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Abstract

Due to high-speed motion blur and challenging illumination,
conventional frame-based cameras have encountered an im-
portant challenge in object detection tasks. Neuromorphic
cameras that output asynchronous visual streams instead of
intensity frames, by taking the advantage of high temporal
resolution and high dynamic range, have brought a new per-
spective to address the challenge. In this paper, we propose a
novel problem setting, retinomorphic object detection, which
is the first trial that integrates foveal-like and peripheral-like
visual streams. Technically, we first build a large-scale mul-
timodal neuromorphic object detection dataset (i.e., PKU-
Vidar-DVS) over 215.5k spatio-temporal synchronized la-
bels. Then, we design temporal aggregation representations to
preserve the spatio-temporal information from asynchronous
visual streams. Finally, we present a novel bio-inspired unify-
ing framework to fuse two sensing modalities via a dynamic
interaction mechanism. Our experimental evaluation shows
that our approach has significant improvements over the state-
of-the-art methods with the single-modality, especially in
high-speed motion and low-light scenarios. We hope that our
work will attract further research into this newly identified,
yet crucial research direction. Our dataset can be available at
https://www.pkuml.org/resources/pku-vidar-dvs.html.

Introduction
Conventional frame-based cameras have presented some
limitations for object detection in challenging scenes (e.g.,
motion blur, over-exposure, and low-light), resulting in a
sharp drop in performance using unusable frames (Sayed
and Brostow 2021). A key question still remains: How does
the human visual system perform information flows and cap-
ture an object in extreme challenging scenarios?

Studies (Sinha et al. 2017; Roy, Jaiswal, and Panda 2019)
have revealed that the visual system of primates trans-
forms information flows through discrete action potentials
or “spikes”. Recently, two types of neuromorphic vision sen-
sors (i.e., event-based cameras (Gallego et al. 2020) and
time-based cameras (Chen et al. 2011)) have captured the
interest of the computer vision community owning to the
advantages over conventional frame-based cameras.
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Figure 1: Retinomorphic object detector, integrating foveal-
like and peripheral-like asynchronous visual streams from
Vidar and DVS, performs a complementary fusion for object
detection in challenging scenarios.

Event-based cameras (e.g., DVS (Lichtsteiner, Posch, and
Delbruck 2008) and DAVIS (Brandli et al. 2014)) in the for-
mer type, mimicking the periphery of the retina, work in
a different way over frame-based cameras: each pixel re-
sponds to intensity changes with asynchronous events. Due
to natural motion sensors with a high dynamic range (HDR)
and high temporal resolution, event-based cameras have
been applied in object detection. Although some tasks (Perot
et al. 2020; Ryan et al. 2021) achieve a satisfactory per-
formance via only processing DVS events (i.e., brightness
changes), which is hard to provide static texture (i.e., ab-
solute brightness) and achieve high-precision performance.
Another joint frameworks (Jiang et al. 2019; Hu et al. 2020;
Cao et al. 2021; Liu et al. 2021; Wang et al. 2021b) at-
tempt to combine DVS events and frames. However, a major
bottleneck prohibits these joint detectors since conventional
frames with 25 Hz may suffer from high-speed motion blur.

Time-based cameras (e.g., Vidar (Dong, Huang, and Tian
2017)) in the latter type, taking the foveal-like sampling
model, generate a spike when the accumulation of photons
for a pixel reaches a threshold. This frame-free imaging
paradigm brings the ability to reconstruct visual textures us-
ing spike frequency or inter-spike interval (Zhu et al. 2020b).
It has a high temporal sampling frequency of 20,000 Hz and
is suitable to deal with high-speed vision tasks. Neverthe-
less, a slight drawback of Vidar has a lower dynamic range
(70 dB versus 120 dB) over DVS, thus it is difficult to cap-
ture an object in challenging illumination scenarios.

According to the sensing preliminary from the human vi-
sual system (Stewart, Valsecchi, and Schütz 2020), process-
ing in peripheral and foveal vision is not independent, but
is more directly connected than previously thought. In other
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words, the retina is combined with the fovea and the periph-
ery to sense real-world scenes. It motives us to ask: Can we
make complementary use of foveal-like and periphery-like
visual streams for object detection as the retina does?

