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Abstract

This paper proposes a novel approach to object detection on
drone imagery, namely Multi-Proxy Detection Network with
Unified Foreground Packing (UFPMP-Det). To deal with the
numerous instances of very small scales, different from the
common solution that divides the high-resolution input image
into quite a number of chips with low foreground ratios to per-
form detection on them each, the Unified Foreground Pack-
ing (UFP) module is designed, where the sub-regions given
by a coarse detector are initially merged through clustering to
suppress background and the resulting ones are subsequently
packed into a mosaic for a single inference, thus significantly
reducing overall time cost. Furthermore, to address the more
serious confusion between inter-class similarities and intra-
class variations of instances, which deteriorates detection per-
formance but is rarely discussed, the Multi-Proxy Detection
Network (MP-Det) is presented to model object distributions
in a fine-grained manner by employing multiple proxy learn-
ing, and the proxies are enforced to be diverse by minimiz-
ing a Bag-of-Instance-Words (BoIW) guided optimal trans-
port loss. By such means, UFPMP-Det largely promotes both
the detection accuracy and efficiency. Extensive experiments
are carried out on the widely used VisDrone and UAVDT
datasets, and UFPMP-Det reports new state-of-the-art scores
at a much higher speed, highlighting its advantages. The code
is available at https://github.com/PuAnysh/UFPMP-Det.

Introduction

Recently, the drone, also known as UAV, has become a pop-
ular equipment for its trade-off between mobility and stabil-
ity in many applications, such as security surveillance, aerial
photography, express delivery, and agricultural production,
where drone image based object detection is the fundamen-
tal issue. Although object detection on natural images has
been greatly developed by Convolutional Neural Networks
(CNNs) during the past several years, that on drone imagery
is still limited in terms of both accuracy and efficiency.

One major challenge to detect objects using drone im-
ages lies in that there exist a large amount of instances of
very small sizes, and compared with the case in the bench-
marks of general object detection, e.g., PASCAL VOC (Ev-
eringham et al. 2010) and MS COCO (Lin et al. 2014), the
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Figure 1: Challenges in object detection on drone imagery.

ratio of such instances is rather high, as Fig.1 (a) depicts.
Meanwhile, computing resources are usually inadequate in
drones, current time-consuming solutions, like image pyra-
mid, which proves effective in general object detection, are
no longer competent. Instead, a coarse-to-fine pipeline is of-
ten followed (Li et al. 2020a; Yang et al. 2019), where a
coarse detector is launched to locate the large-scale instances
and sub-regions that contain densely distributed small ones
and a fine detector is further applied to those regions to find
instances of small sizes. These methods show promising re-
sults; however the sub-regions delivered by the coarse detec-
tors are relatively rough, with a large portion of backgrounds
included, incurring inefficient computations. Furthermore,
since they partition the input image into multiple chips, they
have to individually process each sub-region, leading to sev-
eral times of inferences for final decision. The two draw-
backs hence suggest room for efficiency improvement.
Another considerable challenge is that some object cate-
gories defined in drone datasets, e.g. VisDrone (Zhu et al.
2018), are semantically close to each other, for instance,



pedestrian vs. person; tricycle vs. awning-tricycle, and the
appearances of instances belonging to these categories are
quite confusing, as displayed in Fig. 1 (b). Besides, due to
more severe disturbances caused by flying altitude, viewing
angle, and weather condition, the distances between features
of the instances from the same category tend to be enlarged.
The inter-class similarities and intra-class variations are thus
more seriously intertwined than in general object detection,
making the classification of instances even harder. Unfortu-
nately, to the best of our knowledge, this problem is ignored
in the previous literature, which leaves much space for ac-
curacy amelioration.

