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Abstract

Although considerable progress has been achieved regarding
the transformers in recent years, the large number of param-
eters, quadratic computational complexity, and memory cost
conditioned on long sequences make the transformers hard to
train and implement, especially in edge computing configu-
rations. In this case, a dizzying number of works have sought
to make improvements around computational and memory
efficiency upon the original transformer architecture. Nev-
ertheless, many of them restrict the context in the attention
to seek a trade-off between cost and performance with prior
knowledge of orderly stored data. It is imperative to dig deep
into an efficient feature extractor for point clouds due to their
irregularity and a large number of points. In this paper, we
propose a novel skeleton decomposition-based self-attention
(SD-SA) which has no sequence length limit and exhibits fa-
vorable scalability in long-sequence models. Due to the nu-
merical low-rank nature of self-attention, we approximate it
by the skeleton decomposition method while maintaining its
effectiveness. At this point, we have shown that the proposed
method works for the proposed approach on point cloud clas-
sification, segmentation, and detection tasks on the Model-
Net40, ShapeNet, and KITTI datasets, respectively. Our ap-
proach significantly improves the efficiency of the point cloud
transformer and exceeds other efficient transformers on point
cloud tasks in terms of the speed at comparable performance.

Introduction
Transformer (Vaswani et al. 2017), a special network
architecture based on self-attention mechanism, has at-
tracted immense interest since it was originally proposed
as a sequence-to-sequence model (Sutskever, Vinyals, and
Le 2014) for machine translation. Transformer-based pre-
trained models (PTMs) (Qiu et al. 2020) have shown to be
effective in fields such as language understanding, image
processing, and point-cloud perception (Guo et al. 2021).
The core of the transformer, namely, self-attention (SA),
is used to re-describe embedding features with global rele-
vance for each token. Compared with traditional deep learn-
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ing approaches, SA has a global receptive field, which ex-
ceeds the scope of previous attention networks.

Transformers are particularly appropriate for point-cloud
processing because SA is a set operator which does not
assume any structural information over inputs. However,
deploying transformerarchitecture is expensive, since the
SA requires quadratic computational complexity and GPU
memory with respect to sequence length (Wang et al.
2020b). For example, for the commonly used segmenta-
tion dataset ShapeNet (Yi et al. 2016), a common setting
is sampling 2048 points and setting batch-size to 32. Simply
storage of the self-attention and its corresponding gradient
generated in a single layer take 1GB GPU memory, which
makes the computation of the Transformer infeasible.

Figure 1: Qualitative and quantitative (inference speed,
memory, and mean accuracy) comparisons of our efficient
transformer-based point cloud segmentation method and
previous cutting-edge methods. With the fastest inference
speed, our method predicts more accurate and crisp results
than other methods, especially in those boundary regions.
Our approach is much faster than the baseline and Linformer
on CPU, which demonstrates our approach suits the edge
computing configurations better.

In point cloud processing, in addition to the nature of
a large number of points, another significant characteristic
is the irregularity of point cloud physical storage. Differ-
ent from sentences, points are stored in an irregular way,

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

808



therefore two points can not be judged to be related ac-
cording to their address adjacency in random access mem-
ory (RAM), which is a common assumption in NLP tasks.
Therefore, some recent popular efficient transformers con-
ditioned on prior knowledge of data structure such as Long-
former(Beltagy, Peters, and Cohan 2020) are not applicable
in point cloud tasks. To overcome this issue, YOGO (Xu
et al. 2021) samples a subset of points as centroids and re-
place the point-point attention with point-centroid attention.
However, a specialized architecture is needed in YOGO, and
it is hard to be directly implemented in other models.

The above characteristic motivates us to modify the self-
attention architecture, with the aim of making them simpler
to implement while keeping its performance comparable to
that of standard SA on point cloud tasks. In this work, we
propose to boost the speed of SA by skeleton decomposition,
namely SD boosting, to speed up SA. SA with SD boosting
is called SD-based SA (SD-SA) in the following sections.

Because self-attention is low-rank, we adapt the Skeleton
Decomposition (SD) (Goreinov, Zamarashkin, and Tyrtysh-
nikov 1995) (also known as CUR factorization) to approx-
imate self-attention by using some columns and some rows
of the matrix to be approximated. Importantly, this recon-
struction method avoids explicitly calculating and storing of
n× n attention matrix – this is achieved by simply dividing
the matrix into some sub-matrices. Experiments have shown
that our proposed SD-based transformer, is an effective ap-
proximation of the standard SA.