To tackle this question, we propose a novel retinomorphic
object detector, which integrates foveal-like and peripheral-
like asynchronous visual streams to detect objects in chal-
lenging scenarios, as shown in Fig. 1. In fact, the goal of this
work is not to develop a state-of-the-art frame-based object
detector with single-modality. On the contrary, we aim at
overcoming the following challenges: (i) How do we build
a large-scale multimodal neuromorphic dataset that benefits
from object detection involving high-speed and low-light?
(ii) How do we leverage rich spatio-temporal cues from con-
tinuous visual streams for object detection? (iii) How does
the unifying mechanism for two asynchronous streams ben-
efit object detection? Specifically, we first build a prototype
hybrid camera system and present a large-scale multimodal
neuromorphic object dataset (i.e., PKU-Vidar-DVS), which
provides manual annotations at a frequency of 50 Hz for 9
classes, yielding more than 215.5k spatio-temporal synchro-
nized labels. Then, temporal aggregation representations are
proposed to preserve the spatio-temporal information from
asynchronous visual streams. Motivated by the interaction
between foveal and peripheral signals, a novel bio-inspired
unifying object detection framework is presented to fuse two
streams via dynamic interactions between sub-networks.

In summary, the main contributions of this work are:
• We introduce a novel problem setting, retinomorphic

object detection, which first integrates foveal-like and
peripheral-like visual streams to address major object de-
tection challenges (e.g., motion blur and low-light).
• We propose temporal aggregation representations us-

ing the attention mechanism, which preserves the spatio-
temporal information from asynchronous visual streams.
• We present a dynamic interaction fusion framework via

dynamically exchanging the channels for object detec-
tion, which outperforms state-of-the-art fusion methods.
• We build a large-scale multimodal neuromorphic object

detection dataset using our hybrid camera system. We
believe that this standardized dataset will open up an op-
portunity for the research of this challenging problem.

Retinomorphic Sensing Preliminaries
Human Retina Sensing. The retina lines the back of the
eyeball that senses light and sends visual information to the
brain. Central fovea with the highest resolution plays a cru-
cial role in scrutinizing fine-detailed objects, and periph-
ery vision is very important to identify well-known shapes
and movements (Strasburger, Rentschler, and Jüttner 2011;
Katzakis et al. 2019). Studies reveal that foveal and periph-
eral processing are closely connected and interacted to per-
ceive the real-world scenes (Stewart, Valsecchi, and Schütz
2020). By integrating foveal and periphery vision, the retina
achieves robust perception in challenging scenarios. Biolog-
ical retinas have many desirable attributes which are lacking
in conventional frame-based cameras but inspire the emerg-
ing neuromorphic cameras (e.g., DVS and Vidar).
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Figure 2: A hybrid camera system integrates Vidar and
DAVIS346. (a) A beam splitter is placed in front of two
cameras with 50% splitting. (b) Spatial-temporal calibra-
tion using a standard checkerboard. (c) Examples of our
PKU-Vidar-DVS dataset, the left in each image is the re-
constructed image from Vidar, the right is the event image
by mapping asynchronous events into the image-like plane.

Foveal-Like Sensing. Vidar, mimicking the visual sampling
mechanism of the fovea, encodes the information about
pixel illumination in the spike frequency or inter-spike inter-
val (Zhu et al. 2020b; Xu et al. 2020b). One-bit spike is fired
when the accumulator of the light intensity I(x, y, t) for
each independent pixel [xn, yn] at the timestamp tn reaches
the threshold θ1. Intuitively, the brighter the light, the higher
frequency the spike firing, and it can be depicted as:∫ tn

0

I(xn, yn, t)dt = θ1, (1)

where the small integrating window dt (i.e., ∆t) may result
in an ultra high sampling frequency. This novel frame-free
imaging paradigm enables Vidar to capture visual textures
(i.e., static information) for ultra high-speed vision tasks.
Periphery-Like Sensing. DVS, modeling a simplified struc-
ture of the periphery, responds to light changes with asyn-
chronous events (Posch et al. 2014; Wu et al. 2019; Zheng
et al. 2021). An event en=(xn, yn, tn, pn), using the address
event representation (AER) protocol (Boahen 2000), is gen-
erated once the logarithmic light change for a pixel [xn, yn]
exceeds the threshold θ2, and it can be formulated as:

ln I(xn, yn, tn)− ln I(xn, yn, tn −∆tn) = pnθ2, (2)

where the polarity pn ∈ {1,−1} denotes ON or OFF event,
which represents the increasing or decreasing change in the
brightness, and ∆tn is the temporal sampling interval.