To address the two challenges aforementioned, i.e. high
percentage of small instances and low distinctiveness of sim-
ilar categories, in this paper, we present a novel approach to
object detection on drone images, namely Multi-Proxy De-
tection Network with Unified Foreground Packing (UFPMP-
Det). It substantially extends the coarse-to-fine framework
by two specially designed modules. For the former, the Uni-
fied Foreground Packing (UFP) module is proposed. UFP
operates in a two-stage manner, where the foreground sub-
regions by the coarse detector are firstly merged through a
clustering algorithm to suppress backgrounds and the result-
ing regions are then packed into a mosaic with adaptively en-
larged scales. By this mean, the foreground ratio of small ob-
jects is increased, and the successive fine detector performs
inference only once at the mean time. As a consequence,
both the detection accuracy and speed can be promoted. For
the latter, the Multi-Proxy Detection Network (MP-Det)
module is proposed. In MP-Det, the multi-proxy learning
scheme originally explored for the image retrieval task is
adapted to object detection, aiming to boost the performance
of the classification head by generating compound and flexi-
ble decision boundaries. In particular, to bypass the collapse
phenomenon in training multiple proxies, Bag-of-Instance-
Words (BoIW) guided Optimal Transport is introduced, in
which BoIW well models the distribution of each category
in the presence of the confusion between inter-class similari-
ties and intra-class variations, thus facilitating feature-proxy
matching by Sinkhorn optimization. We extensively evalu-
ate the proposed approach on two public databases, i.e. Vis-
Drone and UAVDT, and report the state-of-art scores with
largely promoted efficiency, highlighting its effectiveness.

Related Work
Generic Object Detection

Generic Object Detection has been largely developed in re-
cent years along with the success of CNNs within the com-
munity of artificial intelligence, especially computer vision.
On whether using pre-defined sliding windows or proposals,
the existing methods are divided into two main streams, i.e.
anchor-based and anchor-free. The anchor-based detectors
sample the box space into discrete bins and refine the boxes
of objects accordingly, and anchors are taken as regression
references and classification candidates to infer proposals in
multi-stage detectors, such as R-CNN (Girshick et al. 2014),
Faster-RCNN (Ren et al. 2017) and Cascade-RCNN (Cai
and Vasconcelos 2018), or final bounding boxes in single-
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stage ones, e.g. SSD (Liu et al. 2016), YOLO (Redmon and
Farhadi 2018), and RetinaNet (Lin et al. 2020). Compared
to anchor-based ones, the anchor-free detectors avoid com-
plicated computation related to anchor boxes and bypass the
corresponding prior hyper-parameter setting, figuring out a
promising alternative, where FCOS (Tian et al. 2019), FSAF
(Zhu, He, and Savvides 2019), and GFL v1/v2 (Li et al.
2020b, 2021) are representatives.

Object Detection on Drone Imagery

Despite the progress achieved by object detection on natural
images, e.g. PASCAL VOC and COCO, the performance on
drone images is still far from satisfactory. As stated, the high
percentage of small instances and low distinctiveness of sim-
ilar categories make the issue more challenging. Inspired by
the region search strategies (Singh, Najibi, and Davis 2018;
Najibi, Singh, and Davis 2019) employed in general object
detection to accelerate training and inference, all the current
studies focus on the problem of small instances and address
it by following a coarse-to-fine framework, which serially
adopts a simple strategy or a coarse detector to roughly sug-
gest the regions with densely distributed small instances and
a fine detector to precisely localize the objects on them. For
example, in (Unel, Ozkalayci, and Cigla 2019), the tiling
based method makes even splits to produce sub-regions but
it tends to break instances while truncating images; ClutDet
(Yang et al. 2019) applies a sub-network to crop sub-regions
from the raw input; and DMNet (Li et al. 2020a) estimates
the object density in the original image and then separates
sub-regions as minimal areas of connected possible blocks.
Such methods indeed advance drone image based object
detection; however, the sub-region generated are not so de-
cent with much background in them and the decision on an
entire image requires multiple inferences on its sub-regions,
both of which show room for efficiency. On the other side,
the low distinctiveness of similar categories has not been dis-
cussed, resulting in limitation to improved accuracies.