We utilize the Simple Point Cloud Transformer
(SPCT)(Guo et al. 2021) as our backbone network,
and validate our approach on point cloud classification
and segmentation tasks on the ModelNet40 and ShapeNet
datasets, respectively. Extensive experiments demonstrate
that SD-SA greatly improves the efficiency of SPCT, and
achieves performance on both tasks comparable to that of
the baseline model. We show qualitative and quantitative
comparisons of the proposed approach, baseline, and Lin-
former(Wang et al. 2020b) in Fig.1. Our approach performs
better than Linformer, with the fastest speed and the smallest
memory cost on edge computing configurations without
GPUs. Our contributions are summarized as follows:

• We propose an efficient way to explicitly approximate
self-attention via skeleton decomposition which dramat-
ically reduces the computation complexity and GPU
memory for point cloud processing.

• For point cloud classification, segmentation, and detec-
tion tasks, we achieve the best performance on Model-
Net40, ShapeNet, and KITTI datasets, respectively, com-
pared with other efficient transformers, with similar GPU
memory and speed.

• SD-SA can be easily implemented in other transformers.

Related Works
Efficient Transformers
Structure-aware efficient transformers. Some efficient
transformers introduce prior knowledge of the data structure
in the modification. Longformer (Beltagy, Peters, and Cohan

2020) calculates the inner-product for each token with their
neighbors and gradually enlarges the receptive field via cas-
caded SA layers, as proposed in VGGs networks(Simonyan
and Zisserman 2014). Nystromformer (Xiong et al. 2021)
utilizes 1D mean-pooling to downsample the keys and
queries, and calculates SA as:

O = s(
Q(K̂)T√

d
)s(

Q̂(K̂)T√
d

)†s(
Q̂(K)T√

d
)V, (1)

in which Q,K, V and s denote query, key, value and soft-
max, respectively, and ·̂ denotes 1D mean-pooling. Such ef-
ficient transformers assume that the data to are ordered, for
example, as sentences and images. However, point clouds
are unordered, therefore the aforementioned architectures
are not applicable.
Structure-free efficient transformers. Linformer samples
random matrices E ∈ Rk×N and F ∈ Rk×N in which k �
N , and form the modified SA as follows:

O = s(
Q(EK)T√

d
)FV, (2)

where d and N denote the numbers of channels and tokens,
respectively. Although Linformer highly speeds up the stan-
dard SA considerably, since E and F are randomly sampled
from a Gaussian distribution, the initial entry distribution
of standard SA is modified, which degrades the SA perfor-
mance. this phenomenon is further demonstrated in Sec. 6.
In contrast, Deformer (Cao et al. 2020) separates all tokens
into N groups, and processes these groups separately. For-
mally, the attention of Deformer can be written as follows:

O = {s(XΓiW
i
Q(XΓiW

i
Q)T )W i

VXΓi}Ni , (3)

where Γi is the index of tokens in the ith group. Deformer
gathers the SA-coded groups and further utilizes a super-
vised loss function to minimize the gap between O and the
output of standard SA. As another alternative, Reformer (Ki-
taev, Kaiser, and Levskaya 2020) is based on the assumption
that the largest values dominate the softmax output; thus, it
is not needed to store the inner-product of tokens situated
far from each other. Reformer, therefore, finds the neighbor-
hood of each token and calculates their inner-product and
softmax function.

In this work, we propose the use of SD to directly decom-
pose the SA matrix. The proposed approach is structure-free
and remains simple yet effective in point-based point cloud
classification, segmentation, and downstream tasks.

Point Cloud Processing
A basic point cloud processing is grouping them to voxels,
and introduce 3D convolutions (Zhou and Tuzel 2018; Yan,
Mao, and Li 2018; Du et al. 2020). Point-based point cloud
processing has recently been exploited, mainly use shared
1×1 convolution layers to extract pointwise features, and
group the neighbouring points, as in PointNet and Point-
Net++ (Qi et al. 2017; Hao and Guibas 2017; Zhao et al.
2019; Yan et al. 2020). However, since the points are non-
structural, it is time-consuming to query the neighbors for
local embedding and hierarchically downsample the points.
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Hence, many works have introduced SA-based approaches
to model these points (Guo et al. 2021; Zhao et al. 2021).
Nevertheless, although SA methods have great advantages
in modeling element-wise relationships such as tokens, it is a
challenge to compute and store the SA matrix s(QKT /

√
d)

and its gradient: simply storing the attention map generated
in a single SA layer with 1024 points takes 4Mb of GPU
memory, without considering the batch size and gradient,
thus it is difficult to train and implement the SA mechanism.
To reduce the cost of SA, you only group once (YOGO) (Xu
et al. 2021) was proposed to sample several clusters of points
and replace the point-point attention with point-cluster atten-
tion.

