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Abstract

We consider the single image super-resolution (SISR) prob-
lem, where a high-resolution (HR) image is generated based
on a low-resolution (LR) input. Recently, generative adver-
sarial networks (GANs) become popular to hallucinate de-
tails. Most methods along this line rely on a predefined single-
LR-single-HR mapping, which is not flexible enough for the
ill-posed SISR task. Also, GAN-generated fake details may
often undermine the realism of the whole image. We address
these issues by proposing best-buddy GANs (Beby-GAN) for
rich-detail SISR. Relaxing the rigid one-to-one constraint, we
allow the estimated patches to dynamically seek trustworthy
surrogates of supervision during training, which is benefi-
cial to producing more reasonable details. Besides, we pro-
pose a region-aware adversarial learning strategy that directs
our model to focus on generating details for textured areas
adaptively. Extensive experiments justify the effectiveness of
our method. An ultra-high-resolution 4K dataset is also con-
structed to facilitate future super-resolution research.

Introduction
The increasing demand for high-quality displays has pro-
moted the rapid development of single image super-
resolution (SISR). SISR has been successfully applied to a
wide range of tasks, such as medical diagnostic imaging, se-
curity imaging and satellite imaging.

A great number of methods were proposed based on in-
sightful image priors and optimization techniques, such as
self-similarity (Protter et al. 2008; Glasner, Bagon, and Irani
2009; Yang, Huang, and Yang 2010) and sparsity (Martin
et al. 2001; Yang et al. 2008, 2010; Zeyde, Elad, and Protter
2010; Peleg and Elad 2014). In recent years, deep-learning-
based methods (Dong et al. 2014; Kim, Kwon Lee, and
Mu Lee 2016a; Shi et al. 2016; Tai, Yang, and Liu 2017;
Tai et al. 2017; Lim et al. 2017; Haris, Shakhnarovich, and
Ukita 2018; Zhang et al. 2018c,b) further advance SISR.
Most of them rely on an immutable one-to-one supervi-
sion to pursue high PSNR but possibly generate blurry re-
sults. For example, the solution of commonly adopted one-
to-one MSE/MAE metric approximates mean or median of
data (Sønderby et al. 2016). As shown in Figure 1, the HR
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estimation of RCAN (Zhang et al. 2018b) achieves the high-
est PSNR, yet lacking high-frequency texture.

To enhance the perceptual quality of recovered images,
several methods (Johnson, Alahi, and Fei-Fei 2016; Ledig
et al. 2017; Mechrez et al. 2018; Wang et al. 2018b; Zhang
et al. 2019; Soh et al. 2019) use adversarial learning and per-
ceptual loss (Johnson, Alahi, and Fei-Fei 2016). It is noted
that the issue of excessive smoothing caused by the one-to-
one MSE/MAE loss is still not fully addressed. Besides, the
training of generative adversarial networks (GANs) (Good-
fellow et al. 2014) could be unstable and result in unpleasant
visual artifacts (see the recovered tree of ESRGAN (Wang
et al. 2018b) in Figure 1). Thus in this paper, we aim to ad-
dress these issues from two aspects.

It is well-known that SISR is essentially an ill-posed prob-
lem since a single low-resolution (LR) patch may corre-
spond to multiple high-resolution (HR) solutions - it is dif-
ficult to decide the best. The commonly used one-to-one
MSE/MAE loss tends to enforce a rigid mapping between
the given LR-HR pair and will penalize the model when the
HR estimates do not exactly match the ground truth (GT),
even when they are valid solutions. As a result, the strictly
constrained HR space makes it difficult to train the network.
Relaxing the one-to-one constraint, we propose a novel best-
buddy loss, an improved one-to-many MAE loss, to allow
finding and using HR supervision signals flexibly by exploit-
ing the ubiquitous self-similarity existing in natural images,
making the model easy to optimize. Put it differently, an
estimated HR patch is allowed to be supervised by differ-
ent but close-to-ground-truth patches sourced from multiple
scales of the corresponding GT image. Additionally, a back-
projection constraint is introduced to ensure the validity of
the estimated HR signal.

