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Abstract

Dynamic convolution has achieved significant gain in perfor-
mance and computational complexity, thanks to its powerful
representation capability given limited filter number/layers.
However, SOTA dynamic convolution operators are sensitive
to input noises (e.g., Gaussian noise, shot noise, e.t.c.) and
lack sufficient spatial contextual information in filter gen-
eration. To alleviate this inherent weakness, we propose a
lightweight and heterogeneous-structure (i.e., static and dy-
namic) operator, named Bi-volution. On the one hand, Bi-
volution is designed as a dual-branch structure to fully lever-
age complementary properties of static/dynamic convolution,
which endows Bi-volution more robust properties and higher
performance. On the other hand, the Spatial Augmented Ker-
nel Generation module is proposed to improve the dynamic
convolution, realizing the learning of spatial context infor-
mation with negligible additional computational complexity.
Extensive experiments illustrate that the ResNet-50 equipped
with Bi-volution achieves a highly competitive boost in per-
formance (+2.8% top-1 accuracy on ImageNet classification,
+2.4% box AP and +2.2% mask AP on COCO detection
and instance segmentation) while maintaining extremely low
FLOPs (i.e., ResNet50@2.7 GFLOPs). Furthermore, our Bi-
volution shows better robustness than dynamic convolution
against various noise and input corruptions. Our code is avail-
able at https://github.com/neuralchen/Bivolution.

Introduction
Dynamic convolution is a rapidly developing alternative
computing primitive for Convolutional Neural Networks
(CNNs) (Han et al. 2021), which achieves great success in
various tasks, e.g., image classification (Deng et al. 2009),
object detection (Lin et al. 2014), and super-resolution (Xu
et al. 2020) e.t.c.. Contrast to convolution, dynamic convo-
lution exhibits spatial-anisotropy and content-adaptive prop-
erties, resulting in better performance and optimal feature
learning. However, these properties also weaken the robust-
ness of dynamic convolution and make it sensitive to input
noises (e.g., Gaussian noise, shot noise, e.t.c.). Furthermore,
subject to rigorous complexity constraints, the squeeze-and-
excitation module (Hu, Shen, and Sun 2018) (i.e., consisting
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Figure 1: Static and dynamic coupled filter which
unifies low-frequency/high-frequency semantic and
spatial/channel-wise fusion to boost the accuracy perfor-
mance and further improve model robustness.

of 1 × 1 convolutions) becomes the de facto standard for
dynamic convolution kernel generation, which excludes the
interaction of spatially contextual information thus leads to
sub-optimal estimation results.

Sensitivity to Noise Pattern. Spatial-anisotropy and
content-adaptiveness are the prominent properties of a stan-
dard dynamic convolution. In detail, different filters are ap-
plied to each point in an image/feature, and at the same time,
these filters are estimated online based on the input content.
Such a dynamically adaptive design endows dynamic con-
volution the ability to deal with complex and changeable
input images/features, and enables dynamic convolution to
achieve better performance than static convolution. Unfor-
tunately, it is these dynamic properties that make dynamic
convolution more sensitive to noisy input. Specifically, con-
tent adaptability makes dynamic convolution misjudge the
noise mixed in the input as part of the input content, resulting
in the noisy generation of kernels that are mismatched with
the real texture pattern. In addition, our experimental obser-
vations have found that dynamic convolution is very sensi-
tive to various types of noise such as Gaussian noise, shot
noise, impulse noise and speckle noise. In practical deploy-
ment scenarios (e.g., video surveillance, industrial monitor-
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ing, e.t.c.), the input data inevitably contains various noise
due to the complex data collection process. Unrobustness to
input noise will lead to deployment difficulties and severely
limit the application range of the model.

Inefficient Filters Generation. The most important com-
ponent of dynamic convolution is the kernel estimation mod-
ule, which predicts the corresponding convolution kernels
based on the input content/features. As a fundamental build-
ing cell of CNNs, dynamic convolution should maintain a
reasonable complexity, which requires the kernel estimation
module to be extremely lightweight, e.g., the squeeze-and-
excitation module, e.t.c.. These modules (Hu, Shen, and Sun
2018) are usually composed of stacked 1 × 1 convolutional
layers, however, such a topology fails to establish an effec-
tive and direct spatial context interaction. The spatial con-
text interaction is crucial for the network/kernel to deal with
complex textures such as corners and edges. Specifically, the
1 × 1 convolution only focuses on the center point of slid-
ing windows, which prevents the module from effectively
perceiving different texture patterns, resulting in generating
pattern mismatched kernels. Increasing the receptive field is
the easiest way to solve inefficient interaction, but the naive
expansion will lead to serious computational complexity and
parameter explosion.

