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Abstract

This paper describes an energy-based learning method that
predicts the activities of multiple agents simultaneously. It
aims to forecast both upcoming actions and paths of all agents
in a scene based on their past activities, which can be jointly
formulated by a probabilistic model over time. Learning this
model is challenging because: 1) it has a large number of
time-dependent variables that must scale with the forecast
horizon and the number of agents; 2) distribution functions
have to contain multiple modes in order to capture the spatio-
temporal complexities of each agent’s activities. To address
these challenges, we put forth a novel Energy-based Learn-
ing approach for Multi-Agent activity forecasting (ELMA)
to estimate this complex model via maximum log-likelihood
estimation. Specifically, by sampling from a sequence of fac-
torized marginalized multi-modal distributions, ELMA gen-
erates the possible future actions efficiently. Moreover, by
graph-based representations, ELMA also explicitly resolves
the spatio-temporal dependencies of all agents’ activities in
a single pass. Our experiments on two large-scale datasets
prove that ELMA outperforms recent leading studies by an
obvious margin.

Introduction
Being able to predict an agent’s upcoming behavior is im-
portant for intelligent systems to understand the physical
world. For instance, autonomous vehicles have to share the
road reasonably with nearby pedestrians in real-time under
all circumstances. This means the system must be able to
foresee which direction an agent is moving to (i.e., path) and
what the agent is going to do (i.e., action) as Fig. 1 depicts.

Existing work performs path prediction and action predic-
tion in an agent-independent manner. Be the model a varia-
tional autoencoder (VAE) (Walker et al. 2017), generative
adversarial networks (GAN) (Gupta et al. 2018; Chen, Bao,
and Kong 2020) or GLOW (Guan et al. 2020), variables
are partitioned into independent subsets with an assumption
of a relatively simple distribution. Specifically, for condi-
tional distributions over which future variables are depen-
dent on past observations, a set of additional latent variables
that explain the generation of multi-model joint distribution
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Figure 1: An example of multi-agent activity forecasting.
Given the observed activities (in solid bounding boxes and
lines) of two agents, we want to forecast the possibility of
their future actions (in dashed bounding boxes) and loca-
tions (in dashed lines). Two outcomes of multi-agent inter-
actions are displayed, and it can be readily seen that one
agent’s activities also depend on the activities of the other.

must rely on good guesses. Hence, modeling complex multi-
model distributions accurately is essential for performance.

We believe, however, that actions and paths of all agents
are preferably addressed in a unified framework derived by
a novel concept that we term as multi-agent activity fore-
casting. We introduce this concept because apparent across-
agent dependencies exist. On the one hand, an agent has to
adjust his/her reasonable route instantaneously depending
on the past actions taken by others in the surrounding; on
the other hand, new routes may impose new constraints on
all other agents’ next moves. Given that an agent’s activities
has very high variance in nature, the underlying joint distri-
bution of both actions and paths is highly complex and likely
to be multi-modal. In other word, existing methods, cannot
be applied to address this new task directly due to the esca-
lated complexity of the underlying joint distribution.

In order to make effective predictions out of complex dis-
tributions, we introduce an Energy-based Learning solution
for Multi-Agent activity forecasting, ELMA, that approxi-
mates complex distributions implicitly with learnable energy
functions (LeCun et al. 2006). In contrast to VAE and GAN,
ELMA covers multimodal distributions without complying
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with a simple and parametric latent distribution multi-step
training. Instead, we need to design an energy function to
suit the needs for activity forecasting. In particular, in a
multi-agent scenario, the activities of co-occurring agents
exhibit strong dependencies not only spatially but also tem-
porally. For Example, an agent may slow down to avoid col-
lision if another agent suddenly gets in his/her way. Hence,
in contrast to (Liang et al. 2019; Malla, Dariush, and Choi
2020), ELMA builds a sequence of graph neural networks
(GNN) to analyze these spatio-temporal dependencies in a
unified framework (Battaglia et al. 2018; Xu et al. 2019),
where each node in the graph represents a specific agent, and
activities are encoded in edge weights. Furthermore, ELMA
is trained via maximum likelihood estimation, the solution
to which is obtained using contrastive divergence. Addition-
ally, ELMA forecasts future activities through iterative sam-
pling. Since the resultant activity prediction in each roll-out
associates with a relevant mode, ELMA is able to capture
the uncertain nature of the future.