Small Object Detection

Since MS COCO (Lin et al. 2014) was released, small object
detection has become a critical topic and received increasing
attention. FPN (Lin et al. 2017) is a major choice to handle
scale changes through feature pyramid, and it is extended to
anumber of variants, including EFF-FPN (Gong et al. 2021),
AugFPN (Guo et al. 2020), efc. Perceptual GAN (Li et al.
2017) utilizes an adversarial network to boost the detection
performance by narrowing the representation difference be-
tween small and large objects, and a super-resolution feature
generator is trained with proper high-resolution target fea-
tures for supervision. A similar idea appears in (Noh et al.
2019) but considers the impacts of the receptive fields of var-
ious sizes as well. TinyPerson (Yu et al. 2020) claims that
scale mismatch between the data for network pre-training
and detector learning incurs degradation and designs Scale
Match to align object scales between different datasets.

The methods above are validated either on MS COCO for
general object detection or on other detection tasks for spe-
cial objects, i.e. persons or traffic signs. As we analyze be-
fore, drone image based object detection has its unique chal-
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Figure 2: Comparison of different pipelines when handling
scale changes. Orange, green and blue boxes indicate small,
medium and large scale objects, respectively.

lenges, where the scale distribution of instances on drone im-
ages is quite different and the object categories share seman-
tic similarity as shown in Fig. 1 (a) and (b), thereby making
them problematic to the given issue.

The Proposed UFPMP-Det Approach

To tackle the two challenges, i.e. high percentage of small in-
stances and low distinctiveness of similar categories, a novel
approach, namely Multi-Proxy Detection Network with Uni-
fied Foreground Packing (UFPMP-Det), is proposed. It con-
tains two major stages, where in the first stage, the Unified
Foreground Packing (UFP) module converts raw drone im-
ages into mosaics with higher foreground ratios, and in the
second stage, the Multi-Proxy Detection Network (MP-Det)
module infers on the mosaic images, which employs a multi-
proxy learning scheme with Bag-of-Instance-Words (BoIW)
guided Optimal Transport to model complex object distribu-
tions. They are introduced in detail in the following.

Unified Foreground Packing

The UFP module aims to convert original drone images into
unified mosaic ones with significantly increased foreground
ratios and enlarged sizes of small objects. As Fig. 3 shows,
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Algorithm 1: Foreground Region Generation
Input: Bounding boxes B,
Output: Merged regions B,

1: Initialize B, = 0.

2: while B, # 0 do

3: A =argminy pz |A|

4. B.:=B.—{A}

5. forall B e B. do

6: For A and B, find the smallest enclosing convex
bounding box C.

7: if (|4| + |B|) > |C| then

8: A=C

9: B.:=B.—{B}

10: end if

11:  end for

12:  B,:=B,U{A}

13: end while
14: return 3,

Packing

Foreground Region Generation Scale Equalization

Coarse Detection

Figure 3: Pipeline of Unified Foreground Packing (UFP).

when foreground sub-areas are extracted from the drone im-
age by a coarse detector, UFP introduces three successive
steps: (1) foreground sub-areas are merged to several clus-
tered ones; (2) small scale cluster regions are enlarged adap-
tively; and (3) adjusted cluster regions are packed into a uni-
fied mosaic.

Foreground Region Generation In order to mitigate se-
vere biases and heavy overlaps of foreground sub-areas in
coarse detection, we expand the width and height of each de-
tected bounding box from the center with an expansion ratio
B to roughly enclose its ground truth. Thereafter, we propose
a greedy Foreground Region Generation (FRG) algorithm to
merge the expanded results as summarized in Algorithm 1.