In this paper, we propose a lightweight and
heterogeneous-structure operator, named Bi-volution,
which simultaneously addresses both the above weaknesses
of the dynamic convolution operator. Similar to bilateral
filters (Tomasi and Manduchi 1998) and guided filters (He,
Sun, and Tang 2010), content-adaptive properties make
dynamic convolution powerful in processing high-frequency
information (i.e., edges, corners, e.t.c.). In contrast, static
convolution is essentially a low-pass filter (i.e., Wx), which
focuses on processing low-frequency information. Through
experiments, we found that noise (e.g., Gaussian noise,
shot noise) mainly destroys the high-frequency components
of the input image, leading to severe model performance
degradation (Wang et al. 2020a). The key to improving input
noise robustness is to process low-frequency components
more effectively. Interestingly, the convolutions aggregated
structure (i.e., ResNeXt (Xie et al. 2017)) exhibits excellent
noise robustness, indicating that convolution aggregation is
beneficial to processing low-frequency signals. Based on
this understanding, we design Bi-volution as a dual-branch
topology to make full use of complementary properties
(i.e., low-frequency and high-frequency) of static/dynamic
convolution, which endows our Bi-volution with full-band
processing capabilities and thus leads to excellent input
noise robustness. More importantly, such a dual-branch
structure possesses better optimization properties (i.e.,
multi-branch alleviates the gradient problems (He et al.
2016; Ding et al. 2021)), resulting in better performance
than a single dynamic convolution. Furthermore, we pro-
pose the Spatial Augmented Kernel Generation module
to improve the dynamic convolution, which enables the
interaction of spatial context information with negligible
additional computational complexity. Inspired by literature
of lightweight static convolution (Chollet 2017; Howard

et al. 2017; Sandler et al. 2018; Howard et al. 2019) and effi-
cient channel interaction methods (Hu, Shen, and Sun 2018;
Wang et al. 2020c), we design the module with spatial con-
text extractor branch and channel information aggregation
branch, which can be applied in any dynamic convolution
kernel generation to boost the model performance with
limited computational costs. With these two unique designs,
our Bi-volution gains highly competitive performance
and excellent input noise robustness, while maintaining
extremely low complexity, and is ready to be embedded into
the mainstream backbone as the computational primitive.

We experiment with the proposed Bi-volution in terms
of qualitative and quantitative evaluations on mainstream
vision tasks. Extensive results demonstrate that our Bi-
volution operator achieves highly competitive improvements
(i.e., image classification on ImageNet (Deng et al. 2009):
+2.8% top1 accuracy, object detection on COCO (Lin et al.
2014): +2.4% box AP, instance segmentation on COCO:
+2.2% mask AP) while maintaining an extremely low
FLOPs (i.e., ResNet50@2.7GFLOPs). Furthermore, our Bi-
volution shows better input corruption robustness than dy-
namic convolution in a wide range of noise and other cor-
ruptions.

Related Works
Static convolution is a standard operator of modern neu-
ral networks. Recent years witness an astonishing vari-
ety of deep CNN architectures with diverse aggregation
methods which achieve impressive performance in various
tasks(Deng et al. 2009; He et al. 2016; Xie et al. 2017;
Szegedy et al. 2017). However, the convolution kernels of
static models are fixed once trained, limiting their model
complexity and representation power (Graves 2016; Huang
et al. 2017; Yang et al. 2019).