In summary,we introduce a novel energy-based learning
solution for activity forecasting. Our main contributions are
as follows:

• We extend the concept of activity forecasting to a multi-
agent scenario, with which a unified task that simultane-
ously predicts path and action is defined.

• We design a novel energy-based learner, ELMA, to tackle
this task. To the best of our knowledge, it is the first to
apply energy-based learners for multi-agent activity fore-
casting.

• We describe a sampling procedure integrating GNN and
contrastive divergence that learns the model effectively.

• We evaluate our method using challenging large-scale
video datasets. The results show that our solution out-
performs SOTA methods by an obvious margin.

The remainder of this paper is organized as follows: re-
lated works are discussed in Section . Section describes the
design of ELMA and explains how it is learned via MLE.
Section provides our analysis on the experimental results.
Section concludes this paper.

Related Work
The relevant literature has accumulated several efforts to
tackle down the challenges of future forecasting. A theme
pertinent to our topic is to predict the action features (Kop-
pula and Saxena 2016; Vondrick, Pirsiavash, and Torralba
2016; Walker et al. 2017; Zeng et al. 2017; Li 2018; He
et al. 2018; Yuan and Kitani 2020a; Sun et al. 2019; Zeng
et al. 2020; Epstein, Chen, and Vondrick 2020; Li, Wang,
and Chan 2021; Epstein, Chen, and Vondrick 2021; Li et al.
2021; Xu et al. 2021). Most of these frameworks obtain the
upcoming action features based on a deep neural network
(Goodfellow, Bengio, and Courville 2016). Another line of
studies attempted to forecast the agent path features (Alahi
et al. 2016; Li 2017, 2018; Luo, Yang, and Urtasun 2018;
Gupta et al. 2018; Li 2019; Tang and Salakhutdinov 2019;
Ivanovic and Pavone 2019; Yang et al. 2020; Yuan and Ki-
tani 2020b; Zhang et al. 2020; Sun, Jiang, and Lu 2020;

Malla, Dariush, and Choi 2020; Salzmann et al. 2020; Man-
galam et al. 2020).

In this paper, rather than solely forecasting action features
or path features, we aim to foresee them together – the activ-
ities in other words – for each individual agent in the scene.
The authors of (Guan et al. 2020) predicted the activity un-
der a one-person scenario, which leaves open the question
of its applicability to the multi-agent scenes. (Chen, Bao,
and Kong 2020) presented an upcoming group-level action.
Nevertheless, this method overlooked the fact that individ-
ual action may deviate from the entire group. To the best of
our knowledge, the closest work to our study in the objec-
tive aspect is Next (Liang et al. 2019). It designs a multi-
task pipeline with a two-stream network to predict agent ac-
tion nd path features, respectively. The main shortcoming
of Next is that the future’s uncertainty is ignored. This lead
to that Next cannot predict the multiple plausible futures,
which is one key requirement of multi-agent activity fore-
casting. Another denominator is that Next proceeds without
modeling the spatiotemporal dependencies among agents.
Such a deficiency makes that Next treats each individual in-
dependently, and fails to meet the definition of multi-agent
activity forecasting (see details in section ).

ELMA has the following vital distinctions from previous
works: 1. Concerning the studies on only forecasting ac-
tion or path features, we sufficiently consider the mutual de-
pendence across these two factors; 2. With respect to Next,
ELMA is able to cover the multimodal futures; 3. Unlike
(Liang et al. 2019; Guan et al. 2020), ELMA suits the multi-
agent scene better given that we can jointly reason the spa-
tiotemporal dependencies.

Recently, the authors of (Xie, Zhu, and Nian Wu 2017;
Gao et al. 2018; Du, Li, and Mordatch 2020; Ho, Jain, and
Abbeel 2020; Gao et al. 2021; Suhail et al. 2021) have at-
tempted to leverage energy-based model to solve some vi-
sion tasks, such as image synthesizing and object detection.
Our work conducts the first research exploring multi-agent
activity forecasting based upon the energy functions.