Generally speaking, DVS has a high dynamic sensing
ability for moving objects in challenging illumination, but it
fails to capture static features. Vidar has the ability of high-
speed visual texture sampling, but its dynamic range is not
as high as that of DVS. Thus, this paper investigates how to
take complementary advantages from Vidar and DVS serve
for object detection, especially in challenging scenarios.
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Dataset Pub. Resolution Modality Type High-speed Low-light Freq. Classes Boxes
KITTI (Geiger, Lenz, and Urtasun 2012) CVPR 1,240×376 Frames Real 7 7 10 3 127.6k
MS COCO (Lin et al. 2014) ECCV Various Frames Real 7 7 1 80 2.5M

KAIST (Hwang et al. 2015) CVPR 640×480 (RGB) RGB-T Real 7 3 1 1 29k320×256 (T)
NightSurveillance (Wang et al. 2020a) IJCAI 1,920×1,080 Frames Real 7 3 1 1 52k
NFS-CeleX (Huang et al. 2018) TCSVT Various Events Simulated 3 7 240 n.a. 38.3k
PKU-DDD17-CAR (Li et al. 2019) ICME 346×260 Events, Frames Real 7 3 1 1 3155
Gen1 Detection (de Tournemire et al. 2020) NeuIPS 304×240 Events Real 7 3 1, 4 2 255k
1 Mpx Detection (Perot et al. 2020) NeuIPS 1,280×720 Events Real 7 3 60 3 25M

PKU-Vidar-DVS Ours 400×250 (Vidar) Spikes Real 3 3 50 9 215.5k346×260 (DVS) Events

Table 1: Comparison of neuromorphic datasets with bounding boxes and related conventional object detection datasets. Pub.
denotes the source of publication. Freq. refers to the frequency of provided labeled bounding boxes.

Multimodal Neuromorphic Dataset
In this section, we first present the details of how to build our
PKU-Vidar-DVS dataset. Then, we give detailed statistics to
better understand this new dataset.
Collection Setups and Calibration. To test our retinomor-
phic object detector in real-world scenarios, we collocate a
time-based camera (i.e., Vidar, resolution 400×250) and an
event-based camera (i.e., DAVIS346, resolution 346×260,
including DVS events and RGB frames with 25 FPS). As
illustrated in Fig. 2(a), the input light is equally divided
into Vidar and DAVIS346 via a beam splitter (i.e., Thorlabs
CCM1-BS013) (Wang et al. 2020c; Zhu et al. 2021; Xiang
et al. 2021). On this basis, we design the spatio-temporal
calibration procedures to synchronize two cameras within
the shared view at the same time in Fig. 2(b).
Data Recordings and Annotation. Our PKU-Vidar-DVS
dataset contains 9 indoor and outdoor challenging scenarios
(see Fig. 2(c)) by considering velocity distribution, illumina-
tion change, category diversity, and object scale, etc. We use
the hybrid camera system to record 490 sequences including
Vidar spikes and DVS events. In each sequence, we collect
approximately 5 seconds as the raw data pool. In order to
provide bounding boxes from asynchronous visual streams,
frames are reconstructed from Vidar spikes at 50 FPS. Af-
ter spatio-temporal calibration, all labels are provided by a
well-trained professional annotation team.
Data Statistics. Manual annotations in the recordings are
provided at a frequency of 50 Hz. As a result, our dataset
has 99.6k labeled timestamps and 215.5k labels in total. Af-
terward, we split them into three subsets for training, vali-
dation, and testing. We compare our PKU-Vidar-DVS with
the related datasets in Table 1. Notably, this is the first work
to build a neuromorphic multimodal object detection dataset
involving high-speed and low-light scenes.

Overall, such novel neuromorphic cameras enable our
large-scale PKU-Vidar-DVS dataset to be a competitive ob-
ject detection dataset in challenging scenarios with multiple
characteristics: (i) Ultra-high-speed sampling with 12 Meps
for DVS and 20,000 Hz spike plane for Vidar, (ii) HDR prop-
erty with 120 dB for DVS, (iii) Temporally long-term contin-
uous streams with labels at high frequency, (iv) Real-world
scenes with abundant diversities in categories and scales.