As aforementioned, undesirable artifacts may be pro-
duced in images for existing GAN-based methods (Ledig
et al. 2017; Mechrez et al. 2018; Wang et al. 2018b; Zhang
et al. 2019; Soh et al. 2019). We propose a region-aware ad-
versarial learning strategy to address it. Our network treats
smooth and well-textured areas differently, and only per-
forms the adversarial training on the latter. This separation
encourages the network to focus more on regions with rich
details while avoiding generating unnecessary texture on flat
regions (e.g., sky and building). With this improvement, our
proposed best-buddy GANs (termed as Beby-GAN) is able to
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LPIPS: 0.2284 / 31.34dB LPIPS: 0.2279 / 28.22dB LPIPS: 0.1987 / 28.92dB

LR Image RCAN ESRGAN Ours

Figure 1: Comparison of our best-buddy GANs, PSNR-oriented RCAN (Zhang et al. 2018b) and perception-oriented ESR-
GAN (Wang et al. 2018b). The numbers are LPIPS(↓)/PSNR(↑). Richer details are generated in our result with fewer artifacts.

reconstruct photo-realistic high-frequencies with fewer un-
desirable artifacts (see Figure 1).

In summary, our contribution is threefold:

• We present Beby-GAN for high-quality image super-
resolution. The proposed one-to-many best-buddy loss
benefits generating richer and more plausible texture. Ex-
tensive experiments and a user study justify the effective-
ness of the proposed method.

• A region-aware adversarial learning strategy is designed
to further enhance the visual quality of images.

• Breaking through the 2K resolution limitation of current
SISR datasets, we provide an ultra-high-resolution 4K
(UH4K) image dataset with diverse categories to pro-
mote future study, which will be made publicly available.

Related Work
Single image super-resolution (SISR) is a classical im-
age restoration task. It is roughly divided into three cate-
gories of example-based or prior-based methods (Yang et al.
2008; Yang, Huang, and Yang 2010; Zeyde, Elad, and Prot-
ter 2010; Timofte, De Smet, and Van Gool 2013, 2014),
PSNR-oriented methods (Dong et al. 2014; Kim, Kwon Lee,
and Mu Lee 2016a,b; Shi et al. 2016; Lai et al. 2017;
Haris, Shakhnarovich, and Ukita 2018; Zhang et al. 2018c,b)
and perception-driven methods (Johnson, Alahi, and Fei-Fei
2016; Ledig et al. 2017; Mechrez et al. 2018; Wang et al.
2018b,c,a; Zhang et al. 2019; Soh et al. 2019).

Example-Based Methods

This line (Yang et al. 2008; Zeyde, Elad, and Protter 2010;
Timofte, De Smet, and Van Gool 2014; Yang et al. 2012;
Peleg and Elad 2014) learns mapping from low-resolution
patches to high-resolution counterparts, where the paired
patches are collected from an external database. In this pa-
per, we exploit this idea to search for one-to-many LR-HR
mappings to produce visually pleasing results.

PSNR-Oriented Methods
In past years, particular attention is paid to improve the
pixel-wise reconstruction measures (e.g., peak-to-noise ra-
tio, PSNR). It is the first time that SRCNN (Dong et al.
2014) introduces a deep convolutional neural network into
the SISR task. Afterwards, more well-designed architec-
tures were proposed including residual and recursive learn-
ing (Kim, Kwon Lee, and Mu Lee 2016a,b; Tai, Yang, and
Liu 2017; Lim et al. 2017), sub-pixel upsampling (Shi et al.
2016), Laplacian pyramid structure (Lai et al. 2017) and
dense connecting (Zhang et al. 2018c). Especially, Zhang
et al. (Zhang et al. 2018b) integrated channel attention mod-
ules into a network achieving a significant improvement in
terms of PSNR performance.

