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Abstract
Deep learning models have shown to be susceptible to univer-
sal adversarial perturbation (UAP), which has aroused wide
concerns in the community. Compared with the conventional
adversarial attacks that generate adversarial samples at the in-
stance level, UAP can fool the target model for different in-
stances with only a single perturbation, enabling us to eval-
uate the robustness of the model from a more effective and
accurate perspective. The existing universal attack methods
fail to exploit the differences and connections between the
instance and universal levels to produce dominant perturba-
tions. To address this challenge, we propose a new univer-
sal attack method that unifies instance-specific and univer-
sal attacks from a feature perspective to generate a more
dominant UAP. Specifically, we reformulate the UAP gener-
ation task as a minimax optimization problem and then uti-
lize the instance-specific attack method to solve the mini-
mization problem thereby obtaining better training data for
generating UAP. At the same time, we also introduce a con-
sistency regularizer to explore the relationship between train-
ing data, thus further improving the dominance of the gen-
erated UAP. Furthermore, our method is generic with no ad-
ditional assumptions about the training data and hence can
be applied to both data-dependent (supervised) and data-
independent (unsupervised) manners. Extensive experiments
demonstrate that the proposed method improves the perfor-
mance by a significant margin over the existing methods in
both data-dependent and data-independent settings. Code is
available at https://github.com/lisenxd/AT-UAP.

Introduction
Deep neural networks (DNNs) have achieved remarkable
performance in various computer vision tasks, however, re-
cent research works have demonstrated that the existing
DNNs are vulnerable to adversarial examples (Wang et al.
2021; Yang et al. 2018, 2020). In general, given a DNN
f(x) : x ∈ X −→ y ∈ Y , which maps input x to label y,
adversarial attack is designed to seek an adversarial example
x∗, leading to misclassification (Li et al. 2019; Wang 2021).
The generation of adversarial examples can be formulated
as the following constrained optimization problem:

f(x∗) 6= f(x), s.t. ‖x∗ − x‖p ≤ ε . (1)
∗Correspond author.
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The perturbation is restricted by `p-norm ‖·‖p to ensure ad-
versarial examples to be imperceptible for human. The first
batch of efforts on adversarial attack have shown that the
adversarial example for a given clean example x can be ef-
ficiently crafted by performing gradient updates (Papernot
et al. 2016; Carlini and Wagner 2017). These approaches,
which generate adversarial samples based on a specific in-
stance but often fail to transfer across samples, are catego-
rized as instance-specific adversarial attacks.

Several other parallel studies have shown that the princi-
pally curved directions of a deep classifier are also aligned
among data points (Moosavi-Dezfooli et al. 2018; Fawzi
et al. 2018), which gives rise to the existence of instance-
agnostic approach to craft adversarial perturbations. Differ-
ent from the instance-specific approach, instance-agnostic
approach learns the universal adversarial perturbation (UAP)
on the data distribution independent of a specific instance,
that is, the generated UAP is sufficient to fool most in-
stances drawn from the corresponding data distribution. The
UAP approaches are not only effective, but also adaptable
for a variety of tasks, such as image segmentation (Hen-
drik Metzen et al. 2017), natural language processing (Wal-
lace et al. 2019), and automatic check-out (Liu et al. 2020).
In addition to conventional data-dependent methods which
rely heavily on the quality and quantity of the training
data (Khrulkov and Oseledets 2018; Wiyatno et al. 2019),
recently, the success of data-independent unsupervised UAP
further strengthens the practicality of UAP by alleviating
data dependency. Compared to instance-specific methods,
data-independent approaches focus on the real vulnerability
of the learned model and the lower bound is also reported
on the achievable fooling ratios, which provides meaningful
theoretical guidance (Mopuri, Ganeshan, and Babu 2018).