In contrast to the static ones, dynamic convolution adapts
the filters to the input feature, boosting the representation
power and thus the performance of CNNs. One kind of dy-
namic convolution is designed to adjust the sampling grid
of convolution kernel (Dai et al. 2017; Jeon and Kim 2017;
Zhu et al. 2019) while another kind of approach generates di-
rectly filter values with regard to input features (Ha, Dai, and
Le 2016; Jia et al. 2016; Yang et al. 2019). Regarding the lat-
ter category, some works predict the coefficients of different
convolution filters to combine them dynamically (Ma et al.
2020; Yang et al. 2019; Zhang et al. 2020; Chen et al. 2020).
However, these methods only add additional computational
complexity to static convolution and thus can hardly be ap-
plied to large network models. Recently, Li et al.propose the
involution (Li et al. 2021) whose kernel is entirely predicted
from input features. As its operation is in a depth-wise sep-
arable convolution manner, the computation complexity is
relatively competitive but fails to encode channel-specific
information. The Decoupled Dynamic Filter proposed by
Zhou et al. (Zhou et al. 2021) further design a channel filter
branch, adding channel-wise information to dynamic convo-
lution kernels in an efficient way. However, dynamic convo-
lution tends to capture high-frequency components of input
image, which leads to robustness reduction facing noise pat-
tern (Wang et al. 2020a).
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Figure 2: Illustration of our proposed Bi-volution. The input feature is processed by a static branch and a dynamic one. The
static branch is responsible for the low-frequency and local features while the dynamic branch equipped with our lightweight
Spatial Augmented Kernel Generation (SAKG) module specializes in high-frequency and long-term feature extraction.

Methodology
Preliminaries
Static Convolutions. Given the input feature map X ∈
RH×W×Ci , where H and W represent the height and width
of the feature map and Ci indicates the number of input
channels. The standard static convolution is a linear op-
eration with a fixed Ks × Ks convolution kernel Ws ∈
RCo×Ci×Ks×Ks , where Co and Ci are the number of output
channels and input channels. For the static convolution at
certain pixel in input feature, its corresponding output pixel
Yi,j,c in the output Y ∈ RH×W×Co can be computed as

Yi,j,c =

ci∑
k=1

∑
(u,v)∈Ωi,j

Ws
c,k,u,vXi+u−bKs/2c,j+v−bKs/2c,k,

(1)

where Ωi,j denotes the set of positions in the Ks×Ks kernel
window, written under Cartesian product as

Ωi,j = [0, 1, · · · , 2bKs/2c]× [0, 1, · · · , 2bKs/2c]. (2)

The standard static convolution aggregates local spatial in-
formation and channel-wise information. It is essentially a
low-pass filter, which estimates the result by weighting the
information in the average window.

Dynamic Convolutions. As opposed to static convolu-
tion, dynamic convolution predicts the kernel weight from
the input features. Previous works (Ma et al. 2020; Yang
et al. 2019; Zhang et al. 2020; Chen et al. 2020) generate
the filters by predicting coefficients of several expert static
convolution kernels, which still works in a spatially shared
convolution manner and adds additional computation burden
to existing static convolution. Recent works (Li et al. 2021;
Zhou et al. 2021) propose to generate kernels whose values
are spatially adapted to the input features and are channel-
wise shared to reduce the computation consumption. The
output can be expressed as

Yi,j,c =
∑

(u,v)∈Ωi,j

Wd
u,vXi+u−bKd/2c,j+v−bKd/2c,c. (3)

To generate the dynamic convolution kernel Wd ∈
RH×W×Kd×Kd , where H and W denote the height and width
of input features, Kd denotes the kernel size, they apply a
mapping function f as

Wd
u,v = f(XΨu,v ), (4)

where Ψu,v is the set of indexes of pixels Wd
u,v is condi-

tioned on. The mapping function f consists of standard con-
volution layers with kernel size 1 × 1 in consideration of
computational costs. As a trade-off, the kernel generation
process will miss the spatial information from input fea-
tures. In addition, channel-wise shared property makes dy-
namic convolution fail to aggregate channel-specific infor-
mation. To address the latter issue, Zhou et al. (Zhou et al.
2021) propose to encode channel-specific information by
an additional channel branch via a squeeze-and-excitation
structure. However, the former problem of the absence of
spatial information still remains. In addition, similar to bi-
lateral filters (Tomasi and Manduchi 1998) and guided fil-
ters (He, Sun, and Tang 2010), content-adaptive properties
make dynamic convolution powerful in processing high-
frequency information to achieve better accuracy. Simulta-
neously, common input noise and corruption usually destroy
high-frequency components, reducing the noise robustness
of dynamic convolution.

The Hybrid Filter: Bi-volution
Combining with characteristics of static convolution, we
propose an augmented dynamic convolution operator named
Bi-volution. Specifically, we design, on the one hand, a dual-
branch structure to complement the dynamic convolution
with robust static convolution branch. On the other hand, we
propose a Spatial Augmented Kernel Generation (SAKG)
module which aggregates the spatial context information in
input features in an efficient way.