Specifically, FRG takes the expanded coarse detection re-
sults B, as input and selects the box A with the minimal size
as the generation starting point. For each box B in B.—{ A},
FRG searches the smallest convex box C' that encloses A and
B. If the sum of the areas w.r.t. A and B, i.e.
larger than that of C', we update A with C' and remove B
from B.. This process is repeated until there is no box B
that satisfies the condition |A| 4 |B| > |C|. In this case, A
is collected as a cluster region in B,.. We repeat the proce-
dure above until B, turns to an empty set, when we obtain
the final merged region set B,..

Foreground Region Scale Equalization After FRG, each
image is represented as several cluster regions with different
scales. To equalize their scales, especially the small ones,
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Figure 4: Illustration of updating the vocabulary queue. The
orange cells indicate positive samples after label assign-
ments, and the yellow ones are randomly selected to update
the oldest elements in the vocabulary queue.

we first estimate the averaged region scale from B, and sub-
sequently enlarge the regions smaller than a fixed size (e.g.
96 x 96 in our work) by adjusting the average scale to the
fixed one.

Foreground Region Packing The current approaches in-
dividually perform fine-grained detection on each cluster re-
gion, which is extremely inefficient. To avoid this, we splice
all the regions into a unified mosaic by using the PHSPPOG
method (Zhang et al. 2016). By this mean, fine-grained de-
tection operates only once, remarkably saving the time cost.

Multi-Proxy Detection Network

The MP-Det module targets on relieving the confusion be-
tween inter-class similarities and intra-class variations from
complex object distributions in classification. It includes two
main components: (1) the Multi-Proxy Classification Head
and (2) the Bag-of-Instance-Words (BoIW) model.

Multi-Proxy Classification Head The conventional clas-
sification head assigns a single weight vector w; to the ¢-th
category. Suppose that x is the feature extracted by the back-
bone network, its conditional probability corresponding to
the i-th category is formulated as:

Pr(Y = y;|z) = Sigmoid(w; z), )
where Sigmoid(-) is the sigmoid function. Eq. (1) can be
considered as a single proxy classifier, implicitly assuming
that each category has only one class center at w; /|| w; ||.

By contrast, in drone images, intra-class variance is rather
large due to great size and view changes of instances. In this
case, data belonging to a single class may span around mul-
tiple centers. Therefore, we adopt the multi-proxy classifi-
cation head, assuming that the ¢-th category has K (K > 1)
proxies denoted by [w}, w2, ..., wX]. Inspired by SoftTriple
(Qian et al. 2019), the multl proxy conditional probability is

exp(s;)s;

formulated as:
—7 ], @
oL, exp(s! ))

and v is a scaling factor. Accordingly,
wf]

Pr(Y = y;|x) = Sigmoid (’yz

k
where S; TR
IIw’“ [ Hw\l

the weights [w}, w?, can be optimized by minimiz-
ing the cross-entropy or the focal loss w.rt. Pr(Y = y;|z).

As in Eq. (2), the decision boundary for the ¢-th class is
represented by multiple centers (proxies), thus being more
flexible and accurate than that by a single one.
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Bag-of-Instance-Words guided Optimal Transport The
multiple proxies tend to collapse into a similar one dur-
ing training, caused by extremely imbalanced cluster as-
signments. To overcome this dilemma, an optimal transport
based procedure is adopted as in (Liu et al. 2021a). Specif-
ically, given the feature vectors { f7 } -, of N; positive in-
stances and K proxies {w?}/  for the i-th class, the cost
matrix is computed as C; = %, where § € RNixK
refers to the cosine similarity matrix between { fj } ., and
{wF}E | and 1 is an all-ones matrix. The transportation
plan P € RNi*K is computed as below:

P} = argminp tr (C»TP)

3)
st. > P(jk ZP 7 k) =ai(j),
j=1
where tr(+) is the matrix trace. p; = [p;(1),--- , p;(K)] and
q; = [gi(1),- -, q;(N;)] indicate the marginal probability

distributions of {w?}/ | and { £/}
on Eq. (3), the instance-proxy matching loss w.r.t. { ff P i

i1, respectively. Based

and {w?} | is defined as

1 Qe
= — tr (CzTPz*) ,
£33

where N, is the number of classes.