Perception-Driven Methods
Despite breakthroughs on PSNR, the aforementioned meth-
ods still face a challenge that super-resolved images are typ-
ically overly-smooth and lack high-frequencies. To tackle
this problem, Johnson et al. (Johnson, Alahi, and Fei-Fei
2016) proposed a novel perceptual loss. Ledig et al. (Ledig
et al. 2017) presented SRGAN, which utilizes an adver-
sarial loss and a content loss to push outputs into residing
on the manifold of natural images. Thanks to a patch-wise
texture loss, EnhanceNet (Sajjadi, Scholkopf, and Hirsch
2017) obtains better performance. ESRGAN (Wang et al.
2018b) marked a new milestone, which consistently gener-
ates more realistic texture benefiting from model and loss
improvements. Later on, Zhang et al. (Zhang et al. 2019)
proposed RankSRGAN capable of being optimized towards
a specific perceptual metric. However, most of these meth-
ods rely on single-LR-single-HR MSE/MAE supervision.
Besides, without a region-aware mechanism, the architec-
ture design can not deal with regions differently according to
their properties. From these perspectives, we propose best-
buddy GANs detailed as follows.

Beby-GAN for Image Super-Resolution
Given a low-resolution (LR) image ILR ∈ RH×W , sin-
gle image super-resolution (SISR) is supposed to generate

1413



⊙

!𝐈!"

𝐈#"

True/False

Mask

𝐈!"

Iterations

Estimated Patch 

Best-buddy Patch

GT Patch

Candidate Patch

Hadamard
Product

𝐈!"

!𝐈!"

Best-Buddy Loss: − #

Eq. 5

Region-Aware Adversarial Learning

⋯ ⋯

Figure 2: The framework of our Beby-GAN. The best-buddy loss allows the estimated HR patches to be supervised in a dynamic
way during training. The region-aware adversarial learning is proposed to make the discriminator focus on rich-texture areas.

a high-resolution (HR) counterpart ÎHR ∈ RHs×Ws under
an upscale factor s. As shown in Figure 2, the main body of
our framework is built upon the generative adversarial net-
works (GANs) (Goodfellow et al. 2014), where the genera-
tor is used to reconstruct HR images and the discriminator
is trained to distinguish between recovered results and real
images. Following (Wang et al. 2018b), we adopt a classi-
cal pretrained RRDB model as our generator since it has
demonstrated strong learning ability. In this section, we first
describe the proposed best-buddy loss and region-aware ad-
versarial learning strategy, followed by other loss functions.

Best-Buddy Loss
In the super-resolution task, a single LR patch is essen-
tially associated with multiple natural HR solutions, as il-
lustrated in Figure 3(a). Existing methods generally focus
on learning immutable single-LR-single-HR mapping using
an MSE/MAE loss in the training phase (see Figure 3(b)),
which ignores the inherent uncertainty of SISR. As a result,
the generated HR images may lack several high-frequency
structures (Mathieu, Couprie, and LeCun 2016; Johnson,
Alahi, and Fei-Fei 2016; Ledig et al. 2017).

To alleviate this issue, we propose a one-to-many best-
buddy loss to enable trustworthy but much more flexible
supervision. The key idea is that an estimated HR patch is
allowed to be supervised by diverse targets in different itera-
tions (see Figure 2). In this paper, all supervision candidates
come from a multi-scale ground-truth image pyramid. As
shown in Figure 3(c), for an estimated HR patch p̂i, we look
for its corresponding supervision patch g∗i (i.e., best buddy)
in the current iteration to meet two constraints:
Constraint 1. g∗i is required to be close to the predefined
ground-truth gi in the HR space (1st term in Eq. 2). Rely-
ing on the ubiquitous multi-scale self-similarity in natural
images (Kindermann, Osher, and Jones 2005; Protter et al.