Retinomorphic Object Detection
Overview
Given the spatio-temporal window Γ1, spike streams from
Vidar S1={xn, yn, tn ∈ Γ1 : n = 1, ..., N1} are discrete and
sparse point sets in 3D space. Similarly, DVS events can
be described as S2={xn, yn, tn, pn ∈ Γ2 : n = 1, ..., N2}.
In this work, our goal is to accurately detect and identify
spatio-temporal objects from asynchronous visual streams,
called retinomorphic object detection as follows:
Definition 1 (Retinomorphic Object Detection). Let S1

and S2 be two asynchronous visual streams from Vidar and
DVS respectively, which can be divided into temporal bins
S1=

{
S1

1 , S
2
1 , ..., S

N
1

}
and S2=

{
S1

2 , S
2
2 , ..., S

N
2

}
. The cor-

responding object informationB=
{
B1, B2, ..., BN

}
can be

calculated by:
Bi = D

({
Si−k1 , ..., Si1

}
,
{
Si−k2 , ..., Si2

})
, (3)

where each Bi={(xi,j , yi,j , wi,j , hi,j , ci,j , fi,j)}j∈[1,J] is a
list of J bounding box locations and class predictions corre-
sponding to temporal bins Si1 and Si2, where [xi,j , yi,j ] are
the spatial coordinates of the top left of the j bounding box,
[wi,j , hi,j ] are its width and height, ci,j and fi,j are the ob-
ject class and the score. A function D refers to retinomor-
phic object detector, and the number of a subset of multiple
temporal bins from each stream is k + 1.

Towards this end, we propose a novel bio-inspired uni-
fying object detection framework by integrating Vidar and
DVS, which aims at addressing the shortages (e.g., motion
blur and low-light) of conventional cameras by taking com-
plementary advantages from asynchronous visual streams.
As shown in Fig. 3, our retinomorphic object detector con-
sists of temporal aggregation representation module and dy-
namic interaction fusion module.

Temporal Aggregation Representation
To make asynchronous streams in combination with deep
networks, it is necessary to convert sparse point sets into
successive measurements (Fu et al. 2019; Li et al. 2021).
Formally, this mappingM : S 7→ E is termed as neuromor-
phic representation by:

E =
∑
S∈Γ

S (xn, yn, tn) k (x− xn, y − yn, t− tn) , (4)
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Figure 3: The pipeline of retinomorphic object detector. Initially, asynchronous visual streams are split into temporal bins as
basic processing units. Then, we design a temporal aggregation representation module using an attention mechanism. Finally,
a dynamic interaction fusion module is proposed to combine two streams via exchanging channels between two sub-networks.

where k (x, y, t) can adopt handcrafted kernel functions or
neural network architecture, and E(x, y, t) should ideally
preserve the spatio-temporal information from S.

For Vidar spikes, we first use inter-spike interval (Zhu
et al. 2020b) and aligned operation to reconstruct visual tex-
tures F i1 ∈ RC1×W×H with the same resolution of DVS as:

F i1(xn, yn, tn) = φ(
d

tn − tn−1
) ·R, xn < W, yn < H, (5)

where d controls the dynamic range of reconstructed tex-
tures, φ is the non-linearity using gamma correction, and R
is a transformation matrix to align reconstructed textures.

For DVS events, we first utilize a multi-layer perceptron
(MLP) (Gehrig et al. 2019) with two hidden layers to gener-
ate features F i2 ∈ RC2×W×H for each event sequence as:

F i2(xn, yn, tn) = σ
(∑

ω (t∗n) · pn
)
, xn < W, yn < H, (6)

where the weight ω (t∗n) is a learning parameter, the activa-
tion function σ (·) is chosen ReLU, t∗n = tn−t1

∆t is the nor-
malized timestamp, and pn ∈ {1,−1} refers to the polarity.

Take temporal feature aggregation of Vidar for exam-
ple, we first compute the temporal attention map A1 ∈
RT×T from the original Vidar features

{
F i−T+1

1 , ..., F i1
}
∈

RT×C1×W×H . Specifically, we reshape Vidar features to
X1 ∈ RT×N , and then perform a matrix multiplication be-
tween X1 and the transpose of X1 (see Fig. 3). Finally, we
use a softmax layer to calculate the temporal attention map
A1 ∈ RT×T as follows:

aij1 =
exp(Xi

1 ·X
j
1)

T∑
j=1

exp(Xi
1 ·X

j
1)

, (7)

where aij1 denotes the impact of ith and jth feature maps,
and T is the temporal aggregation size.

