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Abstract

Learning a disentangled representation is still a challenge
in the field of the interpretability of generative adversarial
networks (GANs). This paper proposes a generic method to
modify a traditional GAN into an interpretable GAN, which
ensures that filters in an intermediate layer of the generator
encode disentangled localized visual concepts. Each filter in
the layer is supposed to consistently generate image region-
s corresponding to the same visual concept when generating
different images. The interpretable GAN learns to automat-
ically discover meaningful visual concepts without any an-
notations of visual concepts. The interpretable GAN enables
people to modify a specific visual concept on generated im-
ages by manipulating feature maps of the corresponding fil-
ters in the layer. Our method can be broadly applied to d-
ifferent types of GANs. Experiments have demonstrated the
effectiveness of our method.

Introduction
Recently, generative adversarial networks (GANs) have
achieved huge success in generating high-resolution and re-
alistic images (Brock, Donahue, and Simonyan 2018; Kar-
ras, Laine, and Aila 2019). In addition, the interpretability
of GANs has attracted increasing attention in recent years.
In this field, learning a disentangled representation is still
a challenge to start-of-the-art algorithms. The disentangled
representation of a GAN means that each component of the
representation only affects a distinct aspect of a generated
image. Previous studies on the disentanglement of GANs
mainly focused on two perspectives. Some studies (Radford,
Metz, and Chintala 2016; Chen et al. 2016) disentangled the
attributes of images, such as the expression and eyeglass-
es of the generated human face images. Other studies (Zhu
et al. 2017; Huang et al. 2018) disentangled the structure
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Figure 1: Compared with the traditional GAN, each filter in
the interpretable GAN consistently represents a meaningful
visual concept when generating different images. Different
filters represent different visual concepts.

and texture of images. However, these works failed to pro-
vide clear and symbolic features for visual concepts in the
intermediate layer of the generator.

Therefore, we aim to propose a generic method to modify
a traditional GAN into an interpretable GAN, which ensures
that filters in an intermediate layer of the generator encode
the disentangled and localized visual concepts (e.g. object
parts like eyes, noses and mouths of human faces). Specifi-
cally, each filter in the intermediate layer is expected to con-
sistently generate image regions corresponding to the same
visual concept when generating different images. Different
filters in the intermediate layer are expected to generate im-
age regions corresponding to different visual concepts.

Learning the disentangled and localized visual concepts is
of great value in both theory and practice. For example, Shen
et al. (2020) enabled people to manipulate various facial at-
tributes on the generated images through varying the latent
codes. In contrast, this research enables people to modify a
specific visual concept on generated images by manipulating
feature maps of the corresponding filters, such as changing
the appearance of a specific visual concept.

However, it still presents continuous challenges to ensure
the learned visual concepts in the GAN have clear meanings,
i.e. exploring the essence of meaningful visual concepts. To
the best of our knowledge, there is no specific method to
directly guarantee filters in an intermediate layer of the gen-
erator to encode meaningful visual concepts. In particular,
we expect filters in the intermediate layer to automatically
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Replacing Attribute Interpretable
intermediate features

Moving
part

Without annotations
of facial semanticsObject Part Global Local

Editing in Style (2020) 7 3 7 7 7 7 3
MaskGAN (2020) 7 7 3 3 7 3 7
InterFaceGAN (2020) 7 7 3 3 7 7 7
MegaFS (2021) 3 7 7 7 7 7 3
Label&Feature Collaging (2018) 3 3 7 3 7 3 7
InfoSwap (2021a) 3 7 3 3 7 7 7
RSGAN (2018) 3 7 3 3 7 7 7
HifaFace (2021b) 7 7 3 3 7 7 3
Age Embedding (2021) 7 7 3 7 7 7 3
ELEGANT (2018) 7 7 3 3 7 7 3
StyleFlow (2021) 7 7 3 3 7 7 7
Facial Semantics (2021) 7 7 3 3 7 7 3
NaviGAN (2021) 7 7 7 3 7 7 3
Ours 3 3 7 3 3 3 3

Table 1: Comparisons with other face-editing methods. The first column refers to replacing whole objects (e.g. faces) and object
parts (e.g. noses of faces) on images. The second column refers to changing the global attributes (e.g. age) and local attributes
(e.g. smiling) on images. The third column represents whether the method learns interpretable intermediate features. The fourth
column refers to changing the location of parts on images. The fifth column represents whether the method requires annotation
of facial semantics. Our method meets most of the requirements.

learn meaningful visual concepts without any manual anno-
tations of visual concepts. It is because that such annotations
usually represent human’s understanding of images and can
not reflect the representations inside the GAN.