2008; Yang, Huang, and Yang 2010; Li et al. 2020), it is very
likely to find a HR patch that is close to the ground-truth gi.
Constraint 2. In order to make optimization easy, g∗i ought
to be close to the estimation p̂i (2nd term in Eq. 2). Note
that p̂i is considered to be a reasonable prediction as our
generator is well initialized.

Optimized with these two objectives, the obtained best
buddy g∗i is regarded as a plausible HR target for supervi-
sion. In detail, we first downsample the ground-truth (GT)
HR image IHR with different scale factors as

IrHR = S (IHR, r) , r = {2, 4} , (1)

where S(I, r) : RH×W → RH
r ×

W
r is a bicubic downsam-

pling operator, and obtain a 3-level image pyramid (includ-
ing the original GT HR image). Then, we unfold the esti-
mated HR image and corresponding GT image pyramid into
patches (3×3 in our paper), among which the GT part forms
the supervision candidate database G of this image. For the
i-th estimated patch p̂i, instead of being supervised by the
immutable predefined GT patch gi, it is allowed to find the
best buddy g∗i in the current iteration as

g∗i = arg min
g∈G

α‖g − gi‖22 + β‖g − p̂i‖22 , (2)

where α ≥ 0 and β ≥ 0 are scaling parameters. The best-
buddy loss for this patch pair (p̂i,g

∗
i ) is represented as

LBB (p̂i,g
∗
i ) = ‖p̂i − g∗i ‖1 . (3)

Notice that when β � α, the proposed best-buddy loss de-
generates into the typical one-to-one MAE loss.

Besides, we enforce another back-projection constraint on
the estimation ÎHR. The super-resolved images after down-
scaling must match the fidelity expected at the lower reso-
lution. We introduce an HR-to-LR operation (bicubic down-
sampling) to ensure that the projection of the estimated HR
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Step 1. Best-Buddy Finding (Eq. 2)

Step 2. BB & BP Loss (Eq. 3 & 4)

Step 1. One-to-One Mapping

Step 2. MSE/MAE Loss
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Figure 3: Comparison of the MSE/MAE and the best-buddy
(BB) loss with a back-projection (BP) constraint. (a) Depic-
tion of one-to-many nature in the SISR task. (b) MSE/MAE
loss. (c) BB and BP loss. Variables pLR

i , p̂i, gi and g∗i in-
dicate the LR patch, estimated HR patch, ground-truth HR
patch and best-buddy HR patch in current iteration.

image onto the LR space is still consistent with the original
LR one. The back-projected result is supervised by

LBP =
∥∥∥S (ÎHR, s

)
− ILR

∥∥∥
1
, (4)

where s is the downscale factor. From Figure 4, we notice
that this back-projection loss plays an essential role in main-
taining content and color consistency.

Region-Aware Adversarial Learning
As shown in Figure 1, previous GAN-based methods some-
times produce undesirable texture, especially in flat regions.
Thus, as illustrated in Figure 2, we propose to differenti-
ate the rich-texture areas from smooth ones according to
local pixel statistics, and only feed the textured content to
the discriminator since smooth regions can be easily recov-
ered without adversarial training. Our strategy is to first un-
fold the ground-truth HR image (i.e., IHR ∈ RHs×Ws ) into

HR w/ BPw/o BP

w/o BP

w/  BP

0.1

0.01

Figure 4: Comparison between with (w/) and without (w/o)
the back-projection (BP) loss. We visualize the L2 error
heatmaps between the estimated results and ground truth.

patches B ∈ RHs×Ws×k2

with size k2, and then compute
standard deviation (std) for each patch. After that, a binary
mask is obtained as

Mi,j =

{
1, std (Bi,j) ≥ δ
0, std (Bi,j) < δ ,

(5)

where δ is a predefined threshold and (i, j) is the patch loca-
tion. The highly textured regions are marked as 1 while flat
regions as 0. Then the estimated result ÎHR and ground-truth
IHR are multiplied with the same mask M yielding ÎMHR and
IMHR, which are next processed by the following discrimina-
tor. Though more sophisticated strategies can be used at the
cost of more computation, we show that this simple mask-
ing method already works very well. It directs our model to
generate realistic fine details for textured areas.