Energy-Based Learning for Multi-Agent
Activity Forecasting

Formally, given the observed action features and the path
features ht = {a1, a2, ...at, x1, x2...xt} , ELAM predicts
{at+1, at+2, ...at+K} together with {xt+1, xt+2, ...xt+K}
using conditional distribution:

p(at+K , xt+K , . . . , at+1, xt+1|ht) (1)

The spatio-temporal dependencies of both types of features
among all agents in the scene are encoded by a series of
fully connected graphs and learned by Graph Neural Net-
works (GNNs). In particular, these GNNs representing the
joint distribution of all features over time are trained in an
energy-based learning framework, and their samples gener-
ated using Markov Chain Monte Carlo with Langevin dy-
namics.
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observation at t=1: walk observation at t=2: walk prediction at t=3: walk
observation at t=1: stand observation at t=2: stand prediction at t=3: stand

observation at t=1: transport observation at t=2: transport prediction at t=3: open trunk
observation at t=1: talk observation at t=2: talk prediction at t=3: walk

Figure 2: An example of graph representation of ELMA.
Each node represents an agent and the edge connecting two
nodes represents their pair-wise interaction. a1 and x1 de-
note actions and paths observed at time instant t = 1, re-
spectively. A graph instance describes the scene at a specific
time instant. The graph structure encodes the spatial infor-
mation of the scene, and a sequence of the graphs encodes
its temporal information.In this example, ELMA predicts the
activities of four agents at t = 3 based on the observations
made at t = 1 and t = 2.

Problem Formulation
The one-step forward conditional distribution in Eq. 1 can
be further factorized as follows:

p(xt+2, at+2, xt+1, at+1|ht)
=p(xt+2, at+2|ht+1)p(xt+1, at+1|ht)
=p(xt+2|at+2, ht+1)p(at+2|ht+1)p(xt+1, at+1|ht),

(2)

where p(ht+1) = p(xt+1, at+1, ht) holds for density func-
tions involving t and t+1. Accordingly, Eq. 1 can be rewrit-
ten as:

K∏
k=0

p(xt+k|at+k, ht+k−1)
K∏
k=0

p(at+k|ht+k−1), (3)

which is initialized by p(a0|h0) = p(a0). Fig. 3 visualizes
this dependency and our goal is to determine a this condi-
tional joint distribution through Maximum Likelihood Esti-
mation (MLE).

However, direct optimization over the likelihood function
of Eq.2 is essentially intractable (Goodfellow et al. 2014)
due to its structural complexity. Hence, alternatively, we
propose to approximate it using Boltzmann distributions in
terms of model parameters θ. So, Eq.3 can be further un-
folded as a product of:

1

Zx(θ)
exp{

∑
k

Ex(ht+k−1, at+k, xt+k; θ)} (4)

and
1

Za(θ)
exp{

∑
k

Ea(ht+k−1, at+k; θ)} (5)

where Zx(θ) and Za(θ) are the two partition functions pa-
rameterized separately. The corresponding log-likelihood

-th Iterative sampling

Figure 3: A schematic diagram that illustrates the opera-
tion described in Eq. 12. Following the scenario in Fig-
ure 2, ELMA realizes a sample future sequence at each it-
eration. The outcomes from the final iteration are treated as
{a1, a2, a3} and {x1, x2, x3} for Eq. 11.

function can be written as:
l(θ) =

∑
k

Ex(ht+k−1, at+k, xt+k; θ)− logZx(θ)

+
∑
k

Ea(ht+k−1, at+k; θ)− logZa(θ)

=
∑
k

(Ex(θ) + Ea(θ))− logZx(θ)− logZa(θ),

(6)

where the energy functions Ex(θ) and Ea(θ) are parameter-
ized and learned through GNNs.

GNN-based Energy Functions
The graph representations enable us to infer the spatio-
temporal dependencies via relational reasoning (Battaglia
et al. 2018; Xu et al. 2019). We deploy two separate garph
neural networks for this purpose:

Ha
t = GNN(at,Ha

t−1; θ)

Hx
t = GNN(at, xt,Hx

t−1; θ)
(7)

where GNN(·) updates and concatenates its hidden state
variable Ht that encodes all historical information about
ht. In particular, Eq. 7 is implemented using AGC-LSTM
(Si et al. 2019) which handles both spatial and temporal
variations are handled simultaneously. At each time instant,
the spatial component is processed via graph convolutions,
whereas the temporal component is addressed by the LSTM.