In order to ensure the GAN learns meaningful visual con-
cepts, we expect each filter in an intermediate layer of the
generator to consistently represent the same visual concept
across different images. We notice that a specific visual con-
cept is usually represented by multiple filters in an interme-
diate layer of the generator. In this way, we divide filters in
the intermediate layer into different groups and assume that
different groups represent different visual concepts. Specifi-
cally, we expect filters in the same group to consistently gen-
erate image regions corresponding to the same visual con-
cept when generating different images. Note that filters in
the same group are expected to represent almost the entire
visual concept rather than sub-parts of the visual concept,
which ensures the clarity of the visual concept represented
by each filter.

Furthermore, it is also crucial to ensure the strictness of
explanation results. In other words, if a filter represents a
certain visual concept, then neural activations in the feature
map of this filter should exclusively correspond to this vi-
sual concept without any noise activations in other unrelated
regions. To this end, we propose a probability model to mea-
sure the fitness between explanation results and the neural
activations in the feature maps. Specifically, the probability
model is formulated as an energy-based model. The input
of the energy-based model is the feature maps in the tar-
get layer. The output is a probability of neural activations in
feature maps corresponding to visual concepts. High proba-
bility represents that neural activations in each feature map
of the filters correspond to a clear visual concept. Low prob-
ability represents vice versa. In this way, we expect to train
the energy-based model to learn to evaluate the feature maps

in the target layer. Then, this energy-based model is used to
refine the representations inside the target layer of the GAN.

In this study, we evaluate our interpretable GANs both
qualitatively and quantitatively. For qualitative evaluation,
we visualize the feature map of each filter to evaluate the
consistency of the visual concept represented by each fil-
ter through different images. For quantitative evaluation, we
evaluate the results of modifying visual concepts on gener-
ated images, in order to show the correctness and locality of
the modification for a specific visual concept. Besides, we
also evaluate the realism of generated images both qualita-
tively and quantitatively.

Contributions of this paper can be summarized as follows.
We propose a generic method to modify a traditional GAN
into an interpretable GAN without any annotations of visual
concepts. In the interpretable GAN, each filter in an interme-
diate layer of the generator consistently generates the same
localized visual concept when generating different images.
Experiments show that our method can be applied to differ-
ent types of GANs and enables people to modify a specific
visual concept on generated images.

Related Work
Disentanglement of GANs. Previous works have mainly
explored the disentanglement of GANs from two perspec-
tives. Several works (Radford, Metz, and Chintala 2016;
Chen et al. 2016; Härkönen et al. 2020; Shen and Zhou 2021;
Voynov and Babenko 2020; Wu, Lischinski, and Shechtman
2021) focused on disentangling the attributes of the gener-
ated images. Shen et al. (2020) disentangled the gender, age
and expression of the generated human faces. Jahanian et
al. (2019) and Plumerault et al. (2019) disentangled simple
transformations of the generated images, such as translation
and zooming, to control the image generation of GANs. Oth-
er works (Zhu et al. 2017; Huang et al. 2018) focused on
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Figure 2: Visual comparisons with other methods for inter-
pretable GANs. These methods focus on different types of
interpretability. Method 1 (2017) disentangled the structure
and the style of the image. Method 2 (2019) learned fea-
tures for the localized object in the image. Method 3 (2020)
learned the disentangled features for attributes of the image.
In contrast, our method learns each filter to encode an object
part without part annotations. To the best of our knowledge,
no other GANs can ensure such part interpretability.