In essence, both instance-specific perturbation and UAP
are generated features rather than ‘bugs’ (Ilyas et al. 2019).
Although both can fool target models, they differ in that, as
a feature, the instance-specific perturbation is ‘non-robust’
and less dominant, whereas the UAP is ‘robust’ and more
dominant (Zhang et al. 2020). However, most of existing
instance-agnostic approaches directly use original data to
train UAP, which are often only partially available and can-
not guarantee the truly universal, such that the generated
UAP contains undesired non-robust features. To this end,
the vital issue of generating UAP lies in how to reduce non-
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robust features in UAP and increase its dominance.
Motivated by the above discussions, we propose a new

instance-agnostic approach via integrating the advantages of
both instance-specific and instance-agnostic attacks. The in-
tuition of our new method is that the non-robust features are
brittle and can be destroyed easily by the antagonistic non-
robust features (Ilyas et al. 2019), while the robust features
are not. And if the generated UAP is robust and dominant, it
is reasonable to assume it is resistant to the instance-specific
perturbation. We therefore formulate the UAP generation
process as a minimax optimization problem. Specifically,
in the minimization problem, we adopt the instance-specific
approach to craft adversarial examples with more antagonis-
tic non-robust features. Then, the UAP is formulated to max-
imize the objective with these adversarial examples as in-
puts. In this process, the instance-specific adversarial exam-
ples are cheap, predictive, and flexible (Goodfellow, Shlens,
and Szegedy 2015; Ortiz-Jiménez et al. 2020). Therefore,
we can even leverage instance-specific adversarial examples
to approximate the real data distribution with random noise
as initialization in the data-independent setting. Moreover,
we design a consistency regularizer by introducing the log-
arithm normalized volume term to further improve the dom-
inance of the generated UAP. For efficient optimization, we
also follow the insight of curriculum learning, in which we
first start out with the easy examples and then gradually in-
crease the difficulty of tasks. Our main contributions can be
summarized as follows:
1. We investigate and reveal the relationships between

instance-specific perturbation and UAP, and formulate
the UAP generation task as a minimax optimization prob-
lem. By utilizing instance-specific adversarial examples
as adversaries, we solve the minimax problem effectively
and efficiently.

2. We devise a consistency regularizer to further improve
the dominance of generated UAP by exploiting the inter-
actions among samples.

3. Without any real data, the UAPs learned by our method
are of a strong semantic pattern, which could be instruc-
tive to help the understanding of adversarial examples.

4. We conduct numerical experiments on large-scale Im-
ageNet dataset with five well-known DNN models to
confirm the effectiveness of our method in both data-
dependent and data-independent settings.

Related Work
In the following, we will provide a brief overview of the
instance-specific and instance-agnostic attack methods.

Instance-specific Attacks: The vulnerability of DNNs to
imperceptible perturbation is first observed in (Szegedy et al.
2014), which transforms the box-constrained problem into
Lagrangian function and is solved by L-BFGS algorithm.
Late on, a series of methods have been proposed to gener-
ate the adversarial example. DeepFool (Moosavi-Dezfooli,
Fawzi, and Frossard 2016) studies adversarial examples
from decision boundary perspective, and shows that almost
all samples are very close to their decision boundary. C&W
attack (Carlini and Wagner 2017) explores the space of loss

functions and breaks many defense strategies. Based on lin-
ear hypothesis, Fast Gradient Sign Method (FGSM) (Good-
fellow, Shlens, and Szegedy 2015) is proposed to find the
adversarial example simply and quickly. Compared with L-
BFGS and C&W, FGSM conducts back-propagation only
once and then adds a small perturbation along the gradient
sign direction to generate adversarial example x∗:

x∗ = x+ ε · sign(∇xL(x, y)), (2)

where ∇xL is the gradient of the loss function with re-
spect to x, and ε is the constant to ensure the perturbation
in the `∞-norm bound. Although much faster than L-BFGS
and C&W, it is less effective in terms of fooling ratio (Ku-
rakin, Goodfellow, and Bengio 2016). To address this prob-
lem, an iterative extension of FGSM termed I-FGSM (Ku-
rakin, Goodfellow, and Bengio 2017) is proposed. Follow-
ing I-FGSM, MI-FGSM (Dong et al. 2018) adopts momen-
tum term in iterative algorithms to boost adversarial attack,
which achieves a balance between effectiveness and speed,
and has been proven to have good transferability across
DNN architecture.

Different form previous works, in this paper, we utilize
instance-specific attacks from ‘non-robust’ feature perspec-
tive rather than adversarial attack perspective.