In Eq. (3) the uniform distributions, i.e. p;(k) = - and
q:(j) = N , are usually used as priors, but this may be dif-
ferent from the ones of real data, thus leading to performance
drop. To address this issue, we develop the BoIW model to
estimate the intra-class distribution of {w#} %

Concretely, BoIW firstly constructs a queue-based vocab-
ulary V; of size N, as the representative feature set for the
i-th class. As shown in Fig. 4, V; is updated in each mini-
batch, where m positive instances are selected, and their fea-
tures are inserted into V; by removing the m oldest ones at
the mean time. For a two-stage detector, we extract the flat-
tened instance-level features after the Rol layer. As to the
one-stage detector, we additionally employ a convolutional
layer to extract C'-dimensional instance features.

Subsequently, K -means is applied to V; and K clusters
{ck} are obtained. The marginal distribution p; is therefore
estimated as p;(k) = #|cF|/#|V;i|, where #| - | denotes
the number of elements. Considering that the clusters {c}
vary in different steps, we sort p; in the descending order to
ensure that w¥ always corresponds to the cluster with the k-
th highest probability. By taking p; (k) back to Egs. (3) and
(4), we have the BoIW induced optimal transport loss.

Note that the vocabulary V; is the representative feature
set for the ¢-th class. To further enhance their representative-
ness, we adopt another contrastive learning loss w.r.t. V; and
the positive instance feature x;:

) )

cl :_]:\lleog<

4)

Zvev,- exp(vTx;)
ZuGV eXp(uTmi)




Method References ResNet-50 ResNet-101 ResNeXt-101
AP AP50 AP75 | AP AP50 AP75 | AP AP50 AP75
Faster-RCNN (Renetal. 2017) | 21.4  40.7 199 | 214 40.7 203 | 21.8 418 20.1
ClusDet (Yang et al. 2019) | 26.7  50.6 244 | 267 504 252 | 324 562 31.6
DMNet (Li et al. 2020a) 282 476 289 | 285 48.1 294 | 294 493 30.6
GLSAN (Deng et al. 2021) | 30.7 554 30.0 | 30.7 55.6 29.9 - - -
SAIC-FPN (Zhou et al. 2019) - - - - - - 357 623 35.1
AMRNet (Wei et al. 2020) | 31.7 52.7 33.1 | 31.7 52.6 33.0 | 32.1 53.0 33.2
HRDNet (Liu et al. 2021b) - - - 314 533 31.6 | 35,5 62.0 35.1
UFPMP-Det Ours 36,6 624 36.7 | 37.5 632 383 | 39.2 653 40.2
UFPMP-Det+MS Ours 374 63.7 37.7 | 38.7 65.1 394 | 40.1 66.8 41.3

Table 1: Comparison of different approaches in AP/AP50/AP75 (%) on the validation set of VisDrone. MS refers to the multi-
scale trick during inference and ‘-’ indicates that the result is not reported.

where V' = UlN;IVi.
By minimizing L. in Eq. (5), the correlations between
the intra-class/inter-class features are increased/decreased.

Adaptive K-Proxy Estimation The number of proxies
within each class, i.e. K, is important to MP-Det. Instead
of the trivial solution to set it manually, we propose an adap-
tive way for estimation. To be specific, we extract instance
features by the vanilla GFL v1 (Li et al. 2020b) and perform
clustering by DBSCAN (Ester et al. 1996) to determine K.