disentangling the structure and texture of the generated im-
ages. FineGAN (Singh, Ojha, and Lee 2019) disentangled
the object shape, background and object appearance (color/-
texture) to generate images. Ma et al. (2018) disentangled
foreground, background and pose information to generate
images of persons. However, these studies failed to provide
clear and symbolic representations for visual concepts in the
generation of images. Bau et al. (2018) identified a group of
filters closely related to objects and object parts, but required
supervision from a semantic segmentation model. Collins et
al. (2020) exploited to disentangle object parts of the gen-
erated images without external supervision, but did not en-
sure each filter represented a clear meaning. In contrast, our
method ensures each filter represents a localized visual con-
cept without human supervision.
Face editing with GANs. Previous methods on face edit-
ing were mainly conducted in the image-to-image settings
(Shen and Liu 2017; Zhang et al. 2018; Richardson et al.
2021). Fader networks (Lample et al. 2017) learned to vary
the values of attributes to change the attributes of the gener-
ated images. StarGAN (Choi et al. 2018) learned to perform
image-to-image translations across multiple domains using
a single model to edit different attributes of human face im-
ages. However, these methods could not edit images with
exemplars. To this end, ELEGANT (Xiao, Hong, and Ma
2018) learned to transfer attributes between two images by
exchanging their latent codes. MaskGAN (Lee et al. 2020)
exploited diverse manipulations of human face images by
modifying masks of target images according to the source
images. However, these methods required supervision from
annotated attributes or masks. In comparison, our method
modifies a specific visual concept according to other gener-
ated images without manual annotations of visual concepts.

Algorithm
Given training images without annotations of visual con-
cepts, we aim to train an interpretable GAN in an end-to-
end manner. Specifically, given a target convolutional layer
of the generator, we expect each filter in this layer to repre-
sent a meaningful visual concept (e.g. object parts like eyes,
noses and mouths of human faces). In other words, each fil-

ter in the target layer is expected to consistently generate the
same visual concept when generating different images.

The key challenge is to ensure that each filter in the target
layer of the GAN represents a meaningful visual concept.
To this end, we notice that multiple filters usually represen-
t a certain visual concept, when they generate similar im-
age regions corresponding to this visual concept. This phe-
nomenon was also discussed in (Shen et al. 2021) for filters
in convolutional neural networks (CNNs). Therefore, we di-
vide filters in the target layer into different groups, which
represent different visual concepts respectively. We expect
filters in the same group to represent the same visual con-
cept. Let M denote the number of filters in the target lay-
er. In this way, we divide M filters in the target layer into
C groups. Let qj ∈ {1, 2, · · · , C} denote the index of the
group, where the j-th filter belongs across different images.
Q = {q1, q2, · · · , qM} denotes the partition of filters. LetG
denote the generator of the GAN. To encourage each filter in
the target layer to represent a meaningful visual concept, we
aim to optimize the generator G and the partition Q to force
filters in the same group to generate the same image region
on a generated image.

In addition to ensuring each filter represents a meaningful
visual concept, it is also important that the generator of the
GAN generates realistic images. In this way, we design the
following loss function to train the interpretable GAN:

L = LGAN (G,D) + λ0Loss(Q, G) (1)
where λ0 denotes a positive weight; LGAN (G,D) denotes
the traditional GAN loss function (Goodfellow et al. 2014;
Gulrajani et al. 2017), where D denotes the discriminator of
the GAN; Loss(Q, G) is the interpretability loss to encour-
age each filter in the target layer to represent a meaningful
visual concept, which will be introduced later.
Learning the partition Q. Given the generator G, we ex-
pect to learn the partition Q to ensure filters in the same
group generate similar image regions. In other words, we
expect feature maps in each group have similar neural ac-
tivations. To this end, we use a Gaussian mixture model
(GMM) to learn the partition Q for feature maps in the
target layer. Let {zi}Ni=1 denote the set of N input laten-
t vectors, which generate N different images through the
generator G. Given the i-th latent vector zi ∈ Rd, let
fG(zi) = [f1

i , f
2
i , · · · , f

j
i , · · · , fMi ] denote the feature map

in the target convolutional layer of the generator G after the
ReLU operation. Here f ji ∈ RK denotes the feature map of
the j-th filter. Then, let F j = [f j1 , f

j
2 , · · · , f

j
N ] denote the

feature maps of the j-th filter given the set of N input latent
vectors {zi}Ni=1. The Gaussian mixture model is formulated
as PΘ(F j), where Θ denotes the model parameters.