Specifically, at,xt,Hxt−1 and Hat−1 are encoded into a se-
ries of fully connected graph structural data with a pair of
functions to evaluate Etx(θ) and Eta(θ) separately. For in-
stance, to evaluate Eta(θ), function faedge, implemented by a
pre-trained bi-linear layer, is deployed to process edge at-
tributes, and its output is taken by f a

node, that processes node
attributes in the form a pre-trained multi-layer perceptrons
(MLP). For each edge linking agent i and j we have:

{ea
t}i,j = f a

edge({at}i, {at}j), (8)

and the attributes {va
t}i of node i at t can be formulated as:

{va
t}i = ELU

(
fanode(

1

| Ni |
∑
j∈Ni

{ea
t}i,j)

)
(9)
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where Ni indicates the neighbors of agent i in the graph.
Averaging the edge attributes of node i ensures that va

t is
permutation-invariant. The evaluation of Etx(θ) can be car-
ried out in a similar manner with {ex

t}i,j and {vx
t}i corre-

spondingly.
Furthermore, Ht+k is fed to a MLP to obtain the final en-

ergy measure:

Eka(θ) =‖ σ(WT
t+k,a · Hat+k) ‖1

Ekx(θ) =‖ σ(WT
t+k,x · Hxt+k) ‖1

(10)

Two stacked AG-CLSTM layers with 512 channels are
leveraged to calculate Eq. 10. In practice, we consider build-
ing our graph with 50 nodes for the experiments. The virtual
nodes with zero-padded attributes are used if the labeled per-
sons are less than 50. Statistically, we found that the maxi-
mum numbers of labeled persons in all the video sequences
are less than 50 agents for the datasets exploited to con-
duct experiments. Both WT

t+k,a and WT
t+k,x transform the

50×512 dimensional vector to a positive scalar.

Training
Eq. 6 can be optimized in contrastive divergence manner
(LeCun et al. 2006; Hinton 2002). Namely, we update the
gradients Eθ by:

∇l(θx, θa) =
∑
k

(
∂Ex(θ)
∂θ

+
∂Ea(θ)
∂θ

) (11)

where

∂Ex(θ)
∂θ

=E
(∂Ex(h′t+k−1, a

′
t+k, x

′
t+k; θ)

∂θ

)
−

E
(∂Ex(ht+k−1, at+k, xt+k; θ)

∂θ

)
where h′t+k−1,a′t+k, and xt+k denote the ground truth in-
cluded in the training data and ht+k−1,at+k, andxt+k are
the samples drawn from the distribution with θ of current
iteration. Specifically, ELMA resorts to the gradient-based
iterative MCMC method – Langevin dynamics (Welling
and Teh 2011; Song and Ermon 2019) to simulate both
forthcoming action features and paths. To sample an future
action sequence a={at+1, . . . , at+K} and path sequence
x={xt+1, . . . , xt+K} at iteration I, we perform the follow-
ing:

aI = aI−1 + δεI − δ2

2
∇aI Ea(θa)

xI = xI−1 + δΨI − δ2

2
∇xIt

Ex(θx)
(12)

where δ denotes the step size of Langevin dynamics, and ε
and Ψ denote the additive noise that are independently sam-
pled from the standard Gaussian distribution. After the final
iteration, aIt+k and xIt+k are taken by Eq. 11 as an operation
of contrastive divergence (Hinton 2002) to update θ. Fig. 3
displays the pipeline of our energy functions.

It can be readily observed from Eq. 12 that predictions
are drawn using the energies Eθ with their gradients being

evaluated with respect to the features obtained from the pre-
vious step. We initialize a0 and x0 by drawing i.i.d. samples
from U(0, 1) up to t. In practice, a replay buffer stores the
predictions from the final iteration and uses them to start the
second epoch as (Tieleman and Hinton 2009) suggested for
faster convergence.

Likewise, ∂Ea(θ)
∂θ can be updated in a similar manner to

the one described by Eq. 12.

Activity Forecasting
Eq. 12 allows us to directly generate a sample sequence
{at+1, xt+1, . . . , at+K , xt+K} in one pass from ht using a
trained model whose parameters θa and θx are fixed. With
sufficient number of samples, we expect all modes of the
conditional distribution in Eq. 3 to be visited.

The simulated sequence a and x are expected to approach
a particular mode of Eq. 1 and form a valid forecast for activ-
ities. In our implementation, a pre-trained MLP takes x from
the final sampling iteration to produce future agent paths in
the form of a set of 2D coordinates, and a pre-trained classi-
fier samples a from the final iteration to assign on-hot digits
as action labels.