Dual-branch Structure. Given the input feature X and
the kernel generation function f , the dynamic convolution
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result Y can be written as

Y = f(X) ∗X, (5)

where ∗ indicates the convolution operation. As an input-
conditional execution, dynamic convolution extracts the
second-order information from input features, exploiting
higher-order statistics. It is demonstrated that high-order
feature statistics induce more discriminative representations,
which improves the model performance in large-scale classi-
fication and other computer vision tasks (Li et al. 2017; Basri
et al. 2020; Tancik et al. 2020; Wang et al. 2020a). From
the perspective of spectral bias (Rahaman et al. 2019; Basri
et al. 2020), networks with static convolution tend to learn
lower frequencies, which leads to insufficient performance.
However, it is well-known that the high-order operators are
more sensitive to perturbation while the first-order operators
(i.e., static convolution) are not. Better high-frequency pro-
cessing capabilities result in better accuracy and worse noise
robustness (Wang et al. 2020a). In short, the dynamic con-
volution and the static convolution can generate representa-
tions of different levels which are complementary to each
other. It is obviously insufficient to focus only on one band.
Aggregating different features will significantly improve the
network robustness (Hendrycks and Dietterich 2019) and
optimization properties (Ding et al. 2021; Chen, Wang, and
Ni 2021). Inspired by the above issue, we propose the dual-
branch structure fusing the dynamic and static convolution
to hybrid the respective advantages.

Given the static convolution function g, our dual-branch
structure with first-order and second-order information can
be expressed as

Y′ = f(X) ∗X + g(X). (6)

Note that the batch normalization layer and nonlinearity are
placed outside our dual branch. We apply group convolution
and small kernel size (i.e., 1 × 1 or 3 × 3) to better reduce
the computation. The overall structure is shown in Fig. 2.
From the perspective of signal analysis, the first-order static
convolution is robust to noise and the second-order dynamic
convolution is sensitive to fine changes between different in-
put features. Accordingly, the proposed structure is able to
balance model robustness and accuracy. In terms of feature
aggregation, we separate the static and dynamic convolution
in two branches, which encourages them to extract features
at different levels from input. Our hybrid method aggregates
the representations, fusing the complementary information
from the results of two kinds of convolution operations. By
increasing the feature aggregation, our proposed structure
endows stronger representation power, benefiting both accu-
racy performance and noise robustness.

Spatial Augmented Kernel Generation. As discussed
above, previous state-of-the-art works (Li et al. 2021; Zhou
et al. 2021) generate dynamic convolution kernels using
1 × 1 convolution to reduce their model complexity while
giving up the spatial context in input features. To tackle
this problem, we carefully design the Spatial Augmented
Kernel Generation (SAKG) module which has a larger re-
ceptive field with limited additional computational com-

plexity. Inspired by lightweight static convolution litera-
ture (Chollet 2017; Howard et al. 2017; Sandler et al. 2018;
Howard et al. 2019), we effectively expand the receptive
field with little computation complexity by replacing the
standard convolution with the depth-wise separable convo-
lution. However, such simple replacement usually results
in a significant degradation in performance due to the ab-
sence of effective channel interaction. Therefore, we con-
sider to equip the depth-wise separable convolution with a
lightweight squeeze-and-excitation efficient channel atten-
tion (Wang et al. 2020c) to complement the channel interac-
tion information. As shown in Fig. 2, our SAKG module is
designed with a spatial context extractor branch and a chan-
nel information aggregation branch. The spatial context ex-
tractor branch is a simple ∆×∆ depth-wise separable con-
volution. The channel information aggregation branch con-
sists of a global average pooling following by a convolution
mapping layer.

To specify the time complexity of previous dynamic con-
volution generation methods and our SAKG module, we as-
sume that the kernel in previous works is generated by a sin-
gle 1× 1 convolution. Given the input feature X ∈ Rh×w×c,
generating a kernel of size Kd ×Kd through a 1 × 1 convo-
lution takes hwcK2

d FLOPs. If adding our SAKG module, it
will take additional ∆2hwc FLOPs for spatial context extrac-
tor and hwc+ c2 for channel information aggregation, which
is in total ((∆2 + 1)hw + c)c FLOPs with time complexity
of O(hwc + c2). Since hw >> c, time complexity of our
proposed module is approximately equals to O(hwc), which
only adds constant FLOPs to the original kernel generation
computation complexity of O(hwcK2

d).