The temporal aggregation representation Ei1 for multiple
adjacent temporal bins can be described as follows:

Ei1 =
T∑
j=1

aij1 X
j
1 + F i1. (8)

Dynamic Interaction Fusion
The goal of deep multimodal fusion is to make the output B
of the detector D to fit the label B̄ as much as possible, and
it can formulate the following minimization problem as:

min
D

1

N

N∑
i=1

L(Bi = D(F i), B̄i), (9)

where F i =
{
F im
}M
m=1

refers to the ith feature map from
M modalities,N is the batch size, and L is the loss function.

Inspired by the dynamic interaction between foveal and
peripheral signals (Stewart, Valsecchi, and Schütz 2020),
we introduce a dynamic interaction fusion module via ex-
changing the channels (Wang et al. 2020b), instead of typ-
ical aggregation fusion operations (e.g., averaging (Li, Wu,
and Kittler 2020) and concatenation (Xu et al. 2020a)). The
whole optimization objective function can be formulated as:

min
D

1

N

N∑
i=1

L(
M∑
m=1

αmDm(F im), B̄i) +
M∑
m=1

L∑
l=1

|γml|
λ

, (10)

where the decision score αm determines the final result in
an ensemble layer by training the softmax. The scaling fac-
tors γml for the l-th layer channel in the m-th modality are
computed using Batch Normalization (BN). We adopt the `1
norm to penalize the scaling factors for channel sparsity. λ
is a hyperparameter that weights the relative contribution of
the norm penalty term to avoid overfitting.

In fact, the scaling factor of the BN layer reflects the im-
portance of the feature map in the c-th channel, which is re-
placed by the meanF ′mlc of other modalities once the scaling
factor is smaller than a presetting threshold θγ as:

F ′mlc =
1

M

M∑
m′ 6=m

γm′lc
Fm′lc − µm′lc√

σ2
m′lc + ε

+ βm′lc, (11)

where Fm′lc is the c-th channel before the l-th BN layer in
the m′-th sub-network. ε is a small constant, and µm′lc and
σm′lc denote the mean and the standard deviation. γm′lc and
βm′lc are the trainable scaling factor and the offset.
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Modality Method Representation Fusion Backbone PKU-Vidar-DVS KITTI simulated
mAP Runtime (ms) mAP Runtime (ms)

DVS

(Chen 2018) Event image - YOLO 0.331 12.26 0.307 19.34
(Iacono et al. 2018) Event image - SSD 0.326 10.61 0.301 17.80

NGA-events (Hu et al. 2020) Event volume - YOLOv3 0.353 15.37 0.349 20.97

Our baseline E2vid - YOLOv3 0.394 197.81 0.371 235.62
TAR-events - YOLOv3 0.386 16.49 0.356 21.33

Vidar Our baseline

Spike image - YOLOV3 0.497 13.70 0.612 19.86
VTTW - YOLOv3 0.516 13.70 0.644 19.86
VTII - YOLOv3 0.551 13.70 0.673 19.86

TAR-spikes - YOLOv3 0.579 17.34 0.701 22.47

Vidar+DVS
(Jiang et al. 2019) Event image+VTII NMS YOLOv3 0.586 17.91 0.713 23.02

JDF (Li et al. 2019) Event image+VTII Score fusion YOLOv3 0.591 17.93 0.718 23.11
Ours TAR Dynamic interaction YOLOv3 0.647 19.05 0.762 25.35

Table 2: Performance evaluation of our PKU-Vidar-DVS dataset and KITTI simulated dataset. Our retinomorphic object de-
tector, integrating Vidar and DVS by temporal aggregation representation (TAR) and dynamic interaction fusion, outperforms
five state-of-the-art methods and our six baselines, especially the single-modality.

Experiments
This section will first describe the experimental settings.
Then, we conduct the effective test and ablation test to verify
our approach. Finally, the scalability test provides quantita-
tive results in various motion speeds and light conditions.