Experiment
Two large-scale datasets, Activities in Extended Videos
(ActEV/VIRAT) (Awad et al. 2018) benchmark and TITAN
(Malla, Dariush, and Choi 2020), are used to assess the per-
formance of ELMA. They contain video sequences with an-
notations of both agent actions and locations provided for
each frame. Actions are labeled with corresponding bound-
ing boxes around a person or object in the each scene.
They are the ground truth in our evaluation. Specifically,
ActEV/VIRAT consists of 455 video clips captured in 12
scenes, which make up recordings of more than 12 hours.
The videos resolution is 1920×1080. Twenty-nine cate-
gories of human actions are defined, such as Transport˝and
Interaction˝. It also provides a set of completely labeled
paths of moving pedestrians/agents during their entire ap-
pearances in the scene. TITAN contains 400 videos for train-
ing, 200 videos for validation, and 100 videos for test. All se-
quences are filmed from a moving camera, with each video
clip of resolution 1920×1200 lasting 10-20 seconds. TITAN
has eight action categories, 48 classes in total that describes
either a person or a vehicle. The full trajectories of all agents
are annotated.

Experimental Setup
To make a fair comparison on ActEV/VIRAT, we follow the
experimental protocols opted in Next (Liang et al. 2019).
Ground truth bounding boxes annotating people and objects
throughout the entire video sequence are used. at is obtained
by a pre-trained feature pyramid network (Lin et al. 2017)
on ImageNet (Russakovsky et al. 2015) that extracts action
features inside the bounding boxes. For each agent, We ob-
serve his/her past 8 steps and forecast the activities of the
subsequent 12 steps. In other words, the first 3.2 seconds of
a video is used to predict the content of up to 4.8 seconds
of its remaining portion. We follow (Liang et al. 2019) to

1485



Influence of varying k on ActEV/VIRAT benchmark

Inception score ↑ AM score ↓ max mAP ↑ ASD ↑ FSD ↑ NLL ↓ minADE ↓ minFDE ↓

ELMA-10 7.96 0.87 25.50 29.64 44.98 6.14 15.94 32.73
ELMA-20 8.83 0.81 25.92 44.93 52.59 5.77 14.80 30.65
ELMA-50 9.45 0.74 26.62 57.22 64.75 5.25 14.19 30.37
ELMA-100 9.49 0.74 27.41 61.35 66.90 4.88 13.94 28.42

Influence of varying k on TITAN dataset

Inception score ↑ AM score ↓ max mAP ↑ ASD ↑ FSD ↑ NLL ↓ minADE ↓ minFDE ↓

ELMA-10 7.75 1.12 43.14 43.29 54.22 8.25 9.40 18.09
ELMA-20 8.27 0.98 44.69 52.40 64.95 7.76 8.87 17.47
ELMA-50 9.82 0.91 46.26 65.27 76.00 7.04 9.21 16.53
ELMA-100 9.80 0.88 46.42 70.71 79.02 7.01 9.21 16.48

Table 1: The results generated by ELMA running different number of sampling steps I. (↑) means that the higher the score
the better, whereas (↓) means the opposite. There are significant improvements of ELMA-50 and ELMA-100 against ELMA-
10 and ELMA-20 on all criteria, suggesting that in general more iterations always lead to improved performance. However,
the comparison between ELMA-100 and ELMA-50 suggests that this improvement tends to be marginal and is expected to
diminish eventually. Furthermore, since a larger I results in heavier computational burden, We thus select the outcomes from
ELMA-50 as our main results to balance the trade-off between performance and computational cost.

solely obtain the upcoming K=12 action categories with a
pre-trained classifier. To experiment on TITAN, similar to
(Malla, Dariush, and Choi 2020), we extend the correspond-
ing values to t=10 and K=20, and an identical fine-tuned
single-stream I3D network (Carreira and Zisserman 2017) is
deployed (Malla, Dariush, and Choi 2020) to obtain at. Also,
we apply a pre-trained multi-head classification scheme to
TITAN.

In our experiments, RMSProp optimizer (Goodfellow,
Bengio, and Courville 2016) are employed with the learn-
ing rate initialized at 8 × 10−5. Our implementation uses
PyTorch. The experiments are executed on four Nvidia
GeForce TITAN XPs, with 48 GB of memory in total.

Criteria and Baselines
Criteria: We are primarily interested in verifying the perfor-
mances of our algorithm concerning the diversity and quality
aspects. Evaluating the diversity essentially quantifies how
well the multimodality of Eq. 1 is covered. In particular, we
include the inception score (Salimans et al. 2016), average
self distance (ASD) and final self distance (FSD) (Yuan and
Kitani 2020b) validate the variety part. In the meantime, it
is not a trivial task to justify the quality – if the extensive
range of outputs includes the true future. We particularly
consider the maximum mean average precision (max mAP)
of action predictions from all roll-outs, the minimum val-
ues of ADE (minADE) and FDE (minFDE) for this point.
In addition, The AM score (Zhou et al. 2018) measures the
confidence over assigned action categories, while the nega-
tive log-likelihood (NLL) determining the fit of ground truth
paths to the estimated distribution.