Instance-agnostic Attacks: Contrary to instance-specific
approach, instance-agnostic approach aims to fool all in-
stance by adding only a single learned universal noise.
Now there are two basic categories in instance-agnostic ap-
proach: data-dependent and data-independent. As a typi-
cally data-dependent method, the vanilla universal attack (V-
UAP) accumulates UAP by iteratively executing DeepFool
attack (Moosavi-Dezfooli, Fawzi, and Frossard 2016) for
each data points. Another algorithm named SV-UAP gener-
ates UAP by calculating the singular vectors of the Jacobian
matrices of the feature maps (Khrulkov and Oseledets 2018).
To alleviate the rather cumbersome and slow procedure of
the UAP generation, generative methods are proposed, i.e.,
NAG (Mopuri et al. 2018) and GAP (Poursaeed et al. 2018).
Recently, Feature-UAP (F-UAP) demonstrates UAP has in-
dependent semantic feature and a direct optimization can
achieve superior performance than training a generative net-
work (Zhang et al. 2020).

As it is not reasonable to assume adversaries have ac-
cess to original training data, data-independent approach as-
sumes we only have access to the models architecture and
parameters, without knowing the training data. Fast Feature
Fool (FFF) is believed as the first data-independent method
which generates UAP by maximizing the activation of con-
volutional neurons (Mopuri, Garg, and Venkatesh Babu
2017). Similarly, PD-UA generates UAP by maximizing the
model uncertainty (Liu et al. 2019). Different from the above
methods, GD-UAP (Mopuri, Ganeshan, and Babu 2018)
and AAA (Mopuri, Uppala, and Babu 2018) craft for data-
independent UAP based on random noise and compress im-
pressions as proxy data, respectively. Though more effec-
tive, AAA requires costly training of multiple compressed
impressions for each class and also causes the generation
process to be divided into two stages.

Different from the methods mentioned above, we in-
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troduce instance-specific attack into instance-agnostic task,
which bridges the gap between two adversarial attack tasks.

Feature perspective on adversarial example: The exis-
tence of adversarial perturbation is counter-intuitive which
motivates numerous works attempting to explain this in-
triguing phenomenon from a wide spectrum of perspec-
tives, i.e., noise disturbance (Fawzi, Moosavi-Dezfooli,
and Frossard 2016; Gilmer et al. 2019), data imita-
tion (Schmidt et al. 2018; Tanay and Griffin 2016), high-
dimensionality (Fawzi, Fawzi, and Fawzi 2018; Mahloujifar,
Diochnos, and Mahmoody 2019) and local linearity (Good-
fellow, Shlens, and Szegedy 2015; Qin et al. 2019). These
theories, however, are often limited in explaining this phe-
nomenon as they only focus on explaining one of instance-
specific and instance-agnostic adversarial examples.

Recently, feature perspective has been proposed to ex-
plain the existence of adversarial perturbation which claims
that adversarial vulnerability is a direct result of our mod-
els sensitivity to well-generalizing features in the data (Ilyas
et al. 2019; Ortiz-Jiménez et al. 2020). In standard ML
datasets, there exist both ‘robust’ features and non-robust
features, and DNNs exploit both human-aligned ‘robust’
features and human-imperceptible ‘non-robust’ features, as
long as they are predictive. Thus, instance-specific pertur-
bations establish spurious input-output associations based
purely on ‘non-robust’ features, while UAP is based on ‘ro-
bust’ features (Liu et al. 2019; Zhang et al. 2020). This
key difference leads to UAP dominates over the inputs for
the model prediction, whereas instance-specific perturba-
tion does not (See Fig. 2). However, limited by the number
of training samples observed, UAPs learned directly from
the datasets are not truly universal and still contain non-
robust features. This phenomenon is particularly serious in
the data-independent setting due to the absence of data.

Given all this, we introduce instance-specific perturba-
tions as adversaries to destroy brittle non-robust features
during the UAP generation, resulting in more robust UAP.

Methodology
In this paper, we reveal the relationship between minimax
optimization and UAP attack firstly. Then we illustrate how
to apply the instance-specific attack approach to solve this
problem. Finally, consistency regularizer is introduced to
normalize the response of UAP.