Experiments
To evaluate our proposed method, we implement BiNet
equipped with Bi-volution with three series of experiments.
(a) Basic experiments on ImageNet classification (Deng
et al. 2009), COCO object detection and instance segmenta-
tion (Lin et al. 2014). (b) Robustness experiments with input
corruptions to verify the robustness of different convolution
structure. (c) Ablation study analyzing the effectiveness of
several components in the Bi-volution.

Main Results
Image Classification. ImageNet (Deng et al. 2009)
dataset is considered as one of the most challenging object
recognition datasets in computer vision, consisting of 1.28M
training images and 50K validation images of 1000 differ-
ent classes. We follow the Inception-style data augmenta-
tion (Szegedy et al. 2015). Specifically, input images are
randomly cropped to 224×224 with horizontal flipping. For
fair comparisons, we compare our Bi-volution network with
static convolution networks, dynamic convolution networks
and their variants within similar model scale (i.e., number
of parameters and FLOPs) and training schedule (i.e., data
augmentation and training epochs), and report the top-1 ac-
curacy on the validation set. We embed our Bi-volution in
ResNet (He et al. 2016) backbones to demonstrate its ef-
fectiveness. Concretely, the Bi-volution in our BiNet is de-
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Architecture Params FLOPs Top-1
Acc.

ResNet-38 (2016) 19.6M 3.2G 76.0
Stand-Alone ResNet-38 (2019) 14.1M 3.0G 76.9
SAN15 (2020) 14.1M 3.0G 77.1
RedNet-38 (2021) 12.4M 2.2G 77.3
BiNet-38 (dc) 13.2M 2.2G 78.2
DDF-ResNet-38 (2021) 13.1M 1.9G 78.3
BiNet-38 (dc-ca) 14.8M 2.1G 78.7
ResNet-50 (2016) 25.6M 4.1G 76.8
ResNeXt-50 (32×4d) (2017) 25.0M 4.3G 77.8
SE-ResNet-50 (2018) 28.1M 4.1G 77.6
Res2Net-50 (14w-8s) (2019) 25.7M 4.2G 78.0
LR-Net-50 (2019) 23.3M 4.3G 77.3
AA-ResNet-50 (2019) 25.8M 4.2G 77.7
Stand-Alone ResNet-50 (2019) 18.0M 3.6G 77.6
SAN19 (2020) 17.6M 3.8G 77.4
ECA-ResNet-50 (2020c) 25.6M 4.1G 77.5
Axial ResNet-S (2020b) 12.5M 3.3G 78.1
Fca-ResNet-50 (2020) 28.1M 4.1G 78.5
RedNet-50 (2021) 15.5M 2.7G 78.1
BiNet-50 (dc) 17.6M 2.8G 78.8
DDF-ResNet-50 (2021) 16.8M 2.3G 79.1
BiNet-50 (dc-ca) 19.3M 2.7G 79.6
ResNet-101 (2016) 44.6M 7.9G 78.5
ResNeXt-101 (32×4d) (2017) 44.2M 8.0G 78.8
SENet ResNet-101 (2018) 49.3M 7.9G 77.6
BAM-ResNet-101 (2018) 49.3M 7.8G 78.3
CBAM-ResNet-101 (2018) 49.3M 7.8G 78.5
LR-Net-101 (2019) 42.0M 8.0G 78.5
AA-ResNet-101 (2019) 45.4M 8.1G 78.7
Res2Net-101 (26w-4s) (2019) 45.2M 8.1G 79.2
ECANet ResNet-101 (2020c) 44.6M 7.9G 78.7
FcaNet ResNet-101 (2020) 49.3M 7.9G 79.6
RedNet-101 (2021) 25.6M 4.7G 78.8
BiNet-101 (dc) 29.5M 4.9G 79.7
DDF-ResNet-101 (2021) 28.1M 4.1G 80.2
BiNet-101 (dc-ca) 33.0M 4.7G 80.7

Table 1: The architecture profiles on ImageNet validation
set. We test with 224× 224 crop size. We compare with im-
proved re-implementations if available and extract the other
results from their original publications.

signed as two types, one based on single dynamic convolu-
tion (Li et al. 2021), named BiNet (dc), and the other one
based on the combination of dynamic convolution and chan-
nel attention (Zhou et al. 2021), named BiNet (dc-ca). We
train our models using the same recipe as (Li et al. 2021)
and (Zhou et al. 2021) with SGD optimizer (the momen-
tum of 0.9 and the weight decay of 1 × 10−4). The initial
learning rate is set as 0.1 per batch size 256 and decays to
1×10−5 following the cosine schedule for 130 epochs in to-
tal. The detailed network architecture and training setup can
be found in the supplementary material. We use 8 NVIDIA
Tesla V100 GPUs for training. Our model is implemented
with the PyTorch (Paszke et al. 2019) framework, and the
source code will be released for reproducibility.