Experimental Settings
Datasets. To verify the effectiveness of our retinomor-
phic object detector, we conduct experiments on our
newly built PKU-Vidar-DVS dataset and KITTI simulated
dataset (Geiger, Lenz, and Urtasun 2012). More precisely,
KITTI simulated dataset, including 20 videos for object
tracking, is converted from videos to Vidar spikes using our
open-source Vidar simulator (Kang et al. 2021) and DVS
events by V2E simulator (Hu, Liu, and Delbruck 2021). This
simulated dataset consists of 14 asynchronous visual streams
for training, 3 hybrid streams (i.e., 0007, 0017, and 0018) for
validating, and the remaining 3 hybrid streams (i.e., 0000,
0003, and 0006) for testing. Besides, the light degradation
ratio η=2 is set to simulate low-light scenarios for our Vidar
simulator (i.e., linear light sensing) and the V2E simulator
(i.e., logarithmic light sensing).
Implementation Details. We set the overlap threshold to
0.5, the predicting score to 0.5 for Vidar, and 0.3 for DVS.
Two widely used metrics (i.e., COCO mAP (Lin et al. 2014)
and runtime (ms)) in object detection tasks are adopted to
report the performance scores. In the fusion stage, we select
YOLOv3 (Redmon and Farhadi 2018) as a fair sub-network
considering the balance of the accuracy and time complex-
ity, and two branches are dynamically exchanging channels
simultaneously. All networks are trained for 60 epochs with
the Adam optimizer on an NVIDIA Tesla V100-PCLE GPU
with the learning rate of 10−4. We set λ to 10−3 for spar-
sity constrains in Equation (10) and the threshold θγ to 10−2

for dynamic interaction fusion in Equation (11). We set the
temporal aggregation size T as 3 to make an accuracy-speed
trade-off. We utilize the best training model on the valida-
tion dataset and apply it to the testing dataset to report the
final detection performance.

Effective Test
We will investigate that why and how our retinomorphic ob-
ject detector works from the following three perspectives.
Evaluation on DVS Modality. To evaluate our temporal
aggregation representation for DVS events (TAR-events),
we compare TAR-events with other representations from
three event-based object detectors (i.e., event images for
YOLO (Redmon et al. 2016), event images for SSD (Liu
et al. 2016), and event volumes for YOLOv3) and our an-
other baseline (i.e., reconstructing video using E2vid (Re-
becq et al. 2019) for YOLOv3). As illustrated in Table 2,
our baseline, using TAR-events for YOLOv3, obtains bet-
ter performance than these three existing methods mean-
while maintaining comparable computational speed. Our
other baseline, utilizing E2vid to generate gray frames, can
achieve the best performance, but the two stages of first im-
age reconstruction and then object detection are very com-
plicated and time-consuming.
Evaluation on Vidar Modality. We present four represen-
tations for Vidar spikes as our baselines including: (i) map-
ping Vidar stream into spike images, (ii) visual texture from
temporal window (VTTW), (iii) visual texture from inter-
spike interval (VTII) (Dong et al. 2019; Zhu et al. 2019,
2020b,a), (iv) temporal aggregation representation for Vidar
spikes (TAR-spikes). From Table 2, our TAR-spikes has the
improvement over three strategies (i.e., spike image, VTTW,
and VTII) by a large margin, with an average of 5.7% and
5.8% increase in mAP for our PKU-Vidar-DVS dataset and
KITTI simulated dataset respectively. The improvement is
because that our TAR-spikes can produce fine-tuned tex-
tures from Vidar spikes and leverage rich temporal informa-
tion from adjacent temporal bins. Besides, the computational
speed of our TAR-spikes, introducing temporal aggregation
strategy, is almost comparable in contrast to other strategies
without using temporal cues.
Benefit From Dynamic Interaction Fusion. To make a
comparison with joint detection frameworks (Jiang et al.
2019; Li et al. 2019) as fair as possible, we use VTII from
Vidar instead of RGB frames from DAVIS346. As depicted
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RGB frame NGA-events E2vid (baseline) DVS + RGB frame Vidar (baseline) Vidar + DVS (ours) Ground truth
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Figure 4: Representative visualization results on our PKU-Vidar-DVS dataset. (a) High-speed rotation characters with 1500
r/min. (b) Rushing car in a tunnel. (c) High-speed moving UAV with low-light. Note that, conventional frames from DAVIS346
suffer from motion blur and insufficient texture. On the contrary, our retinomorphic detector, inheriting HDR property from
DVS and high-speed visual texture from Vidar, outperforms the single-modality methods in high-speed and low-light scenes.