Problem Formulation
In universal adversarial attack, we try to find a single pertur-
bation δ satisfying:

max
δ

E
(x,y)∼D

[L(f(x+ δ), y)] ,

s.t. ‖δ‖p1 ≤ ε
(3)

where L(·) denotes the perturbation loss over the data x and
f is target network. Most of existing methods focus on how
to solve Eq. 3 more efficiently while ignoring how limited
data effects the optimization process, which results in the
generated UAP less robust and dominant. To obtain better

(a) Mean Image (b) AlexNet (c) GoogleNet

(d) VGG16 (e) VGG19 (f) ResNet152

Figure 1: The visualization of adversarial examples gener-
ated for different network architectures. Rescaled to [0, 255].

training data for generating UAP, we introduce instance-
specific attacks to generate training data with more antag-
onistic non-robust features. So we rewrite the objective as:

arg max
δ

E
(x,y∗)∼D

[
min

x∗∼∆(x)
L(f(x∗, δ), y∗)

]
,

s.t. ‖δ‖p1 ≤ ε1 ‖∆(·)‖p2 ≤ ε2
(4)

where x∗ is adversarial example near the initial data x to
minimize the loss associated with the corresponding label
y∗. The UAP δ is going to be against x∗ by maximizing the
loss. Compared with Eq. 3, the key difference is that our ob-
ject function replaces real data x with adversarial example
x∗ as training data of δ. Note that the inner problem (ad-
versarial example generation) and the outer problem (UAP
generation) share the same loss function. Next, we will dis-
cuss how to solve Eq. 4 in detail.

Adversarial Example Generation. Directly generating
adversarial example is expensive and difficult, in order
to solve it at an acceptable cost, we resort to MI-FGSM
method. The MI-FGSM is computation-friendly, and it only
takes a few steps rather than hundreds or even thousands
of steps to generate an adversarial example. Besides, the
adoption of momentum term overcomes poor local optima
and can achieve nearly 100% attack success rate. However,
the vanilla MI-FGSM also has some problems. First, in the
case of non-targeted attacks, the dataset has to be the orig-
inal dataset. Second, `∞ constraint focuses only on max-
imum value, leading to all pixels in perturbation lying in
[−ε2,+ε2], far from the dynamic range of natural image
[0, 255]. To address these problems, we use `2-norm targeted
variant of MI-FGSM instead of vanilla one, the function is:

gt+1 = µ · gt − ∇xL(x∗
t ,y

∗)
‖∇xL(x∗

t ,y
∗)‖

2
, (5)

x∗t+1 = Clip(x∗t − α ·
gt+1

‖gt+1‖2
), (6)
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Figure 2: Plots of logit vectors from the perturbed image
Limg and scaled crafted perturbation Ladv of MIM and pro-
posed method with their respective PCC values. The pertur-
bations are crafted on VGG16.

where Clip(·) is clip function to ensure generated x∗ within
[0, 255]. Following default settings in (Dong et al. 2018), the
decay factor µ is set to 1, total iteration is set to 10 and step
size α is set to ε2/10. For data-independent setting, we ini-
tialize x∗ via a mean image (all pixels are set as 127.5 out of
255) and add uniform distribution U ∈ [−16, 16] in the be-
ginning to keep diversity. While for data-dependent setting,
x∗ starts from real data x and y∗ is set to true label y. The
difference between our variant and vanilla MI-FGSM is that
in Eq. 5 and Eq. 6, we rescale the gradient as a unit vector to
constraint the magnitude of perturbation with `2−ball. And
the targeted setting makes x∗ look like random label y∗ for
target model, which is crucial for data-independent setting.

Here we set ε2 = 20 and the generated adversarial ex-
amples are as shown in Fig. 1. Though target model gives a
high confident, these instance-specific adversarial examples
do not make any sense in human cognition. From feature
perspective, the generated adversarial examples are seman-
tically meaningless but highly predictable. Therefore, it is
reasonable to assume they are typical non-robust features.

UAP Generation After solving the inner minimization
problem, we leverage x∗ to train UAP. Specially, we treat
UAP δ as unknown weight and apply gradient decent
method to optimize it. We adopt the ADAM optimizer with
mini-batch training, which is easy to use and has also been
adopted in the context of generating UAPs (Mopuri, Gane-
shan, and Babu 2018; Zhang et al. 2020). The final genera-
tion scheme is defined as follows:

δt = Adam(∇δL(x∗, δt−1), γ), (7)

δt = min(max(δt,−ε1), ε1), (8)

where γ is the learning rate and min-max operation con-
strains δ ∈ [−ε1, ε1].