We compare BiNet with the state-of-the-art variants of
ResNet-38, ResNet-50 and ResNet-101 (He et al. 2016), in-
cluding static/dynamic-convolution-based models, as shown
in Table 1. Specifically, our BiNet effectively outperforms

other models at similar model size. At the tiny level, BiNet-
38(dc-ca) obtains a boost of 2.7% higher accuracy over
ResNet-38 with 34.4% lower FLOPs. With ResNet-50 back-
bone, BiNet attains a compelling 79.6% top-1 accuracy,
which is 0.5% higher than previous SOTA dynamic con-
volution network combined with channel attention. Within
reasonable cost of model size, our proposed method boosts
the performance of dynamic convolution in an efficient way.

Object Detection and Instance Segmentation. Beyond
the classification task, we further evaluate our proposed op-
erator on object detection and instance segmentation to ex-
ploit its versatility. For object detection, we adopt the rep-
resentative detector Faster R-CNN (Ren et al. 2015) with
FPN (Lin et al. 2017) as our base architecture. For instance
segmentation, we employ Mask R-CNN (He et al. 2017)
framework with FPN neck. We finetune these two models
with ResNet-50 backbone on the COCO 2017 (Lin et al.
2014) dataset containing 115K training images. To evaluate
our method, we test on 5K validation images in COCO 2017
and report the standard COCO metrics (Lin et al. 2014) for
mean Average Precision (mAP). Our models adopt the same
training protocol as (Li et al. 2021). Concretely, all models
are trained for 12 epochs using SGD optimizer with the mo-
mentum of 0.9 and weight decay of 1× 10−5. The learning
rate initiates from 0.02 and decays by 0.1 at 8th and 11st

epoch. All detectors are trained with a total batch size 16 on
8 Tesla V100 GPUs with 2 samples per GPU. More training
details can be found in supplementary materials.

In table 2, we compare our models against ResNet-50 (He
et al. 2016) with static convolution and RedNet-50 (Li et al.
2021) with dynamic one. It is observed that with our BiNet
backbone, both Faster R-CNN and Mask R-CNN yield an
impressive improvement, i.e., +2.3%, +2.2% higher over
ResNet-50 and +0.5%, +0.4% higher over RedNet-50 in
bounding box AP. We replace the convolution in the FPN
neck and task specific heads of Faster R-CNN to build fully
Bi-volution-based detectors. In this case, we observe further
performance gains, i.e., +2.4% over ResNet-50 and +0.9%
over fully involution-based detector.

Robustness Analysis
Setup. In real-world applications of vision system, the hu-
man vision system is robust to images corrupted in various
ways while computer vision system can be easily fooled by
subtle changes in query images (Madry et al. 2017; Azulay
and Weiss 2018). Achieving robustness to common corrup-
tion is an important goal for computer vision and it is also
essential in safety-critical applications. Hendrycks and Di-
etterich (Hendrycks and Dietterich 2019) create a dataset
named ImageNet-C which introduces 75 common visual
corruptions and applies them to validation images of Im-
ageNet. These corruptions fall into four main categories,
noise, blur, weather and digital, and each corruption type
consists of five levels severity. Especially, the noise corrup-
tion includes Gaussian, shot, impulse and speckle noise.