Method
In this section, we review the basic idea of SA and introduce
skeleton approximation for a general low-rank matrix with
error estimation, discussing how to adapt this method to SA,
and summarizing our proposed SD-SA framework.

What Is Self-Attention
Self attention (SA) serves as the backbone of the trans-
former and enables the model to jointly process informa-
tion from different locations in different representation sub-
spaces. Formally, an input sequenceX ∈ Rn×dx comprising
n tokens with dx feature dimensions is embedded as three
matrices Q,K and V by multiplying the learnable weights
W q ∈ Rdx×dq , W k ∈ Rdx×dk , and W v ∈ Rdx×dv re-
spectively, which can be interpreted as queries , keys and
values.The regular dot-product attention mechanism modi-
fies the embedded representation by introducing non-local
information. So the output matrix is defined as follows: Q = XW q,K = XW k, V = XW v

O = s(
QKT

√
d

)V.
(4)

We modify the formulation to the following form:
A = exp

(
QKT /

√
d
)

D = diag (A1L)
O = D−1AV

, (5)

where exp(·) is an element-wise function, d = dq = dk
represents the dimension of the projected space, and D is a
diagonal matrix in which the diagonal elements denote the
sum of each row of A.

SA computations are expensive. SA needs to store n2

similarity scores for different token pairs, and each one re-
quires d multiplications in eq. (5), leading to time and space
computing complexities of O(n2d) and O(n2 +nd) respec-
tively. Due to the quadratic dependency on the sequence
length, in principle, dot-product attention of type (5) is in-
applicable for long sequences (e.g., n > 1000).

SA is low rank. We first provide an intuitive representa-
tion of the SA matrix A. During the training process of stan-
dard SA, as in Sec. 6, we freeze and apply singular value

decomposition (SVD) to the attention matrix across differ-
ent epochs and plot the singular value distribution, in order
to investigate the rank of the matrix.

Fig. 4 illustrates the low rank of the attention matrix, from
which we observe that the singular values decrease expo-
nentially and most of the mass is centred on the largest 100
values. Moreover, (Wang et al. 2020b) demonstrated that the
attention matrix is low rank with a high probability, which is
formally illustrated as follows:

Pr
(∥∥∥ÂwT −AwT

∥∥∥ < ε
∥∥AwT

∥∥) > 1− o(1), (6)

which holds for any w, especially w = ei, which means that
each column of A can be approximated by each column of
Â, where rank(Â) = Θ(log(n)). Hence, we can conclude
that the attention matrix A is low rank. o(1) is the Higher
order infinitesimal of 1.

Skeleton Decomposition for Matrix Approximation
Matrix decomposition, a popular method for approximat-
ing low-rank matrices, involves the factorization of a ma-
trix into a product of some matrices. The major advantage
of matrix decomposition is that the constituent parts can be
stored and manipulated more economically than the matrix
itself. Below, we describe the celebrated Skeleton decom-
position which has been studied extensively, yielding many
valid theories, and has been applied to many aspects of ma-
chine learning (Kuleshov, Chaganty, and Liang 2015).

SD-based estimation is similar to truncated SVD (tSVD)
based estimation in that the rank-r SD of A is used to recon-
struct the original data matrix. For the rest of this paper, we
adopt the following notation: given A ∈ Rm×n , AΓr

de-
notes the restriction of A to rows indexed by Γr , and AΓc

denotes the restriction of A to columns indexed by Γc . The
SD of A is a factorization of the form:

A ∼
[
A11

A21

]
︸ ︷︷ ︸

=:AΓc

A−1
11︸︷︷︸

=:U

[A11A12]︸ ︷︷ ︸
=AΓr

. (7)

The search of Γc and Γr is known as a special case of the
index subset selection problem (ISSP). We are interested in
the accuracy estimates for the best or nearly the best rank k
approximations of the matrix A by its skeleton approxima-
tion AΓcUAΓr with some proper sampling index Γc and Γr

(Goreinov, Zamarashkin, and Tyrtyshnikov 1995).
The first systematic error estimation of such a matrix ap-

proximation was conducted by Goreinov and Tyrtyshnikov
(Goreinov, Zamarashkin, and Tyrtyshnikov 1995)(Goreinov,
Tyrtyshnikov, and Zamarashkin 1997). They considered a
sub-optimal sampling technique consisting of finding Γc and
Γr to ensure thatAΓc