With the instance-specific adversarial examples as train-
ing data, the UAP is designed to learn more dominant pat-
tern that can defeat antagonistic non-robust features. To ver-
ify our claim, we plot the Pearson Correlation Coefficient
(PCC) analysis, a widely adopted metric to measure the lin-
ear correlation between two variables (Anderson 1962). As
shown in Fig. 2, our generated UAP is highly correlated with

adversarial image while the perturbation generated by MI-
FGSM is not, which is consistent with previous claim.

Loss Design
Fooling Loss In the design of the objective function, both
the requirements of adversarial example and UAP gen-
eration should be considered. A most naively and com-
monly used loss is cross-entropy. However, cross-entropy
loss has been pointed out to be less effective in both targeted
instance-specific and UAP scenario (Naseer et al. 2019; Li
et al. 2020) because of the following reasons: (a). In cross-
entropy loss, the gradient value scale changes with label
confidence, which sometimes even leads to gradient vanish;
(b). Cross-entropy loss holistically incorporates logits of all
classes but not the only target class we want, thus this loss
function leads to overall lower fooling ratios. Drawbacks of
cross-entropy loss can be resolved by applying logit loss:

L`(x, y) = −ly(x), (9)

where ly(x) denotes the logit output of input x with re-
spect to the target label. It is also supported by recent works
that logit loss has superior performance than cross-entropy
loss (Zhao, Liu, and Larson 2021; Zhang et al. 2020).

Consistency Regularizer The logit loss L` only concerns
instance level information, but ignores a common feature
shared by all instances in generation, which is UAP δ. Note
that a well-trained UAP should be more robust and dominant
than normal instances as we mentioned before. Thus, un-
der the influence of UAP, the response of different instances
with UAP should align well. Technically, we introduce log-
arithm normalized volume term (Pang et al. 2019) to mea-
sure the correlation between adversarial examples in order
to promote consistency of feature responses. In general, our
consistency regularizer is defined as:

Lc = log(det(ATA)), (10)

where det(·) denotes determinant and A =
{
A1, ..., Am

}
∈

Rc×m is the output of logit layer. Here output Ai is the logit
of i-th instance normalized under `2-norm. According to the
matrix theory, we have:

det(ATA) = Vol2({Ai}i∈[m]), (11)

where Vol(·) denotes the volume spanned by m vectors Ai.
Since Ai is normalized, Lc achieves maximal value 0 if and
only if column vectors of A mutually orthogonal. Note that
different from most of the previous efforts to enforce the
UAPs dissimilar on the same instance x, we minimize Lc to
keep the responses of the instances containing UAP consis-
tent. Overall, our loss for training UAP is given by:

L(·) = L`(·) + λLc(·), (12)

where λ is trade-off factor.

Optimization with Curricula
Since overmighty adversary in the beginning may make it
hard to convergence, we optimize our method following the
insight of curriculum learning, in which we first start out
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Method AlexNet GoogleNet VGG16 VGG19 ResNet152 Avg.
F-UAP∗ 96.17 88.94 94.30 94.98 90.08 92.89
FFF 80.92 56.44 47.10 43.62 - -
GD-UAP 87.02 71.44 63.08 64.67 37.30 64.65
AAA 89.04 75.28 71.59 72.84 60.72 73.89
PD-UA - 67.12 70.69 64.98 46.39 -
Ours(w/o CR) 96.29±0.17 80.08±0.84 93.67±0.24 92.08±0.43 71.26±0.91 86.68
Ours(with CR) 96.66±0.12 82.60±0.72 94.50±0.21 92.85±0.48 73.15±1.15 87.95

Table 1: The evaluation results (FR%) of the proposed method and other data-independent UAPs. To avoid cherry picking, we
present mean and standard deviation obtained for 5 runs. ‘w/o CR’ indicates generating UAP without consistency regularizer
and ‘with CR’ indicates generating UAP with consistency regularizer. * indicates data-dependent method.

Algorithm 1: Our UAP algorithm
Input: Target model f , mean image xm, loss function

L, mini-batch size M , iterations T , magnitude
ε1, ε2, constant a0 and zoom factor α.

Output: Perturbation vector δ
Initialize: δ ← 0, x← 255.0/2
for Iteration i = 0, . . . , T − 1 do

Update the magnitude of instance-specific
adversarial examples via Eq. 13.