To compare the robustness of various classifier struc-
ture and our proposed dual-branch structure, we choose
static convolution network ResNet-50 (He et al. 2016), static
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Detector Backbone Neck & Head APbbox APbbox
50 APbbox

75 APbbox
S APbbox

M APbbox
L

Faster R-CNN

ResNet-50 convolution 37.7 58.7 40.8 21.7 41.6 48.4
RedNet-50 convolution 39.5(+1.8) 60.9(+2.2) 42.8(+2.0) 23.3(+1.6) 42.9(+1.3) 52.2(+3.8)

BiNet-50 (dc) convolution 40.0(+2.3) 61.4(+2.7) 43.4(+2.6) 23.5(+1.8) 43.5(+1.9) 52.1(+3.7)

RedNet-50 involution 39.2(+1.5) 61.0(+2.3) 42.4(+1.6) 23.1(+1.4) 43.0(+1.4) 50.7(+2.3)

BiNet-50 (dc) Bi-volution 40.1(+2.4) 61.8(+3.1) 43.8(+3.0) 23.4(+1.7) 43.9(+2.3) 52.2(+3.8)

Detector Backbone Neck & Head AP AP50 AP75 APS APM APL

Mask R-CNN

ResNet-50 convolution 38.4 59.2 41.9 21.9 42.3 49.7
35.1 56.3 37.3 18.5 38.6 46.9

RedNet-50 convolution 40.2(+1.8) 61.4(+2.2) 43.7(+1.8) 24.2(+2.3) 43.4(+1.1) 52.5(+2.8)

36.1(+1.0) 58.1(+1.8) 38.2(+0.9) 19.9(+1.4) 39.3(+0.7) 48.9(+2.0)

BiNet-50 (dc) convolution 40.6(+2.2) 61.7(+2.5) 44.3(+2.4) 23.8(+1.9) 43.9(+1.6) 53.1(+3.4)
36.4(+1.3) 58.3(+2.0) 38.8(+1.5) 20.0(+1.5) 39.6(+1.0) 49.3(+2.4)

Table 2: Performance comparison of object detection (based on Faster R-CNN (2015)) and instance segmentation (based on
Mask R-CNN (2017)) on COCO validation set 2017. In the parentheses are the gaps to the ResNet-based model.
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Figure 3: A comparison of the ∆ Top-1 accuracy ResNeXt-50, DDF-ResNet-50 and our BiNet-50 over ResNet-50 on ImageNet-
C corruptions. Each bar represents an average over five corruption severity for a given corruption category.

Figure 4: Left: Visualization of features extracted by the last block of the third stage of ResNet-50 backbone. The first two
columns of the heat maps indicate extracted features of input images without noise and the last two columns correspond to the
case that input images are corrupted by different noise. Input images are randomly drawn from ImageNet validation set. Right:
Discrete Cosine Transform power spectrum of four selected input images on the left with/without noise. The axis of x indicates
the frequency and the axis of y represents the corresponding value.

convolution aggregation network ResNeXt-50 (Xie et al.
2017), previous state-of-the-art dynamic convolution net-
work DDF-ResNet-50 (Zhou et al. 2021) and our dual-
branch network. All models are trained on ImageNet dataset
without any fine-tuning on the corruptions and test on

ImageNet-C dataset. We use ResNet-50 as backbone and the
same training recipe as mentioned in previous sections. We
set ResNet-50 as baseline and the average performance gains
of different networks over ResNet-50 on noise corruptions
and other diverse corruptions are reported in Fig. 3.

965



Results and analysis. The clean dataset top-1 accuracy
of previous state-of-the-art model based on dynamic con-
volution achieves 79.1% and the average accuracy over all
corruption at all levels of severity reduces to 47.5%. Our
proposed static/dynamic dual-branch network attains the ac-
curacy of 79.6% and substantially improves the robustness
by 1.2% to 48.7% in average accuracy on corruption. Es-
pecially, when facing noise corruption, the dual-branch de-
sign significantly improves the performance by 3.0% for 4
types of noise in average accuracy. Although the dynamic
convolution network owns an attractive clean accuracy, it
has an obvious performance degradation for Gaussian and
shot noise compared to static convolution network (i.e.,
ResNeXt-50). In contrast, our hybrid network maintains
high performance over static/dynamic convolution ones.