Γr
has the maximal volume, i.e., the max-

imal absolute determinant among all k×k submatrices of A.
Theorem 1 ((Goreinov, Zamarashkin, and Tyrtyshnikov
1995)). Consider A ∈ Rm×n and row and column indices
Γr and Γc respectively, with |Γc| = |Γr| = k. Define
G = AΓc

Γr
∈ Rk×k. If G is non-singular and has maximal

volume among all k × k submatrices of A, then

‖A− CUR‖max ≤ (1 + k)σk+1, (8)
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Figure 2: Schematic diagram of SD-based transformer. The framework contains three parts: (I) standard transformer layer
colored in green; (II) the proposed SD-SA colored in golden; (III) the transformer decoder colored in red. To speed up SA, we
decompose SA into smaller metrices AΓc , AΓr and U by SD boosting, whose details are in Fig.3. We replace SA by SD-SA of
point cloud transformer.
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Figure 3: Details of SD boosting. Points are coded as Q,
K and V . Via landmark selection (LDS), subsets of Q and
K are sampled to Q̂ and K̂, respectively. We then achieve
AΓc and AΓr

, where Γc and Γr represent the indices of the
selected landmarks (points). The pseudo-inverse of intersec-
tion of AΓc and AΓr is denoted as U . The sum of each row
of self-attention is calculated as in Equ. 5, and denoted asD.
The final encoded points is calculated as D−1AΓcUAΓrV ,
in which U = P−1 represents the intersection inverse.

where C = AΓc , R = AΓr , U = G−1 and σk+1 is the
(k + 1)th singular value of A.

Under this ISSP situation, the sampling index defined in
Theorem 1 is nearly optimal. Note that if rank(A) = k,
then its skeleton approximation is exact, A = CUR.

Skeleton Decomposition-Based Self-Attention
Consider the SA case in which A′s entries can be specified
by the function exp in closed form as mentioned above; then,
the SD is fully described by U ∈ Rk×k, as well as the two
index sets Γc and Γr. In this case, a rank-k approximation of
A takes up O(m+ n)k space, such as the SVD approxima-
tion, but the SD requires only O(k2) space.

Based on the low-rank characteristics of SA, we can set
a small k ≤ rank(A) to search row index Γr and column

Figure 4: Singular value distribution of the SA matrix. The
X-axis is the index of largest singular value and the Y-axis
the singular value.

index Γc and then disassemble the dot-product attention ma-
trix with landmark matrices, while ensuring a good approxi-
mation accuracy as in Theorem 1. The complete optimal SD
algorithm consists of two parts: sampling the submatrix of
the maximal volume among all k × k submatrices and then
computing the inverse of the intersection matrix as U .

Fast index selection method. Although the deterministic
index selection strategies of Theorem 1 provide a theoret-
ical guarantee for the approximation accuracy, finding the
submatrix of the maximal volume is NP-hard. Due to the
computational complexity of these strategies, however, they
do not apply to large matrices. This drawback inspired us to
seek a simple but accurate alternative sampling method.

One natural idea of the ISSP from a matrix is to cap-
ture as much information as possible while accurately while
approximating the original matrix (Thurau, Kersting, and
Bauckhage 2012). That is, one computes an importance
score for each column (or row) and samples the columns
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(or rows) according to their distribution of scores. There are
many scoring criteria; the simplest but useful way is to com-
pute the lp-norm as the score.

Concerning the attention matrix A ∈ Rn×n in Eq.(5), we
can easily obtain AΓc and AΓr

as follows:{
AΓc = exp(Q(KT )Γc)

AΓr = exp((Q)ΓrK
T ).

(9)

Alternative inverse problem. After obtaining the land-
mark matrices C andR, we compute the inverse of the inter-
section matrix as U = G−1. Here, we relax the assumption
that G is non-singular to achieve the general form U = G†.
However, the condition number of the intersection matrix is
unusually large, as reflected by the very large singular value
distribution range, which leads to extremely large calcula-
tion errors when calculating the generalized inverse.

There are two direct regularization methods for address-
ing this problem. A natural method is tSVD, which can be
applied to the intersection matrix G to obtain an approxima-
tion by removing all the components with singular values
less than a given tolerance; this is the general idea of regu-
larization by de-singularing the matrix.

