 590–607.
Milbich, T.; Roth, K.; Brattoli, B.; and Ommer, B. 2020b.
Sharing Matters for Generalization in Deep Metric Learn-
ing. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PP(99): 1–1.
Min, W.; Mei, S.; Li, Z.; and Jiang, S. 2020. A Two-Stage
Triplet Network Training Framework for Image Retrieval.
IEEE Transactions on Multimedia, 22(12): 3128–3138.
Mohapatra, P.; Rolinek, M.; Jawahar, C. V.; Kolmogorov, V.;
and Kumar, M. P. 2018. Efficient Optimization for Rank-
Based Loss Functions. In IEEE Conference on Computer
Vision and Pattern Recognition, 3693–3701.
Perronnin, F.; Liu, Y.; Sánchez, J.; and Poirier, H. 2010.
Large-scale image retrieval with compressed Fisher vectors.
In IEEE Conference on Computer Vision and Pattern Recog-
nition, 3384–3391.
Qian, Q.; Shang, L.; Sun, B.; Hu, J.; Tacoma, T.; Li, H.;
and Jin, R. 2019. SoftTriple Loss: Deep Metric Learning

1525



Without Triplet Sampling. In IEEE International Conference
on Computer Vision, 6449–6457.
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