The key challenge is to optimize the GMM parameters Θ
to learn the partition Q. Specifically, we take the j-th filter’s
group index qj as a latent variable and PΘ(F j) estimates the
likelihood of the j-th filter’s feature maps belonging to any
group c, i.e. PΘ(F j) =

∑
c PΘ(F j , qj = c). In this way, we

have PΘ(F j , qj = c) = PΘ(qj = c)PΘ(F j |qj = c). We
define PΘ(qj = c) = pc, where pc denotes the prior prob-
ability of the c-th group. PΘ(F j |qj = c) denotes the prob-
ability of the j-th filter’s feature maps having similar neural

1282



Figure 3: Visualization of feature maps in interpretable GANs based on the method in (Zhang, Wu, and Zhu 2018). The first
column shows the generated images. The second column shows the visualization of the distributions of visual concepts encoded
in an intermediate layer filters. Each remaining column in the figure corresponds to a certain filter.

activations with feature maps in the c-th group. To simplify
the calculation of PΘ(F j |qj = c), we assume that when the
j-th filter belongs to the c-th group, the probabilities of the j-
th filter’s feature maps across different images are indepen-
dent of each other, i.e. PΘ(F j |qj = c) =

∏N
i=1 PΘ(f ji |qj =

c). We assume that f ji |(qj = c) ∼ N (µc, σ
2
cI). Here I

denotes the identity matrix. To learn the model parameters
{pc, µc, σ2

c} ∈ Θ, we design the following loss.

max
Θ
LGMM = max

Θ

M∑
j=1

logPΘ(F j) (2)

Let Θ′ denote the optimal Θ for equation (2). In
this way, the optimal partition Q is solved as Q =
{qj | arg maxqj PΘ′(qj |F j)}.
Realism of generated images. Given the partition Q for fil-
ters in the target layer, forcing each filter in the same group
to exclusively generate the same visual concept may de-
crease the realism of the generated images, even with the
help of the discriminator D. To this end, we use an energy-
based model (Gao et al. 2018; Nijkamp et al. 2019) that out-
puts a probability of the realism of the feature maps fG(z)
in the target layer. Specifically, the energy-based model out-
puts a probability of feature maps, which generate realis-
tic images. In this way, we can conclude that feature maps
fG(z) with high realism can generate realistic images. The
energy-based model is formulated as PW (fG(z)|Q), where
W denotes the model parameters. To increase the realis-
m of the images generated from the feature maps fG(z),
we use the following loss to learn the energy-based model
PW (fG(z)|Q) via maximizing the log-likelihood.

Lreal(W,G) = − 1

N

N∑
i=1

logPW (fG(zi)|Q) (3)

To measure the realism of the feature maps in the target
layer, the energy-based model PW (fG(z)|Q) is designed as
follows.

PW (fG(z)|Q) =
1

Z(W )
exp
(
gW (fG(z))

)
P0(z) (4)

where Z(W ) =
∫
exp(gW (fG′(z)))P0(z)dz is used for

normalization. Here we consider G′ as the current genera-
tor with fixed parameters for calculating Z(W ), in order to
learn the parameters W . P0(z) denotes the Gaussian dis-
tribution, i.e. P0(z) ∼ N (0, σ2

0I). gW (fG(z)) denotes the

metric, which measures the realism of the feature map-
s in the target layer. Specifically, we have gW (fG(z)) =∑M
j=1