Sample
x1, ..., xM ← xm + U(−16, 16) (independent) or
x1, ..., xM ← D(x) (dependent).

Update the x∗ via Eq. 5 and Eq. 6.
Update the δ via Eq. 7 and Eq. 8.

end

with only easy examples and then gradually increase the dif-
ficulty of task. Specifically, our definition of sample diffi-
culty depends not on the label category but on the strength
of adversarial examples, then we can gradually expand the
scope and magnitude of adversarial examples directly by
controlling ε2. Our protocol of curriculum learning is de-
fined as:

D1 ⊂ D2 ⊂ ... ⊂ DT ,
Di = {x∗i , y}, x∗i ∈ ∆i(x),
s.t. ‖∆i(·)‖ ≤ Clip(a0 + α i

T (ε1 − a0)),
(13)

where T is total iteration, α is a zoom factor, and Clip(·) to-
gether with constant a0 jointly ensure the constraint within
[a0, ε1]. We summarize the overall procedure of the pro-
posed method in Algorithm 1.

Experiments
Datasets. Following (Mopuri, Ganeshan, and Babu 2018;
Zhang et al. 2020), we evaluate the proposed method to
fool a serial of DNNs pretrained on ImageNet, includ-
ing AlexNet (Krizhevsky, Sutskever, and Hinton 2012),
GoogleNet (Szegedy et al. 2015), VGG-16 (Simonyan
and Zisserman 2015), VGG-19 (Simonyan and Zisserman
2015), and ResNet152 (He et al. 2016). We use the Ima-
geNet validation set (Russakovsky et al. 2015) containing
50,000 samples to evaluate the performance. We also ex-
plore generating data-dependent UAP with the ImageNet

training data.
Evaluation metrics. To evaluate the attacking performance
of the generated UAP, we use the widely-used fooling ra-
tio (FR) metric (Moosavi-Dezfooli et al. 2017; Mopuri,
Garg, and Venkatesh Babu 2017), that is the proportion of
images that change labels when perturbed by our UAP.
Comparative Methods. The proposed method is compared
with the following data-independent UAPs: FFF (Mopuri,
Garg, and Venkatesh Babu 2017), GD-UAP (Mopuri, Gane-
shan, and Babu 2018), AAA (Mopuri, Uppala, and Babu
2018), and PD-UA (Liu et al. 2019). We also compare data-
independent UAPs: V-UAP (Khrulkov and Oseledets 2018),
GAP (Poursaeed et al. 2018), NAG (Mopuri et al. 2018) and
F-UAP (Zhang et al. 2020).
Implementation Details. All of our experiments are con-
ducted on Pytorch and run with single NVIDIA TITAN
Xp GPU. Following widely-used setting, we set p1 = ∞
and maximum perturbation ε1 = 10 with the pixel value
in [0, 255] (Mopuri, Uppala, and Babu 2018; Zhang et al.
2020). The number of iterations T , batch-size m, learning
rate γ and trade-off factor λ are set to 1000, 32, 0.5 and
0.05, respectively. ε2, constant a0 and zoom factor α are set
to 20, 14, 20 respectively for data-independent setting and in
data-dependent setting, ε2 is set to 4.

Quantitative Results
Data-independent Setting In this subsection, we firstly
utilize our method to attack five DNN models without any
real data, and then test the obtained UAP on ImageNet val-
idation set. The fooling ratios of different methods are re-
ported in Table 1. Note that F-UAP is SOTA data-dependent
UAP method. As seen, our method consistently outper-
forms all other data-independent attacks by 7-20%. In most
cases, our methods only slightly inferior to data-dependent
method. It is worth noting that in some DNN models, i.e.,
AlexNet and VGG16, our method even outperforms data-
dependent method without requiring any data. As shown in
Fig. 3, our generated UAPs look more semantically mean-
ingful whereas the perturbation from instance-specific per-
turbations performs like the noise (see Fig. 1 for reference),
which suggests we manage to generate a more robust and
dominant feature. And we also report the attacking perfor-
mance of directly using logit loss without using consistency
regularizer. Results show that consistency regularizer brings
a performance gain of 0.4-2.9%, which confirms the effec-
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Method AlexNet GoogleNet VGG16 VGG19 ResNet152 Avg.
V-UAP 93.3 78.9 78.3 77.8 84.0 82.46