To have better insight, we visualize features extracted by
dynamic convolution and Bi-volution in the last block of
the third stage. As shown in Fig. 4, both dynamic convo-
lution and Bi-volution are able to highlight diverse seman-
tic concepts from original input image. However, once the
input is corrupted by noise, dynamic convolution fails to
distinguish meaningful information under the perturbation.
We also inspect frequency distribution change of the input
when adding different noise. As seen in Fig. 4, Gaussian and
shot noise substantially influence the high-frequency com-
ponents in input image while preserving the low-frequency
parts. As a result, DDF-ResNet-50 has an significant ac-
curacy reduction compared to ResNeXt-50 since the dy-
namic convolution focuses more on high-frequency fea-
tures than the static one. For impulse noise, it affects both
low/high-frequency parts, resulting in the similar perfor-
mance degradation of ResNeXt-50 and DDF-ResNet-50.
Speckle noise does not change the overall frequency dis-
tribution as other noise, thus the DDF-ResNet-50 preserves
its accuracy advantage over ResNeXt-50. In contrast, our
hybrid Bi-volution maintain its best performance among
other models on all noise corruption. The dual-branch op-
erator is capable to fuse both low/high-frequency features,
which consequentially increases the representation power.
Therefore, our hybrid method brings remarkable robustness
to noise corruption along with the compelling clean ac-
curacy improvement. Our method also shows performance
gain over other kinds of corruption. For instance, compared
to DDF-ResNet-50, our hybrid BiNet-50 boost the perfor-
mance by 1.1% in average accuracy on blur inputs, 0.8%
on weather and 0.5% on digital corruptions. These results
demonstrate the consistent improvement of robustness per-
formance when facing a wide variety of corruption.

Ablation Study
We perform ablation experiments to inspect the effect of dif-
ferent components in the Bi-volution. For both BiNet (dc)
and BiNet (dc-ca), we employ ResNet-50 backbone with
corresponding dynamic convolution design and analyse the
effect of dual-branch structure and SAKG module on Im-
ageNet classification accuracy. Table 3 reports the results
of different modification of Bi-volution. By adding our pro-
posed two components respectively to existing dynamic con-
volution, we observe the improvement of top-1 accuracy by

Architecture Dual-branch SAKG Top-1 Acc.

BiNet-50 (dc)

Base Model 78.1
X 78.2

X 78.5
X X 78.8

BiNet-50 (dc-ca)

Base Model 79.1
X 79.3

X 79.3
X X 79.4

Table 3: Ablation studies on different components in the
design of Bi-volution on ImageNet dataset. We employ
ResNet-50 backbone with default experimental settings. The
kernel size of SAKG is set as 3× 3.

Arch Kernel Type Params FLOPs Top-1 Acc.
1× 1 15.5M 2.7G 78.1
3× 3 17.5M 2.8G 78.5

BiNet-50 3× 3, 2 17.5M 2.8G 78.2
(dc) 5× 5 17.6M 2.8G 78.6

7× 7 17.7M 2.9G 78.6
1× 1 16.8M 2.3G 79.1
3× 3 18.1M 2.3G 79.3

BiNet-50 3× 3, 2 18.1M 2.3G 79.3
(dc-ca) 5× 5 18.2M 2.5G 79.4

7× 7 18.2M 2.6G 79.4

Table 4: Ablation studies on the kernel size of SAKG mod-
ule with ResNet-50 backbone. We report the Top-1 Accu-
racy on ImageNet dataset with default experimental settings.

up to +0.4% over previous dynamic base model. Once us-
ing the full Bi-volution with both dual-branch structure and
SAKG module, the top-1 accuracy is improved by up to
+2.6% over baseline ResNet-50 and +0.7% over previous
network based on dynamic convolution.

To evaluate the influence of the receptive field, we train
BiNet-50 (dc)/(dc-ca) with different kernel types in SAKG
module. Concretely, we test the kernel size of 3 × 3, 3 × 3
with dilation factor 2, 5 × 5 and 7 × 7. To better exam-
ine the effectiveness of the proposed SAKG module, we do
not apply dual-branch structure in this experiment. Table 4
compares the performance of SAKG with different recep-
tive fields. It is observed that the extracted spatial context
substantially helps the kernel generation and improves the
model performance with a very limited computational costs.

Conclusion
In this paper, we propose a lightweight and heterogeneous-
structured Bi-volution to improve the robustness to noise
and efficiency of kernel generation of dynamic convolu-
tion. With the proposed dual-branch structure, our operator
fully leverages the complementary properties of static/dy-
namic convolution to increase feature aggregation and we
found impressive promotion in robustness to input corrup-
tions. In addition, the Spatial Augmented Kernel Generation
module brings compelling gains in accuracy performance
while maintaining low computational costs. Our Bi-volution
demonstrates consistent improvements over noise robust-
ness and accuracy performance with its rich representation
power within reasonable costs.
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