∑C
c=1[Wjc · (f j � f̄ c)], where · denotes the inner

product and � denotes the element-wise product. W ∈
RM×C×K denotes the parameters of the energy-based mod-
el. f j ∈ RK denotes the feature map of the j-th filter.
f̄ c ∈ RK denotes the c-th group center of feature maps,
which can be computed as the mean of feature maps in the
c-th group.
Interpretability of filters in the target layer. In order to in-
crease the interpretability of the filters in the target layer, we
expect each filter in the same group to exclusively generate
the same image region. In other words, when the j-th filter
belongs to the c-th group, we expect the j-th filter’s feature
map f j to be close to the group center f̄ c. Besides, we al-
so consider the diversity of visual concepts represented by
different filters. To this end, when the j-th filter does not be-
long to the c-th group, we expect the j-th filter’s feature map
f j to be different from the group center f̄ c. In this way, we
design the following loss.

Linterp(W ) = −
M∑
j=1

C∑
c=1

K∑
k=1

I(qj = c)Wjck

+ λ1

M∑
j=1

C∑
c=1

K∑
k=1

I(qj 6= c)Wjck

(5)

where λ1 denotes a positive weight; I(·) is the indicator
function. In this way, when the j-th filter belongs to the c-th
group, the metric gW (fG(z)) forces the j-th filter’s feature
map fj and the c-th group center f̄ c to have neural activa-
tions in similar positions by pushing Wjck to be positive.
Otherwise, gW (fG(z)) forces fj and f̄ c to have neural ac-
tivations in different positions by pushing Wjck to be nega-
tive. Please see Fig. 4 for more details.

To sum up, Loss(W,Q, G) is designed as follows:

Loss(W,Q, G) =
∑
qj∈Q

PΘ′(qj |F j) + λ2Lreal(W,G)

+ λ3Linterp(W )
(6)

where λ2 and λ3 are positive weights.
∑
j PΘ′(qj |F j) is de-

signed to learn the partition Q for filters. Lreal(W,G) and
Linterp(W ) are designed to increase the realism of the gen-
erated images and the interpretability of the filters in the tar-
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Figure 4: (a) Comparisons of receptive fields (RFs) between
the center of a group and each filter in the group. (b) Pro-
portions of filters representing different visual concepts. (c)
Filters learned with different values of C.

get layer. The overall loss is optimized as follows.

min
W,G

max
D,Q

L (7)

Learning. Given the partition of filters Q, we opti-
mize Loss(W,Q, G) w.r.t. W,G for once after optimizing
LGAN (G,D) w.r.t. G,D for T times. However, the gradi-
ent of Lreal(W,G) w.r.t. W can not be calculated directly
and has to be approximated by Markov chain Monte Car-
lo (MCMC), such as the Langevin dynamics (Girolami and
Calderhead 2011; Zhu and Mumford 1998). Specifically,
following the method in (Gao et al. 2018), the gradient of
Lreal(W,G) w.r.t. W is approximately calculated as fol-
lows.

∂

∂W
Lreal(W,G)

≈ 1

N

N∑
i=1

∂

∂W
gW (fG′(ẑi))−

1

N

N∑
i=1

∂

∂W
gW (fG(zi))

(8)
where {ẑi}Ni=1 denotes the revised latent vectors sampled
from Langevin dynamics. The iterative process of Langevin
dynamics is carried out as follows.

zτ+1 = zτ +
δ2

2

∂

∂z
PW (fG(zτ )|Q) + δUτ (9)

where τ denotes time steps; δ denotes step size; Uτ ∼
N(0, I) is a Gaussian noise. In this way, equation (9) and (8)
are calculated alternately to update the energy-based model
parameters W .