SV-UAP - - 52.0 60.0 - -
GAP - 82.7 83.7 80.1 - -
NAG 96.44 90.37 77.57 83.78 87.24 87.09

F-UAP 96.17 88.94 94.30 94.98 90.08 92.89
Ours(w/o CR) 96.59±0.17 90.35±0.26 96.94±0.16 97.11±0.04 90.78±0.29 94.35
Ours(with CR) 97.01±0.11 90.82±0.29 97.51±0.08 97.56±0.04 91.52±0.78 94.88

Table 2: The evaluation results (FR%) of the proposed method and other data-dependent UAPs. To avoid cherry picking, we
present mean and standard deviation obtained for 5 runs. ‘CR’ indicates consistency regularizer

(a) AlexNet (b) GoogleNet (c) VGG16 (d) VGG19 (e) ResNet152

Figure 3: The visualization of data-independent UAPs learned by the proposed framework for different network architectures.
Rescaled to [0, 255]. (Best viewed in color.)

tiveness of consistency regularizer. Samples of clean images
and perturbed images are shown in Figure 4.

Data-dependent Setting Similar to data-independent set-
ting, in this subsection, we further validate the effectiveness
of the proposed method with data-dependent setting. We set
learning rate γ = 0.005 and ε2 = 4 here, as ε2 is small, we
do not use curriculum learning in this part. In this scenario,
the instance-specific adversarial examples reinforce the non-
robust features in data. If our learned UAP can defeat these
examples with more non-robust features, it means that the
UAP is more robust and dominant. The fooling ratios are
reported in Table 2. With real data as initial, our method
can further improve the fooling ratio and consistently out-
performs comparison data-dependent method by 1.0-3.0%,
which demonstrates the universality of proposed method.

Cross-model Generalizability
While we have shown the our generated UAP are univer-
sal across unseen data points, we now examine their cross-
model generalizability. To quantitatively study the cross-
model generalizability, we study to what extent the gener-
ated UAP for a given architecture (e.g., AlexNet) is also
valid for another architecture (e.g., ResNet152). Table 3
shows the generalizability of the generated UAP across five
different architectures. Here we denote data-dependent set-
ting as ‘supervised’ and data-independent setting as ‘unsu-
pervised’. We observe that the generated UAP can achieve
considerable FR in other architectures, which proves it
can generalize well across both data points and architec-
tures. This result is also consistent with previous claim that
such UAP are of practical relevance and more robust. It is

Figure 4: The visualization of clean images (top) and per-
turbed images (bottom) for VGG16 (Best viewed in color.)

also worth noting that in some cases, data-independent ap-
proach shows better generalizability than data-independent
approach, i.e., AlexNet as source model. The cause of this
phenomenon may be that the data dependence approach
overfits the training data, which indicates an additional ben-
efit of our data-independent method.

Ablation Study
In this subsection, we conduct a series of ablation experi-
ments to study the effectiveness of our method.

We first validate the necessity of training UAP with
instance-specific adversarial examples. We adopt mean im-
age and Gaussian noise instead of adversarial example to
craft UAP. For fair comparison, we rescale Gaussian noise
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Mthod AlexNet GoogleNet VGG16 VGG19 ResNet152

AlexNet Unsupervised 96.66±0.12 62.01±0.32 72.33±0.50 67.24±0.18 43.63±0.29
Supervised 97.01±0.11 47.31±1.65 62.37±1.37 57.72±0.62 33.40±0.77

GoogleNet Unsupervised 55.65±0.37 82.60±0.72 71.38±0.83 68.25±0.59 43.03±0.42
Supervised 55.90±0.62 90.82±0.29 78.71±0.67 76.01±0.45 54.49±0.29

VGG16 Unsupervised 54.15±0.70 48.53±1.32 94.50±0.21 86.65±0.70 36.96±1.03
Supervised 45.58±0.29 53.63±0.90 97.51±0.08 91.53±0.22 47.16±0.95

VGG19 Unsupervised 62.05±1.01 60.99±1.41 88.96±0.50 92.85±0.48 42.72±0.51
Supervised 46.04±0.58 52.58±0.81 93.49±0.17 97.56±0.04 43.53±0.57

ResNet152 Unsupervised 49.78±0.68 48.37±0.49 62.78±0.71 60.54±0.49 73.15±1.15
Supervised 47.33±0.89 61.32±0.98 81.93±0.94 78.72±0.91 91.52±0.78

Table 3: Transferability results for the proposed universal adversarial attack. The rows indicate the source model and the
columns indicate the target model. The values in each column are reported in the FR (%). To avoid cherry picking, we present
mean and standard deviation obtained for 5 runs.