Overall Optimization The overall training loss of MP-
Det combines the conventional detection loss Lges, the
BoIW induced optimal transportation loss L,; in Eq. (3) and
the contrastive learning loss £L.; in Eq (5), formulated as:

L= Edet + Eot + Ecl- (6)

During training, we perform BoIW to regularly estimate
p; (for every 2,000 iterations in our case). When optimizing
Lo, we employ Sinkhorn-Knopp (Cuturi 2013) to compute
the transportation plan P;*, which only slightly increases the
training time (27.5h vs. 33h) without any extra cost at test.

Experimental Results and Analysis

UFPMP-Det is evaluated on the widely-used VisDrone (Zhu
et al. 2018) and UAVDT (Du et al. 2018) benchmarks and
extensive experiments are carried out.

Datasets and Protocols

VisDrone consists of 10,209 high resolution images (2000 x
1500) with 10 object categories, captured by various drone-
mounted cameras from different areas (urban and country)
and scenes (sparse and crowded). 6,471 images are used for
training, 548 for validation and 3,190 for test. Since the test
set is not publicly available, we follow ClutDet (Yang et al.
2019) and DMNet (Li et al. 2020a) to report scores on the
validation set. UAVDT includes 23,258 images for training
and 15,069 images for test. All the images are captured from
urban areas by a UAV at low altitudes with a 1080 x 540
resolution. Three kinds of vehicles (car, bus, and truck) are
manually labeled. Similar to the protocols for general ob-
ject detection (Lin et al. 2014), we adopt Average Precision
(AP) and APs at the IoU thresholds of 0.5 (AP50) and 0.75
(AP75) as the metrics on both datasets.
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Method Reference AP  AP50 AP75
Faster-RCNN (Ren et al. 2017) 11.0 234 8.4
ClusDet (Yang et al. 2019) | 13.7  26.5 12.5
DMNet (Li et al. 2020a) 147 246 16.3
GLSAN (Deng et al. 2021) | 17.0  28.1 18.8
DREN (Zhang et al. 2019) | 15.1 - -
ARMNet (Wei et al. 2020) 182 304 19.8
UFPMP-Det Ours 24.6 38.7 28.0

Table 2: Comparison of different approaches with ResNet-
50 in AP/AP50/AP75 (%) on UAVDT. ‘-’ indicates that the
result is not reported.

Method Reference #img | Inference Time

ClusDet (Yang et al. 2019) | 2716 0.273

DMNet (Lietal. 2020a) | 2736 0.290
UFPMP-Det Ours 1096 0.152

Table 3: Comparison of different methods in efficiency w.r..
the number of packed images (#img) and the inference time
cost (in seconds) on VisDrone.

Implementation Details

We implement the proposed approach using the open-source
MMDetection toolbox'. GFL (Li et al. 2020b) is employed
as the baseline detector with the model pre-trained on Ima-
geNet. UFPMP-Det is trained for 60 epochs in total by the
SGD optimizer. The momentum and weight decay are fixed
as 0.9 and 0.0001, respectively. The initial learning rate is set
at 0.01 with a linear warm-up, which decreases by the factor
of 10 after 40 and 55 epochs. As for BoIW, it is individually
updated in the first 10 epochs without performing the opti-
mal transport and contrastive learning, and jointly optimized
for all the components afterwords, which is empirically sta-
ble during training in our experiments. The sizes of the input
images for our detector are set to 1333 x 800 on VisDrone
and 1000 x 600 on UAVDT, respectively.

Comparison with the State-of-the-arts

We compare UFPMP-Det with the state-of-the-art counter-
parts, including Faster-RCNN (Ren et al. 2017), ClusDet

"https://github.com/open-mmlab/mmdetection



Method Reference #img | AP AP50 AP75
EIP (Yang etal. 2019) | 3288 | 21.1 44.0 18.1

ClusDet | (Yangetal. 2019) | 2716 | 26.7 50.6  24.7

DMNet | (Lietal. 2020a) | 2736 | 28.2 47.6 289
UFP Ours 1096 | 30.6 52,5 31.0

Table 4: Comparison of packing methods in AP/AP50/AP75
(%) and number of packed images (#img) based on Faster-
RCNN with ResNet-50.