Other Loss Functions
Perceptual Loss. Apart from computing pixel-wise dis-
tances in image space, several works (Estrach, Sprechmann,
and LeCun 2016; Dosovitskiy and Brox 2016; Johnson,
Alahi, and Fei-Fei 2016) use feature similarity to enhance
the perceptual quality of recovered images. Following this
idea, we set the perceptual loss as

LP =
∑
i

ηi

∥∥∥φi (ÎHR

)
− φi (IHR)

∥∥∥
1
, (6)

where φi represents the i-th layer activation of a pretrained
VGG-19 (Simonyan and Zisserman 2015) network and ηi
is a scaling coefficient. To capture feature representations at
different levels, we take into consideration three layers in-
cluding conv3 4, conv4 4 and conv5 4 and set scaling coeffi-
cients to 1

8 ,
1
4 and 1

2 empirically.
Adversarial Loss. The discriminator in our network is
implemented based on Relativistic average GANs (Ra-
GANs) (Jolicoeur-Martineau 2018), which estimate the
probability that a ground-truth HR image is more realis-
tic than a generated one. It has been shown that RaGANs
are more stable and can produce results of higher qual-
ity (Jolicoeur-Martineau 2018; Wang et al. 2018b; Soh et al.
2019). The loss functions are formulated as

LD = −Exr

[
log
(
D̄ (xr)

)]
− Exf

[
log
(
1− D̄ (xf )

)]
,
(7)
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LG = −Exr

[
log
(
1− D̄ (xr)

)]
− Exf

[
log
(
D̄ (xf )

)]
,

(8)
where

D̄ (x) =

{
sigmoid

(
C (x)− Exf

C (xf )
)
, x is real

sigmoid (C (x)− ExrC (xr)) , x is fake .
(9)

In Eq. 9, xr denotes the masked real data and xf is the
masked fake data (i.e., generated data) and C (x) is the non-
transformed discriminator output.
Overall Loss. The overall loss of generator is formulated as:

L = λ1LBB + λ2LBP + λ3LP + λ4LG , (10)

where λ1 = 0.1, λ2 = 1.0, λ3 = 1.0 and λ4 = 0.005.

Experiments
Datasets
Our network is trained on DIV2K (Agustsson and Timo-
fte 2017) (800 images) and Flickr2K (Timofte et al. 2017)
(2650 images) datasets. Apart from the widely used test-
ing benchmark including Set5 (Bevilacqua et al. 2012),
Set14 (Zeyde, Elad, and Protter 2010), BSDS100 (Martin
et al. 2001) and Urban100 (Huang, Singh, and Ahuja 2015),
we also adopt the 100 validation images in DIV2K to evalu-
ate the performance of our model.

Besides, we propose an ultra-high-resolution 4K (UH4K)
dataset to perform a more challenging and complete study on
the single image super-resolution (SISR) task. The images
are collected from YouTube with resolution 3840 × 2160.
The dataset contains over 400 images featuring four cate-
gories, i.e., animal, city, nature and sports (see supplemen-
tary). Compared with existing benchmark datasets, ours has
higher resolution, higher variety and richer texture/structure.
In this paper, our 4K dataset is only used for evaluation.

Perceptual Metrics
PSNR and SSIM (Wang et al. 2004) (the higher, the bet-
ter ideally) have already been shown to correlate weakly
with human perception regarding image quality (Ledig et al.
2017; Sajjadi, Scholkopf, and Hirsch 2017). Thus, fol-
lowing (Jo, Yang, and Kim 2020; Wang et al. 2018b),
we mainly utilize a ground-truth-based perceptual metric
LPIPS (Zhang et al. 2018a) and a no-reference perceptual
metric PI (Blau et al. 2018) (the lower, the better) for eval-
uation. The LPIPS results are calculated based on the VGG
model. We also conduct a user study for better comparison.