Experiments
We applied our method to two state-of-the-art GANs trained
on two different datasets. For qualitative evaluation, we vi-
sualized feature maps of filters to show the consistency of
the visual concept represented by each filter. We also visu-
alized the results of modifying specific visual concepts on
generated images. Besides, we demonstrated that perform-
ing Langevin dynamics could improve the realism of some
bad generated images and modified images. For quantitative
evaluation, we conduct a user study and a face verification

Figure 5: Exchanging a specific visual concept between the
original images and the source images. The second column
shows chosen parts for exchanging, which are marked in red.
The fifth column shows the mean squared-error heatmaps
between the original images and the modified images.

experiment to examine the correctness of exchanging a spe-
cific visual concept and faces between pairs of images. We
also calculated the mean squared-error (MSE) between orig-
inal images and modified images in terms of a certain visual
concept, in order to evaluate the locality of our modifica-
tions. We calculated the Fréchet Inception Distance (FID)
(Heusel et al. 2017) to measure the realism of generated im-
ages. Experiments show that our method successfully dis-
entangled localized visual concepts encoded in filters of the
generator.
Models and datasets. We applied our method to two differ-
ent GANs, BigGAN (Brock, Donahue, and Simonyan 2018)
and StyleGAN (Karras, Laine, and Aila 2019). BigGAN was
trained on FFHQ dataset (Karras, Laine, and Aila 2019).
StyleGAN (Karras, Laine, and Aila 2019) was trained on
CelebA-HQ dataset (Karras et al. 2018).
Implementation details. We set hyperparameters as C =
24, λ0 = 1 and λ1 = 2

3 . Since Lreal(W,G) was used to up-
date two seperate models, i.e. the generator and the energy-
based model, we set λ2 different values to update different
models. Specifically, we set λ2 = 1 for updating the energy-
based model parameters W . For updating the generators of
BigGAN and StyleGAN, we set λ2 = 0.1 and λ2 = 0.05
respectively. To ensure the interpretability of filters, we ex-
pected that Linterp dominated the learning process in the
early stage. To this end, for StyleGAN, λ3 was set to be
3e−2 at first and exponentially decayed to 3e−6 during 1000
batches. For BigGAN, λ3 was set the same but exponential-
ly decayed during 500 batches. We set T = 50 for BigGAN
and T = 100 for StyleGAN. We initialized each dimension
of parameters W to be zero. We used the learning rate of 10,
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Figure 6: Swapping whole faces between the original images
and the source images. The second column shows the cho-
sen parts for swapping, which are marked in red. The fourth
column shows the replaced images.

SGD optimizer for parameters W .

Learning Interpretable GANs
Learning an interpretable BigGAN. We learned an inter-
pretable GAN based on the BigGAN architecture to gen-
erate images with the size of 64 × 64. We first trained the
BigGAN following the experiment settings in (Brock, Don-
ahue, and Simonyan 2018). Then, we added our proposed
loss Loss(W,Q, G) to an intermediate layer of the gener-
ator to fine-tune BigGAN, where the size of feature maps
fG(z) is 32× 32. To be clear, we only fine-tuned the gener-
ator of the BigGAN. The discriminator of the BigGAN was
reinitialized and trained from scratch. It was because that the
discriminator usually converged faster than the generator in
BigGAN.
Learning an interpretable StyleGAN. We learned an inter-
pretable GAN based on the StyleGAN architecture to gen-
erate images with the size of 128 × 128. We first trained
the StyleGAN following the experiment settings in (Kar-
ras, Laine, and Aila 2019). We noticed that the activation
functions in the generator were all leaky-ReLU (Maas et al.
2013). To this end, we added a ReLU layer after an inter-
mediate layer of the generator, where the size of feature
maps fG(z) is 32 × 32. Then, we added our proposed loss
Loss(W,Q, G) to the output of the added ReLU layer. The
generator and the discriminator of the StyleGAN were joint-
ly fine-tuned, because they were progressively trained in
(Karras, Laine, and Aila 2019).

Qualitative Evaluation
Visualization of feature maps. Based on the method in
(Zhang, Wu, and Zhu 2018), we visualized the receptive
fields (RFs) corresponding to a filter’s feature maps, which
were scaled up to the image resolution. Fig. 3 shows the RF-
s of filters in our interpretable GANs. In our interpretable
GANs, each filter consistently generated image regions cor-
responding to the same visual concept when generating dif-
ferent images. Different filters generated image regions cor-
responding to different visual concepts. We also compared
RFs between the group center and filters in this group, as
shown in Fig. 4 (a). Moreover, we explored the number of
visual concepts represented by filters in our interpretable
GAN. Fig. 4 (b) illustrates the proportions of filters repre-
senting different visual concepts when setting C = 24. Re-
sults show that 512 filters totally represented 11 visual con-
cepts. Besides, as shown in Fig. 4 (c), when setting different