(a) Mean (b) Gaussian

Figure 5: The visualization of UAPs generated for VGG16
with mean images (left) and Gaussian noise images (right).
Rescaled to [0, 255]. (Best viewed in color.)

with the same `2-norm of adversarial example. The results
are presented in Table 4. In both scenarios, the performance
of Gaussian noise is inferior to our method. We can also ob-
serve that in data-independent setting, the generated UAPs
have little semantical patterns, indicating that the UAP is
not able to learn semantically meaningful features with only
Gaussian noise as proxy data. This phenomenon may be
caused by the following reasons: 1. Mean-image or random
noise has no correlation with training data at the feature level
thus can not provide effective information for optimization.
2. These random data are lack of diversity, while targeted
adversarial example are meaningful at the feature level and
have enough diversity (corresponding to target label).

Next, we evaluate the impact of each component on UAP
dominance. As shown in Table 1 and Table 2, our method
improves performance in both data-independent and data-
dependent setting. However, it remains unknown whether
the UAP we learned is more dominant. To verify our claim,
we calculate PCC analysis to show the correlation between
adversarial images and UAP. The absolute value of PCC
analysis indicates the extent to which the two variables are
linearly correlated, with 1 indicating perfect linear correla-
tion, 0 indicating zero linear correlation. We use ImageNet
validation set to perform experiments here and report aver-
age PCC values for 50000 images. The higher the average
PCC value, the more dominant our UAP is. As shown in Ta-
ble 5, we observe that the PCC values are relatively higher

Mthod Alex Google VGG16 VGG19 Res152
Mean 72.07 35.83 51.14 40.49 26.14

Gaussian-I 56.80 24.27 30.56 27.75 19.47
Gaussian-D 96.26 89.13 94.49 95.35 90.46

Table 4: Our data-independent approach with mean image
and Gaussian noise as proxy datasets for crafting UAP. We
denote data-independent setting as ‘Gaussian-I’ and data-
dependent setting as ‘Gaussian-D’.

Method Alex Google VGG16 VGG19 Res152
Base 0.3742 0.0503 0.3978 0.4409 0.1394

Ours (w/o) 0.7408 0.4613 0.7666 0.6992 0.5582
Ours (with) 0.7423 0.4980 0.8123 0.7477 0.5974

Base 0.7304 0.5522 0.7433 0.7096 0.6285
Ours (w/o) 0.7597 0.5873 0.8032 0.8515 0.6337
Ours (with) 0.8041 0.6934 0.8429 0.8997 0.6508

Table 5: PCC analysis for 5 different network architectures.
The results are divided into data-independent setting (upper)
and data-dependent setting (lower). ‘Base’ indicates gener-
ating UAP with mean image (data-independent setting) or
clean image (data-dependent setting). ’w/o’ and ’with’ indi-
cate without/with CR.

for UAPs with adversarial example and consistency regular-
izer, which supports our claim.

Conclusion
In this paper, we propose a novel universal attack method,
which mainly considers the feature nature of UAP to craft
a more dominant UAP. First, we build a bridge between
instance-specific and universal attacks by minimax opti-
mization, so that we can learn a more dominant UAP. Then
to further improve the dominant of generated UAP, inter-
actions among samples are utilized through a consistency
regularizer, which can effectively improve the attacking per-
formance. Benefiting from the bridge we bailed between
instance-specific and universal attacks, we manage to learn
a more dominant UAP. Extensive experiments verify the ef-
fectiveness of our method in both data-dependent as well as
data-independent settings.
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Ethics Statement
Due to the fact that DNN models have been widely deployed
in real world applications, the potential privacy problems
are also growing(Lyu et al. 2020; Xu and Lyu 2020, 2021).
Stronger UAP can obviously benefit applications of adver-
sarial images for social good, such as protecting user pri-
vacy. In addition, our paper can assist researchers to perform
more thorough evaluations and designing stronger defenses.
We firmly believe that the positives of our work outweigh
the negatives.
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