Dataset | UFP | FR | Small Medium Large
VisDrone 10.2 | 68.56  28.68 2.76
VisDrone | v 245 | 6.96 63.35 29.69

UAVDT 5.11 | 74.87 23.01 2.12

UAVDT v 12298 | 0.64 71.60  27.76

Table 5: Ablation study on UPF w.z¢. Foreground Ratio (FR)
(%) and proportion (%) of object instances in small, medium
and large sizes (using the COCO metric) on VisDrone and
UAVDT.

(Yang et al. 2019), DMNet (Li et al. 2020a), GLSAN (Deng
et al. 2021), and DREN (Zhang et al. 2019).

Results on VisDrone. Existing approaches deliver results by
using different base networks on VisDrone, and we therefore
report the performance of UFPMP-Det with various typi-
cal backbones, i.e. ResNet-50, ResNet-101, and ResNeXt-
101, for more comprehensive validation. As summarized in
Table 1, all these methods generally achieve higher accura-
cies through stronger networks. When using the same back-
bone, UFPMP-Det consistently outperforms such counter-
parts by large margins, improving APs of the second best
by 4.9%, 5.8% and 3.5% with ResNet-50, ResNet-101 and
ResNeXt-101, respectively. It is worth noting that the per-
formance of UFPMP-Det with ResNet-50 is even superior to
that with much deeper networks (e.g. ResNeXt-101), reach-
ing the new state-of-the-art. Besides, the multi-scale tech-
nique during inference further promotes the accuracy.
Results on UAVDT. Most of detectors utilize the ResNet-50
backbone for evaluation on UAVDT, and we follow this set-
ting for fair comparison. As illustrated in Table 2, UFPMP-
Det largely boosts the performance of other detectors, and it
improves the AP, AP50 and AP75 of the second best ARM-
Net by 6.4%, 8.3% and 8.2%, respectively.

Overall Complexity. To analyze the efficiency of UFPMP-
Det, we show the number of packed images as well as the
inference time cost, in comparison to ClusDet (Yang et al.
2019) and DMNet (Li et al. 2020a). All the experiments are
conducted on one GTX 1080TI GPU. As Table 3 displays,
UFPMP-Det generates less than half of the packed images
by ClusDet and DMNet and thus infers significantly faster,
highlighting its advantage.

Ablation Study

We detailedly validate the major components, i.e., UFP and
MP-Det, as well as several hyper-parameters on UFPMP-
Det.
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Figure 5: Visualization of UFP. Top: input images; middle:
clustered regions highlighted by green bounding boxes; and
bottom: packed mosaics.

Method AP AP50 AP75
Baseline 206 498 30.3
Baseline+UFP 36.6 623 36.8
Baseline+UFP+MP-Head 37.0 625 37.6
Baseline+UFP+MP-Head+BoIW | 37.5 63.2 38.3

Table 6: Validation of different components in MP-Det with
ResNet-101 on VisDrone in terms of AP/AP50/AP75 (%).

On UFP. We evaluate UFP and compare it to three coun-
terparts: i.e. evenly image partition (EIP) (Yang et al. 2019),
ClusDet (Yang et al. 2019), and DMNet (Li et al. 2020a). For
fair comparison, all the methods utilize Faster-RCNN with
FPN as the base detector and ResNet-50 as the backbone. As
shown in Table 4, UFP outputs less packed images by per-
forming unified adaptive packing, whilst achieving the best
accuracy by increasing the Foreground Ratio (FR). To show
the advantage of UPF in increasing FR and decreasing the
number of small objects, we summarize the FR as well as
the percentages of small/medium/large objects on VisDrone
and UAVDT in Table 5. It is worth noting that we utilize the
metric used in MS COCO to determine whether an object is
small, medium or large. As demonstrated, UFP clearly pro-
motes FR and significantly reduces the percentage of small
objects, thereby facilitating successive detection.