Higher amounts of inception score, ASD, FSD and max
mAP indicate preferable performances, while lower values
of AM score, NLL, minADE, and minFDE suggest better
outputs.
Baselines: As per comparing approaches, we assess our
ELMA versus a leading study on activity forecasting Next

(Liang et al. 2019), which achieves cutting-edge results
on the ActEV/VIRAT benchmark. The TITAN framework
(Malla, Dariush, and Choi 2020), which performs best on
the TITAN dataset, is selected as well. We also study the ef-
ficacy of our proposal through analyses against the following
baselines:

1. ELMA-I: I is set to 10, 20, 50 and 100 to verify the
effects of different configurations on iterative sampling
steps. We note that the training is unstable and hard to
converge when I <10. Additionally, the computational
cost spikes if I >100. Therefore, we neither test for
I <10 nor I >100.

2. ELMA-a & ELMA-x: ELMA-a shares the similar idea
of Next (Sun et al. 2019), which conditions the action
predictions upon the path predictions. ELMA-x simply
reverses this settings.

3. ELMA-S: To highlight the merits of achieving our ob-
jective via Eq. 2, we remove the setting of forecasting
paths conditioning on action predictions to set a ELMA-S
baseline. This baseline shares a similar idea of multi-task
learning with Next (Liang et al. 2019) and hypothesizes
the independence between upcoming actions and paths.
The rest of the framework remains intact.

4. ELMA-RNN: We term another baseline as ELMA-RNN
to examine the impacts of our spatiotemporal dependen-
cies handling mechanism. ELMA-RNN assigns one re-
current neural network (RNN) (Goodfellow, Bengio, and
Courville 2016) per agent while disregarding the graph
structure. This leads to foreseeing individual activity sep-
arately.

5. cVAE & cGAN: We justify the advantages of our energy-
based generating process over cVAE and the cGAN
frameworks conditioning on the forecasting context.

6. ELMA-NE: To verify the advantages of the energy func-
tions, we drop the energy functions and build a ELMA-
NE baseline. ELMA-NE has an identical backbone with
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Quantitative results on ActEV/VIRAT benchmark

Inception score ↑ AM score ↓ max mAP ↑ ASD ↑ FSD ↑ NLL ↓ minADE ↓ minFDE ↓

Next (Liang et al. 2019) 1.46 1.31 19.20 – – 7.16 17.99 37.24
ELMA-NE 1.73 1.24 19.84 – – 6.89 16.70 36.16

cGAN 2.08 1.02 20.71 5.92 7.49 6.75 15.57 34.90
cVAE 4.81 0.94 22.04 21.64 33.55 6.22 15.20 33.98

ELMA-RNN (I = 50) 6.27 1.53 19.19 23.47 38.38 7.29 18.82 37.75
ELMA-S (I = 50) 6.40 1.13 20.91 27.80 42.61 6.94 16.06 36.42
ELMA-x (I = 50) 7.39 1.07 22.47 42.01 51.22 5.95 14.91 31.97
ELMA-a (I = 50) 8.21 0.95 24.23 36.60 46.08 6.28 15.22 32.44
ELMA-50(ours) 9.45 0.74 26.62 57.22 64.75 5.25 14.19 30.37

Quantitative results on TITAN dataset

Inception score ↑ AM score ↓ max mAP ↑ ASD ↑ FSD ↑ NLL ↓ minADE ↓ minFDE ↓

Next (Liang et al. 2019) 1.74 1.98 32.62 – – 8.85 13.39 24.74
TITAN (Malla, Dariush, and Choi 2020) – – – – – – 11.32 19.53

ELMA-NE 2.07 1.86 33.25 – – 8.74 11.17 19.04
cGAN 2.30 1.71 34.59 4.48 6.90 8.59 10.94 18.29
cVAE 4.78 1.55 39.81 21.29 31.75 8.14 10.85 17.66

ELMA-RNN (I = 50) 6.02 2.06 31.53 37.91 43.86 9.06 14.62 26.57
ELMA-S (I = 50) 6.36 1.73 33.03 40.05 49.14 8.70 11.07 18.81
ELMA-x (I = 50) 7.07 1.40 41.08 55.95 62.60 8.82 9.98 17.49
ELMA-a (I = 50) 7.40 1.31 41.90 52.74 60.91 8.96 10.05 18.08
ELMA-50 (ours) 9.82 0.91 46.26 65.27 76.00 7.04 9.21 16.53