Figure 7: (a) Improving the realism of generated images by
Langevin dynamics. Each column shows the generated im-
ages by doing the iterative process of Langevin dynamics
τ steps. (b) Improving the realism of modified images by
Langevin dynamics. The third column shows the replaced
images.

values of C, GANs with a larger value of C learned more
detailed concepts.
Modifying visual concepts on images. Our interpretable
GAN enabled us to modify specific visual concepts on gen-
erated images. For example, we exchanged a specific visual
concept between pairs of images by exchanging the corre-
sponding feature maps in the target layer (i.e. the convolu-
tional layer that was modified to an interpretable layer). Fig.
5 shows the results of exchanging the mouth, hair and nose
between pairs of images. Note that our method only changed
the shape of a specific visual concept. For StyleGAN, the
color of a specific visual concept was mainly controlled by
styles in higher-resolution layers, as discussed in (Karras,
Laine, and Aila 2019). Fig. 5 also shows the difference be-
tween the modified images and the original images, where
at every pixel location we calculated the squared distance
in RGB space. Our method only modified a localized visual
concept without changing other unrelated regions. Besides,
we also exchanged whole faces between pairs of images, as
shown in Fig. 6.
Improving the realism of images. To improve the realism
of some bad generated images, we used Langevin dynamics
to sample revised latent vectors. As shown in Fig. 7 (a), re-
vised latent vectors sampled from Langevin dynamics gen-
erated more realistic images than the original latent vectors.

Besides, we also performed Langevin dynamics to im-
prove the realism of modified images. Specifically, given t-
wo latent vectors za and zb, we exchanged a certain group
of feature maps between fG(za) and fG(zb). Let f(za)′

and f(zb)
′ denote the exchanged feature maps of za and

zb. Then, we performed Langevin dynamics to sample re-
vised latent vectors. Specifically, za was updated as follows:
zτ+1
a = zτa + δ2

2
∂
∂za

(PW (f(zτa)′|Q) + PW (f(zτb )′)|Q)) +
δUτ . zb was updated in the same way. In this way, the ex-
changed feature maps f(za)′ and f(zb)

′ had higher proba-
bilities and could generate more realistic images. Fig. 7 (b)
shows the results of the modified images after performing
Langevin dynamics.

Quantitative Analysis
Human perception evaluation. We conduct a user study
to evaluate the results of modifying a specific visual con-
cept on generated images. Specifically, we exchanged the
mouth, chin and eyes between pairs of images as three tasks.
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Model Mouth(%) Eyes(%) Chin(%)

Editing in Style (2020) 37.90 34.60 -
Feature Collaging (2018) 56.00 45.40 46.40
Interpretable StyleGAN 83.60 63.70 81.67
Interpretable BigGAN 89.60 82.10 92.30

Table 2: Human evaluation scores.

Model Face verfication accuracy(%)

SimSwap (2020) 87.40
FaceShifter 1 (2020) 85.45
FSGAN (2019) 89.20
Interpretable StyleGAN 90.25

Table 3: Face verfication accuracy. All methods was tested
by images generated by our Interpretable StyleGAN.