We visualize the intermediate and the final outputs of UFP
in Fig. 5. The first row shows the input images; the second
row depicts the FRG clusters from the object regions densely
extracted by the foreground detector; and the last row dis-
plays the packed unified mosaics.



Method AP AP50 AP75
K = 10 (Manual) | 37.1 628 378
K =20 (Manual) | 37.1 626 37.7
MP-Det 375 632 383

Table 7: Comparison of AP/AP50/AP75 (%) on VisDrone
by using different methods to set the number of proxies K:
Manual vs. MP-Det (Ours).

Size of BoIW (N) | AP AP50 AP75
50 223 36.1 25.2
100 240 376 27.1
200 24.6 387  28.0

Table 8: The impact of the size of BoIW (V) on the perfor-
mance of MP-Det w.r.t. AP/AP50/AP75 (%) on UAVDT.

I6} FR AP  AP50 AP75
1.3 | 3246 | 339 61.7 335
1.5 12453 | 366 624 36.7
1.7 | 21.07 | 356 613 358

Table 9: The impact of 5 on UFP w.rt. Foreground Ratio
(FR) and AP/AP50/AP75 (%) on VisDrone.

On MP-Det. MP-Det has two major components: i.e. MP-
Head and BoIW, and we validate them on a stronger baseline
with ResNet-101. As shown in Table 6, MP-Head first im-
proves the baseline accuracy (AP) by 0.4% and BoIW fur-
ther increases it by 0.5%, highlighting their credits.

We further evaluate the effects of adaptive K —proxy es-
timation and the size of BoIW on the performance of MP-
Det. As aforementioned, MP-Det adaptively estimates the
number of proxies for each class by performing DBSCAN
on the instance features extracted from pre-trained models.
For comparison, we choose the way to set it manually as
the baseline. As shown in Table 7, manually setting is not as
good as adaptively setting when used in MP-Det.

As to the size of BoIW, we report the results of MP-Det by
using different values, e.g., N = 50/100/200 on UAVDT in
Table 8. As summarized, MP-Det achieves the highest score
with N = 200, which is therefore adopted in our work.

We qualitatively demonstrate the impact of optimal trans-
port (OT) based feature-proxy matching, by visualizing the
features of object instances as well as the proxies on UAVDT
via t-SNE. As shown in Fig. 6, without OT, the features of
instances tend to gather to non-proxy points and are apart
from the proxies, and the proxies from different classes
are not discriminative enough. In contrast, when OT is em-
ployed, the learned features locate in the small neighbor-
hoods of multiple proxies in a more uniformly distributed
way. Besides, the inter-class distances between proxies are
clearly enlarged, making it easier for object classification.

On Hyper-parameter 3. As described, g affects the num-
ber of clustered regions and the average recall of raw im-
ages. In Table 9, we report the detection accuracies for dif-
ferent values of 3. The results indicate that FR decreases as
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Figure 6: Visualization of multi-proxies learned on UAVDT

via t-SNE. Solid dots denote the features of object instances

and translucent circles denote the proxies. Different colors

indicate distinct classes.

B increases, and UFP reaches the highest performance when
B = 1.5, which is therefore used in our experiments.

Conclusion

In this paper, we propose a novel approach, namely UFPMP-
Det, to object detection on drone imagery. It first introduces
the UFP module to address the instances of very small scales
by generating single mosaics of input images with largely in-
creased foreground ratios, substantially improving both the
accuracy and efficiency. The MP-Det module is further pre-
sented to model complex object distributions through mul-
tiple proxy learning, where the proxies are enforced to be
diverse by minimizing a Bag-of-Instance-Words guided op-
timal transport loss. Extensive experiments are conducted on
two benchmarks, and UFPMP-Det reaches the new state-of-
the-art, highlighting its effectiveness.
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