Training Details
All experiments are carried out on NVIDIA GeForce RTX
2080 Ti GPUs under the ×4 setting. The mini-batch size is
set to 8. We adopt Adam as the optimizer with β1 = 0.9
and β2 = 0.999. There are 3 periods in our training, each
with 200K iterations. The learning rate for every period is
set to 1×10−4 initially in accompany with a warm-up and a
cosine decay. The images are augmented with random crop-
ping, flipping and rotation. The input size is 48× 48 and the
rotation is 90◦ or−90◦. The α and β are both set to 1.0 from
empirical experiments. The kernel size k and δ are set to 11

Input w/o BBL Ours

Input w/o RA Ours

Figure 5: Visual comparison for ablation study. “Ours” is
our proposed Beby-GAN. “w/o BBL” and “w/o RA” means
removing best-buddy loss and region-aware learning.

Dataset Ours w/o BBL w/o RA
Set14 0.2202/3.08 0.2343/3.21 0.2272/3.17

BSDS100 0.2385/2.44 0.2514/2.48 0.2469/2.48

Table 1: Results (LPIPS↓/PI↓) for ablation study. “Ours” is
our proposed Beby-GAN. “w/o BBL” and “w/o RA” indicate
removing best-buddy loss and region-aware learning.

and 0.025 (for normalized images). The calculation of bset-
buddy loss costs 5.9ms for images of size 196 × 196. Our
method costs 193.6ms to obtain a 1280× 720 HR image.

Ablation Study
In this part, we investigate how each design affects the per-
ceptual quality of super-resolved images. Starting from our
best-buddy GANs (Beby-GAN), we ablate the best-buddy
loss and region-aware learning strategy, respectively. We
show a visual comparison in Figure 5. Also, we evaluate the
LPIPS and PI performance in Table 1 because they are more
consistent with human perception than PSNR/SSIM (Ledig
et al. 2017; Sajjadi, Scholkopf, and Hirsch 2017). More ab-
lation study experiments are described in the supplementary
file. All these results verify the effectiveness of our method.
Best-buddy loss. In contrast to the commonly used one-to-
one MSE/MAE loss, our best-buddy loss allows the net-
work to learn single-LR-multiple-HR mapping. As illus-
trated in Figure 5, BBL (see “Ours”) recovers richer tex-
ture and sharper edges compared with one-to-one MAE (see
“ w/o BBL”). The whiskers have more high-frequency de-
tails and the text is clearer. Also, we notice that the super-
resolved images are more natural and visually pleasing. As
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Dataset Metric SRResNet RRDB RCAN SRGAN ESRGAN-PI ESRGAN RankSRGAN† Beby-GAN-PI Beby-GAN

Set14

LPIPS↓ 0.3043 0.2934 0.2922 0.3162 0.2771 0.2372 0.2545 0.2537 0.2202
PI↓ 5.36 5.27 5.30 2.87 2.61 2.93 2.61 2.57 3.08

PSNR↑ 28.57 28.95 28.97 25.90 26.39 26.28 26.57 26.56 26.96
SSIM↑ 0.7834 0.7912 0.7913 0.6942 0.7021 0.6985 0.7052 0.7061 0.7282

BSDS100

LPIPS↓ 0.3437 0.3341 0.3320 0.3387 0.2801 0.2599 0.2790 0.2777 0.2385
PI↓ 5.34 5.30 5.19 2.62 2.27 2.48 2.15 2.13 2.44

PSNR↑ 27.61 27.84 27.84 25.38 25.72 25.32 25.57 25.56 25.81
SSIM↑ 0.7376 0.7453 0.7456 0.6423 0.6638 0.6514 0.6492 0.6536 0.6781