We randomly chose 200 pairs of test images for each task
respectively. For each task, given an original image and a
modified image, 10 volunteers were asked to choose which
image contained the exchanged visual concept on the modi-
fied image among four choices. Table 2 shows the results of
human evaluation scores. Each score represents the average
percentage of the correctly-answered questions among all
volunteers. We used the methods proposed in (Collins et al.
2020) and (Suzuki et al. 2018) as baselines. Our method out-
performed the above methods in the user study.
Identity preserving evaluation. We performed a face veri-
fication experiment to evaluate the results of face swapping.
For one pair of images, we replaced the face of the original
image with the face of the source image to generate the mod-
ified image. Then we tested whether the face of the modified
image and the face of the source image were of the same i-
dentity. Specifically, we selected 2K pairs of faces and used
ArcFace (Deng et al. 2019) (99.52% on LFW (Huang et al.
2008)) to test the results. Table 3 shows the accuracy of the
face verification. Our method was superior to other state-of-
the-art face swapping methods for identity preserving.
Locality evaluation. To evaluate the locality of modifying
a specific visual concept, we calculated the mean squared-
error (MSE) between the original images and the modified
images in RGB space. Specifically, we manually annotated
segmentation masks for specific visual concepts on 100 gen-
erated images respectively. Then, we measure the ratio of the
Out-MSE and In-MSE for each pair of images, i.e. the MSE
outside the region of a specific visual concept and MSE in-
side the region of a specific visual concept. Let x ∈ RD

and x′ ∈ RD denote the original image and the modi-
fied image. Gc(x) ∈ {0, 1}D denote the hand-annotated
segmentation mask of the c-th visual concept on image x
(c = 1, · · · , C). Ĝc(x) ∈ {0, 1}D denotes the reverse mask,
i.e. Ĝcu(x) = I(Gcu(x) = 0), where I(·) is the indicator
function (u = 1, · · · , D). The In-MSE and Out-MSE for the
c-th visual concept is calculated as follows: In−MSEc =

1Using code in https://github.com/denis19973/faceshifter tornado,
because the original paper has not released the code yet.

Model Mouth Eyes Chin

Editing in Style (2020) 1.3649 0.9745 -
Feature Collaging (2018) 0.1872 0.1293 0.0576
Interpretable StyleGAN 0.0606 0.0502 0.0163
Interpretable BigGAN 0.0296 0.0197 0.0311

Table 4: Locality evaluation.

Model FID

StyleGAN, 128×128 12.86
Interpretable StyleGAN, 128×128 18.81
Interpretable StyleGAN†,128×128 19.42

BigGAN, 64×64 41.81
Interpretable BigGAN, 64×64 56.74
Interpretable BigGAN†, 64×64 57.72

Table 5: Fréchet Inception Distance (FID) between ground
truth images and generated images of GANs. † represents
performing Langevin dynamics on generated images.

∑D
u=1 G

c
u(x)(xu−x′

u)2∑D
u=1 G

c
u(x)

, Out−MSEc =
∑D

u=1 Ĝ
c
u(x)(xu−x′

u)2∑D
u=1 Ĝ

c
u(x)

.
The locality metric of the modification for the c-th visual
concept is calculated as follows: Localityc = Out−MSEc

In−MSEc
.

A small number of this metric indicates that our modifica-
tion mainly changes the regions related to a specific visual
concept. Table 4 shows the results of our locality metric for
each visual concept. Our method had better localization, i.e.
less change outside the region of a specific visual concept.
Realism evaluation. To measure the realism of generat-
ed images, we used the Fréchet Inception Distance (FID)
(Heusel et al. 2017), which compares the distribution of two
sets of images in the feature space of a deep CNN layer. The
smaller FID is, the more realistic generated images usually
are. Table 5 shows the results of FID between the ground
truth images and 50K generated images of GANs. This ta-
ble indicates that forcing filters to encode disentangled vi-
sual concepts decreased the realism of generated images a
bit. Surprisingly, performing Langevin dynamics achieved
worse results, although Fig. 7 shows qualitatively that the re-
alism of generated images was improved through Langevin
dynamics. This reemphasizes that correctly and automatical-
ly measuring the realism of generated images is still difficult.

Conclusion
In this paper, we have proposed a generic method to modify
a traditional GAN into an interpretable GAN, which forces
each filter in an intermediate layer of the generator to rep-
resent a meaningful visual concept. Specifically, we design
a loss to push each filter in the intermediate layer to consis-
tently generate image regions corresponding to the same vi-
sual concept when generating different images, and different
filters to generate image regions corresponding to differen-
t visual concepts. Experiments have demonstrated that our
method enables people to modify a specific visual concep-
t on generated images, such as changing the appearance of
this visual concept.
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