Method The baseline (a) (b) (c) Ours
TAR-spikes 3 3 3
TAR-events 3 3 3
Dynamic interaction 3 3 3
`1 regulation 3
mAP 0.551 0.579 0.606 0.623 0.647
Runtime (ms) 13.70 17.34 17.85 18.99 19.05

Table 3: Performance components of our approach on PKU-
Vidar-DVS dataset. All results are obtained with our base-
line using VTII from Vidar and YOLOv3.

in Table 2, our retinomorphic object detector, incorporating
Vidar spikes and DVS events by temporal aggregation repre-
sentation and dynamic interaction fusion, achieves the best
performance in contrast to five state-of-the-art methods and
our six baselines. More precisely, our approach has a 9.6%
mAP improvement over the baseline (i.e., VTII from Vidar)
by bringing DVS events, this is because DVS with the HDR
property might be more significant when Vidar stream is af-
fected in low-light scenes. Comparing with a single DVS
modality, our method truly shines, outperforming the base-
line (i.e., TAR-events) on our PKU-Vidar-DVS dataset by a
large margin (0.647 versus 0.386), this indicates that Vidar
with high-speed visual textures may be more important for
high-precision recognition. We claim that our approach has
comparable time complexity with the single-modality.

We further present representative visualization results on
our PKU-Vidar-DVS dataset (see Fig. 4). Apparently, our
retinomorphic object detector outperforms single-modality
methods in high-speed and low-light scenarios. On the con-
trary, RGB frames fail to detect objects in these scenar-
ios. We find that DVS, offering high temporal resolution
and HDR, has provided insight into overcoming the short-
ages of conventional cameras, but it is hard to achieve
high-precision recognition due to the lack of rich texture

Method PKU-Vidar-DVS KITTI simulated
mAP Runtime (ms) mAP Runtime (ms)

NMS 0.612 18.02 0.735 23.51
Score fusion 0.615 18.11 0.739 23.80
Averaging (early) 0.619 18.25 0.742 24.01
Averaging (middle) 0.623 18.30 0.746 24.22
Averaging (late) 0.621 18.33 0.744 24.28
Concatenation (early) 0.624 18.64 0.748 24.67
Concatenation (middle) 0.627 18.72 0.752 24.73
Concatenation (late) 0.626 18.79 0.750 24.80
Interaction (Ours) 0.647 19.05 0.762 25.35

Table 4: Comparison with typical fusion methods including
the post-processing (e.g., NMS and score fusion) and feature
aggregation operations (e.g., averaging and concatenation).

in Fig. 4(a). Unfortunately, the joint framework using DVS
events and RGB frames still remains a bottleneck in the lim-
ited frame rate. From Fig. 4(b)-(c), Vidar is difficult to cap-
ture objects in low-light scenes.

Ablation Test
Beyond effective tests, we next conduct ablation tests to take
a deep look at the impact of each design choice as follows.
Contribution of Each Component. As shown in Table 3,
three methods, namely (a)-(c), utilize TAR-spikes from Vi-
dar, dynamic interaction for two sub-networks, and `1 regu-
lation for channel sparsity respectively, consistently achieve
higher performance on PKU-Vidar-DVS dataset than the
baseline using VTII from Vidar and YOLOv3. Specifically,
our TAR-spikes, leveraging rich temporal cues, obtains the
2.8% mAP improvement over the baseline. Comparing (a)
and the baseline, the absolute promotion is 5.5%, which
demonstrates that it is feasible to adopt dynamic interaction
fusion between two sub-networks. Furthermore, we improve
the mAP from 0.623 to 0.647, where the only difference be-
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Dataset Size T 1 3 5 7 9

PKU-Vidar-DVS mAP 0.623 0.647 0.649 0.650 0.650
Runtime (ms) 18.17 19.05 19.78 20.94 22.72

KITTI simulated mAP 0.738 0.762 0.768 0.769 0.768
Runtime (ms) 24.14 25.35 25.97 27.31 28.49

Table 5: Detection performance with different temporal ag-
gregation sizes from asynchronous visual streams.