DIV2K

LPIPS↓ 0.2991 0.2863 0.2862 0.3109 0.2741 0.2222 0.2368 0.2352 0.1991
PI↓ 5.40 5.28 5.33 3.25 2.95 3.27 3.00 3.02 3.33

PSNR↑ 30.49 30.90 30.86 27.16 27.80 28.16 28.01 28.12 28.71
SSIM↑ 0.8391 0.8478 0.8469 0.7600 0.7653 0.7752 0.7652 0.7688 0.7923

UH4K

LPIPS↓ 0.2304 0.2225 0.2208 0.3346 0.2694 0.2160 0.2745 0.2711 0.2009
PI↓ 5.53 5.50 5.56 3.91 2.93 3.42 2.87 2.89 3.54

PSNR↑ 32.11 32.45 32.46 27.85 28.94 29.43 28.99 29.13 30.02
SSIM↑ 0.8691 0.8756 0.8751 0.7706 0.7874 0.8052 0.7850 0.7892 0.8214

Table 2: Quantitative comparison of PSNR-oriented (on the left) and GAN-based methods (on the right) on benchmarks. ‘↓’
means the lower, the better. ‘↑’ indicates the higher, the better. ‘†’ means that the results of RankSRGAN (Zhang et al. 2019)
are from multiple models optimized by different objectives. Best results in GAN-based methods are shown in bold.

LPIPS: 0.3591  PI: 2.09 LPIPS: 0.3114  PI: 2.35

LPIPS: 0.1121  PI: 3.95 LPIPS: 0.0657  PI: 4.56

BSDS100_58060

Set14_ppt3

Beby-GAN-PI Beby-GAN

Figure 6: Comparison of Beby-GAN-PI and Beby-GAN.
Better results are shown in red. Ground-truth-based LPIPS is
more representative and robust than no-reference-based PI.
Zoom in for better visual comparison.

shown in Table 1, the best-buddy loss brings about consid-
erable improvement on LPIPS and PI results.

Region-Aware Adversarial Learning. As shown in the
Figure 5, there exist unpleasant artifacts near the charac-
ters and railing in the results without region-aware learning
(see “w/o RA”). After differentiating between rich-texture
and flat areas, this problem is alleviated as shown in the 3rd

column (see “Ours”). The separation allows the network to
know “where” to conduct the adversarial training and yields
two major advantages. On the one hand, it leads to easier
training since the network only needs to focus on regions
of high-frequency details. On the other hand, the network
produces less unnatural texture. The results in Table 1 also

demonstrate the effectiveness of this strategy.

Comparison with State-of-the-Art Methods
We compare our Beby-GAN with start-of-the-art meth-
ods of two categories. They are PSNR-oriented methods
including SRResNet (Ledig et al. 2017), RRDB (Wang
et al. 2018b), RCAN (Zhang et al. 2018b), and perception-
driven methods including ESRGAN (Wang et al. 2018b) and
RankSRGAN (Zhang et al. 2019). We use Set14 (Zeyde,
Elad, and Protter 2010), BSDS100 (Martin et al. 2001),
DIV2K validation (Agustsson and Timofte 2017) and a sub-
set of our UH4K for quantitative evaluation while more
datasets (Bevilacqua et al. 2012; Huang, Singh, and Ahuja
2015; Matsui et al. 2017) for qualitative analysis.

Quantitative Results Following ESRGAN (Wang et al.
2018b) and RankSRGAN (Zhang et al. 2019) that provide
different models for quantitative evaluation, we prepare two
models, named Beby-GAN-PI and Beby-GAN. The for-
mer is obtained using network interpolation as ESRGAN-
PI (Wang et al. 2018b). As shown in Table 2, GAN-based
methods obtain better performance on perceptual metrics
with lower PSNR/SSIM scores.