Table 2: The quantitative evaluations or ELMA on ActEV and TITAN datasets. (↑) means that the higher the score the better,
whereas (↓) means the opposite. The improvements of ELMA-50 comparing with ELMA-a, ELMA-x and ELMA-S demon-
strate the efficacy of our model (Eq. 3). Overall, ELMA-50 provides a better performance when compared with ELMA-NE,
cGAN, cVAE, Next (Liang et al. 2019) and TITAN (Guan et al. 2020), which speaks for the effectiveness of energy-based
models in capturing the uncertainties of future activities. We attribute ELMA’s advantage to its capability of addressing the
spatio-temporal dependencies in a multi-agent environment.

the full model, but is trained with minimizing L2 loss for
path predictions, and optimizing cross entropy for action
predictions.

Benchmark Results
We carry out our experiments by generating 20 roll-outs of
each video sequence on both datasets. Table 1 and Table 2
summarize the quantitative results on the ActEV/VIRAT and
the TITAN datasets. In order to analyze the superiorities of
EL in detail, we explore the following facets:
Influence of varying I: We investigate the impacts of
choosing different sampling steps I of ELMA, and report
the results in Table 1. The significant improvements of
ELMA-50 and ELMA-100 against ELMA-10 and ELMA-
20 on all criteria manifest the benefits of more iterations.
However, ELMA-100 only makes marginal improvements
versus ELMA-50. This corroborates that I=50 results in
ELMA reaching a steady state on both datasets. We thus
select the outcomes from ELMA-50 as our main results to
balance the trade-off between the performance and computa-
tional cost. Also, ELMA-S, ELMA-a, ELMA-x and ELMA-
RNN baselines consider 50 iterations throughout the exper-
iments.
Objective modeling: Our proposal forecasts future activ-
ities upon the basis of formulating our objective in Eq. 3,
rather than gaining action predictions independent of path
predictions. We can observe that ELMA-50 incurs remark-
able advantages with respect to the ELMA-a, ELMA-x and
ELMA-S baselines in terms of both diversity and qual-
ity, as shown in Table 2. These findings overwhelmingly

demonstrate the preference of our method over the ELMA-
a, ELMA-x and ELMA-S for properly learning Eq. 1. These
outcomes can be traced back to the more reasonable objec-
tive modeling of ELMA with respect to ELMA-a, ELMA-x
and ELMA-S.
Understanding the uncertain nature of the future: The
proposed ELMA-50 drastically advances, by far, the cVAE
and cGAN baselines on all metrics. These comparisons meet
our expectations that ELMA-50 can better explore the di-
versity of future activities. The primary reason can be traced
back to the superior capability of the ELMA-50 approach
in directly uncovering different modes of the learned distri-
bution. During the experiments, the cVAE and cGAN base-
lines just attain predictions with limited variety compared to
the proposed ELMA-50. We believe this stems from: 1. The
assumptions on the learnt distribution lead that cVAE can
neither align with the real data distribution nor sufficiently
capture the future’s uncertainty as our proposal does; 2. The
outcomes of our ELMA-50 benefits from only training the
energy functions as opposed to cGAN that has different net-
works.

Moreover, ELMA-NE and Next (Liang et al. 2019) do not
achieve satisfactory results because they fail to consider the
future’s uncertainty.
Spatiotemporal dependencies processing: The overall
amounts of ELMA-50 considerably exceed those of the
ELMA-RNN baseline and Next. This provides the evidence
to support the necessity of explicitly taking the spatiotempo-
ral dependencies into account for multi-agent activity fore-
casting. In fact, even our ELMA-S baseline outdoes the

1487



Example 1 of ActEV/VIRAT Example 2 of ActEV/VIRAT

observation at t=8: stand observation at t=8: transport
GT at k=12: stand GT at k=12: open trunk
pred 1 k=12: stand pred 1 k=12: open trunk

pred 2 at k=12: stand pred 2 at k=12: transport
pred 3 at k=12: interaction pred 3 at k=12: open door

Example 3 of ActEV/VIRAT Example 4 of ActEV/VIRAT

observation at t=8: walk observation at t=8: interaction
GT at k=12: interaction GT at k=12: talk
pred 1 k=12: interaction pred 1 k=12: open talk

pred 2 at k=12: stand pred 2 at k=12: interaction
pred 3 at k=12: walk pred 3 at k=12: talk

Figure 4: A visualization of the qualitative results on the
ActEV/VIRAT dataset. For clearer visualization, we isolate
an agent and his/her multiple plausible future activities per
example. Each example renders a yellow line for the his-
torical path, a red line for ground truth, a cyan line for the
path predictions with lowest minADE scores, and the rest
for randomly sampled path predictions. We depict the top-
1 classification of action predictions at k=12 are painted by
matched colors with path predictions.