(a) Motion speed (b) Light condition

Figure 5: Quantitative evaluation. (a) Rotation characters
with various speeds on PKU-Vidar-DVS dataset. (b) Simu-
lating different light intensities on KITTI simulated dataset.

tween them is whether using `1 regulation for channel spar-
sity. And the last row of Table 3 illustrates that the compu-
tational speeds of these methods are almost comparable.
Comparison with Typical Fusion Methods. As illustrated
in Table 4, our strategy achieves the best performance
against the post-processing (e.g., NMS (Jiang et al. 2019)
and score fusion (Li et al. 2019)) and end-to-end feature
aggregation operations (e.g., averaging (Li, Wu, and Kit-
tler 2020) and concatenation (Xu et al. 2020a; Wang et al.
2021c,a)) with three fusion stages. For example, our ap-
proach gets around 3.5%, 3.2%, 2.6% and 2.1% improve-
ments on our PKU-Vidar-DVS dataset with typical fusion
methods meanwhile keeps comparable computational cost.
Temporal Aggregation Size. We test temporal aggregation
module with different aggregation sizes (e.g., T=3, 5, 7,
and 9) in Table 5. For instance, the corresponding mAPs
on our PKU-Vidar-DVS dataset improve 2.4%, 2.6%, 2.7%,
and 2.7% respectively. Obviously, as we amplify the tempo-
ral aggregation size, the detection accuracy keeps improving
meanwhile increasing the computational speed. Thus, we set
the temporal aggregation size as T=3 for a good balance.

Scalability Test
To investigate the properties of Vidar and DVS, we present
quantitative results on various speeds and light intensities.
Quantitative Evaluation for High-Speed Motions. We de-
sign a specific scenario (i.e., moving characters with various
rotation speeds) to verify the robustness of our retinomor-
phic object detector. We set five speed levels (i.e., 200, 800,
1,500, 2,000, and 2,600 r/min) to record rotation characters
on an electric fan. As shown in Fig. 5(a), our approach, in-
tegrating Vidar and DVS, has better detection performance
than the single-modality. Besides, the blue curve using DVS
drops sharply along with the increase of rotation speeds,

2,600r/min

DVS DVS (E2vid) Vidar Vidar + DVS (Ours)

1,500r/min

(a) Rotation characters on a fan from our PKU-Vidar-DVS dataset
DVS DVS (E2vid) Vidar Vidar + DVS (Ours)

𝜼=3

𝜼=5

(b) Driving car on KITTI simulated dataset (clipped into 346×240)

Figure 6: Visualization results under different motion speeds
and light intensities. (a) Recording high-speed motion char-
acters with 1,500 and 2,600 r/min. (b) Simulating low-light
scenes with light degradation ratios η =3 and η =5.

but the other two curves involving Vidar decrease gradually.
This may be caused by the fact that Vidar has a strong ability
to capture high-speed moving objects (see Fig. 6(a)).
Quantitative Evaluation for Light Changes. We set light
degradation ratios (i.e., from η =2 to 7) to reduce the light
intensity for the integrator in our Vidar simulator (i.e., lin-
ear light sensing) and the comparator in the V2E simulator
(i.e, logarithmic light sensing). Some visualization results
for the KITTI simulated dataset are reported in Fig. 6(b),
our approach performs well in low-light scenarios. The mAP
of Vidar decreases sharply with an increase in degradation
ratio of η in Fig. 5(b), but the curve of DVS remains rela-
tively stable. In other words, after incorporating the auxil-
iary DVS streams, our approach improves significantly the
performance over only using Vidar in low-light scenarios.

Conclusion
This paper presents a novel retinomorphic object detector to
overcome common object challenges (e.g., motion blur and
low-light). To the best of our knowledge, this is the first work
to explore such a novel object detector integrating foveal-
like and peripheral-like sensing as the retina does. Moreover,
we develop a hybrid camera system, build a large-scale mul-
timodal neuromorphic object detection dataset (i.e., PKU-
Vidar-DVS), and design an open-source Vidar simulator.
The results show that our approach outperforms the state-of-
the-art methods within the single-modality, which inherits
high-speed visual textures from Vidar and the HDR property
from DVS. We believe this work will be the key to taking the
advantage of neuromorphic cameras on various vision tasks
in challenging scenes. We also believe this prototype will
provide insight into next-generation neuromorphic cameras.
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