As for GAN-based methods, our Beby-GAN performs
best on PSNR/SSIM measures. Also, our method yields new
state of the art in terms of LPIPS on all benchmarks. In
terms of PI, our PI-based model achieves superior perfor-
mance on Set14 and BSDS100, as well as comparable re-
sults on DIV2K and UH4K. We notice that there is a rela-
tively large disparity between the ground-truth-based LPIPS
and no-reference-based PI. As shown in Figure 6, LPIPS is
more consistent with human perception. In this case, PI is
only used for reference.

Qualitative Results As illustrated in Figure 7, PSNR-
oriented methods (i.e., RCAN (Zhang et al. 2018b)) tend
to generate overly-smooth results. Although existing GAN-
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DIV2K_0812

UH4K_020

DIV2K_0823

LR image Bicubic RCAN ESRGAN RankSRGAN Ours

0.4191 0.3249 0.2362 0.2457 0.2054

0.3916 0.3041 0.2387 0.2524 0.2097

0.2115 0.1386 0.1431 0.1961 0.1094

0.4020 0.3200 0.2099 0.2081 0.1829

GT

Figure 7: Visual comparison of our Beby-GAN with other methods on ×4 scale. The values beneath images represent LPIPS
measures. Red: best quantitative results. It is clear that our Beby-GAN obtains the best visual performance.

4.7 

16.8 

15.0 

63.5 

9.8 

34.2 

30.8 

25.2 

13.8 

38.2 

37.5 

10.0 

71.7 

10.8 

16.7 

1.3 

0% 20% 40% 60% 80% 100%

RCAN

ESRGAN

RankSRGAN

Ours

Rank 1 Rank 2 Rank 3 Rank 4

Figure 8: The ranking results of user study involving 30 par-
ticipants. The values represent the percentages of rankings.

based methods (i.e., ESRGAN (Wang et al. 2018b) and
RankSRGAN (Zhang et al. 2019)) can recover some details,
they possibly generate unpleasing visual artifacts and color
inconsistency (see UH4K 020 and DIV2K 0823) .

In contrast, our Beby-GAN is capable of producing more
realistic results. From Figure 7, it is clear that our method
reconstructs richer and more compelling patterns as well as
sharper structures. Also, fewer artifacts are produced. Espe-
cially, our Beby-GAN outperforms others by a large margin
on the 4K dataset (see supplementary). In the following, we
further present a comprehensive user study to evaluate the
human visual quality of reconstructed images.

User Study
In addition to our method, we take into consideration
RCAN (Zhang et al. 2018b), ESRGAN (Wang et al. 2018b)
and RankSRGAN (Zhang et al. 2019). We prepare test-

ing cases from three sources: (1) Low-resolution images
stemming from the commonly used benchmark includ-
ing Set5 (Bevilacqua et al. 2012), Set14 (Zeyde, Elad,
and Protter 2010), BSDS100 (Martin et al. 2001) and Ur-
ban100 (Huang, Singh, and Ahuja 2015). There are a total
of 219 images. (2) 2K resolution images from the validation
subset of DIV2K (Agustsson and Timofte 2017). 100 images
are included. (3) 4K resolution images in our UH4K dataset.
There are over 400 images from 4 categories.

Every time we randomly display 30 testing cases and ask
the participant to rank 4 versions of each image: RCAN, ES-
RGAN, RankSRGAN and our Beby-GAN. To make a fair
comparison, we follow (Zhang et al. 2019) to zoom in one
random small patch for each image.

We invite 30 participants to our user study. As shown in
the Figure 8, most of our results rank in the first place while
the remaining of ours still gets high rankings. Besides, ES-
RGAN and RankSRGAN achieve better performance than
RCAN. The user study not only demonstrates the superiority
of our Beby-GAN, but also explains that existing evaluation
measures and human perception are diverse to some extent.

Conclusion

In this paper, we have presented best-buddy GANs (Beby-
GAN) for highly detailed image super-resolution. By virtue
of the proposed best-buddy loss and region-aware adversar-
ial learning, our Beby-GAN is able to recover realistic tex-
ture while maintaining the naturalness of images. Extensive
experiments manifest the effectiveness of our method.
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