ELMA-RNN baseline and Next.
Furthermore, the outcomes in Table 2 favor the ELMA-

NE baseline over Next and TITAN framework (Malla, Dar-
iush, and Choi 2020). This is mainly due to that jointly han-
dling spatiotemporal dependencies suggests a better strategy
than treating them separately.

Visual Results
Fig. 4 ∼ 5 visualize the example outputs from ELMA-50.
We highlight the path prediction with the lowest minADE,
two other path predictions that are randomly selected from
all rollouts, and their associated top-1 classifications on ac-
tion predictions in each example. Notably, our ELMA-50
forecasts the activities of all agents in the scene simulta-
neously from t+1 to t + k. We display the predictions of
an individual agent in every example to obtain clearer vi-
sualizations. The ELMA-50 method can evidently forecast
diverse forthcoming activities as well as generate the true
future. For instance, in example 2 of Fig. 4, our approach un-
covers diverse possibilities such as that the agent would open
the door or keep transporting. Also, ELMA-50 successfully
foresees that the agent will open the trunk as ground truth.
Furthermore, we can observe the impact of spatiotemporal
dependencies on individual activities through visual demon-
strations. Example 1 of TITAN in Fig. 5 presents that pre-
dicting the agent loading is impossible without capturing the

Example 1 of TITAN Example 2 of TITAN

observation at t=10: transporting observation at t=10: walking
GT at k=10: opening trunk, k=20: loading GT at k=10: walking, k=20: walking
pred 1 k=10: opening trunk, k=20: loading pred 1 k=10: walking, k=20: walking

pred 2 at k=10: crossing, k=20: transporting pred 2 at k=10: waiting, k=20: crossing
pred 3 at k=10: transporting, k=20: opening trunk pred 3 at k=10: crossing, k=20: opening trunk

Example 3 of TITAN Example 4 of TITAN

observation at t=10: carrying observation at t=10: walking
GT at k=10: waiting, k=20: crossing GT at k=10: walking, k=20: getting in (car)
pred 1 k=10: waiting, k=20: crossing pred 1 k=10: walking, k=20: crossing

pred 2 at k=10: opening trunk, k=20: loading pred 2 at k=10: walking, k=20: entering (building)
pred 3 at k=10: opening trunk, k=20: loading pred 3 at k=10: walking, k=20: walking

Figure 5: The visual results on dataset TITAN. In order to
obtain a clearer visualization, we separately illustrate an
agent and his/her predictions in each example. The yellow
line presents the historical paths, the red lines denote the
ground truths, Cyan lines pertain to the path predictions
with the lowest minADE scores, and the rest are randomly
sampled path predictions. We showcase the top-1 classifica-
tions of action predictions at k=10 and k=20 are painted are
painted by matched colors with path predictions.

relationships between the person and the car.
Example 4 in Fig. 5 shows an imperfect case. ELMA-50

fails to forecast that the agent will enter the vehicle, given
that their interactions might be too subtle.

Conclusion
In this paper, we propose an energy-based learning frame-
work, named ELMA, that forecasts the activities of multi-
ple agents simultaneously. ELMA differs from the majority
of existing work in that it establishes a unified framework
in which the actions and paths of multiple agents are ana-
lyzed in an integral formulation. Furthermore, we introduce
a pair of energy functions to model multi-agent activities
probabilistic-ally. This formulation allows us to grasp the
uncertain nature of the activities in future without the inclu-
sion of additional latent variables as what VAE or GLOW
do. Using GNN, ELMA resolves the spatial and tempo-
ral dependencies effectively. The experiment results justify
that ELMA makes better predictions in terms of both diver-
sity and quality concerning prior works and other generative
baselines.

We believe that ELMA can benefit future studies on var-
ious real-world applications. One possible direction would
be to apply our framework to enable a self-navigating robot
or an autonomous vehicle to make more informed decisions
on selecting an optimal path after sensing agents’ activities
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in a dynamic environment. This will be a part of our future
work.
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