In the second approach, we are not concerned with the
singular values but focus instead on the original values of
the intersection matrixG. we observe that a gap between the
entry value distribution of the involved matrix, and therefore
construct a permuted diagonal matrix by removing small
values in the original matrix. This means that we obtain a
permutation-style matrix while preserving most of the in-
formation (i.e., we have retained the larger elements) of the
original matrix. In addition, the transformer matrix easily
computes the inverse as:

G← P, U = G−1 ← {p†j,i}, (10)

where p†j,i denotes the generalized inverse of matrix p at the
coordinates j, i.

From the perspective of the element distribution, both
the tSVD approximation and our proposed permuted diago-
nal matrix approximation have good approximation effects.
However, we find that the computation of tSVD approxima-
tion is much more expensive than a permuted diagonal ma-
trix. In the remainder of this article, we utilize the permuted
diagonal matrix to substitute the intersection matrix.

Summarising of SD-SA. Hence, we briefly describe the
procedure of the proposed SD-SA in Fig. 2 and Fig. 3. Given
an input matrix Xn×d, where n and d represent the num-
bers of tokens and channels, respectively. “Scale” represents
multiplying D−1 onto AV . X is projected to Q, K, and V .
Our approach of efficiently computing the SA is formally
summarized in Alg. 1.

Experiment
Experimental Setup
Dataset. We adopt the two most commonly used benchmark
datasets to evaluate our SD-SA: ShapeNet (Yi et al. 2016)
and ModelNet40 (Wu et al. 2015), respectively. ShapeNet

Figure 5: Cumulative density for absolute reconstruction er-
ror of SD-based SA, in which intersection is replaced with
permutated diagonal matrix(blue) and tSVD approximation
matrix(red).

Algorithm 1: SD-SA

Input : Query matrix Q ∈ Rn×d , Key matrix
K ∈ Rd×n, and user-defined parameters
|Γ| = l;

Output: A skeleton representation for SA

1 independently sample l columns according to the
row score distribution of K to form
AΓc = exp(Q(KT )Γc);

2 independently sample l columns according to the
row score distribution of Q to form
AΓr

= exp((Q)Γr
KT );

3 Replace the intersection matrix G as permuted
diagonal matrix and denote it as P = pi,j . ;

4 Compute U = P−1 = {p†j,i} ;
5 Compute D = diag(AΓcUAΓr1L);
6 Output D−1AΓcUAΓr

contains 16880 3D models, 14006 of which are used for
training, and 2874 are used for testing. ModelNet40 con-
tains 40 object categories and 12311 computer-aided de-
sign (CAD) models,the official division into 9843 train-
ing objects and 2468 testing objects is utilized. We also
validate our approach on 3d object detection on KITTI
dataset (Geiger et al. 2013). We utilize the official training
and validation set in experiments.
Baseline. We utilize the SPCT framework proposed in (Guo
et al. 2021) as the baseline approach. However, we do not
implement the full version of PCT since PCT implements
cascaded neighbor embedding layers, which greatly con-
tributes to the computation time of the model.
Implementation details. In the subsequent experiments, we
follow the settings in (X. 2019) for each task unless other-
wise noted. We simply replace the initial SA with the pro-
posed SD-SA in SPCT. |Γc| and |Γr| are set to 64; for conve-
nience, we denote this by |Γ| in the following sections. We
use the Adam optimizer to train the model for 250 epochs
on 3×NVIDIA GTX 1080 Ti (12 GB). For point cloud seg-
mentation and object classification, the batch size is set to
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Method Publish mIoU(%) GPU Mem time(ms) Perf. gap CPU time(s)
PointNet(Qi et al. 2017) CVPR 2017 83.7 1.5GB 21.4 - -

RSNet(Wang et al. 2020a) TGRE 2020 84.9 0.8GB 73.8 - -
PointNet++(Hao and Guibas 2017) NIPS 2017 85.1 2.0GB 77.7 - -

DGCNN(Wu et al. 2018) NC 2017 85.1 2.4GB 86.7 - -
YOGO(Xu et al. 2021) Arxiv 2021 85.2 0.9GB 25.6 - -

PointCNN(Li et al. 2018) NIPS 2018 86.1 2.5GB 134.2 - -
SPCT(baseline)† CVM 2021 85.6 4.5GB 6.5 - 1.48

SPCT(Guo et al. 2021) CVM 2021 85.8 4.5GB - - -
Reformer(Kitaev et al. 2019)† ICLR 2019 84.2 2.0GB - -1.6 (-1.4) % -
Informer(Zhou et al. 2021)† AAAI 2021 84.4 - - -1.4 (-1.2) % -

Linformer(Wang et al. 2020b)† Arxiv 2020 84.5 0.8GB 4.0 -1.1 (-0.9) % 1.30
Deformer(Cao et al. 2020)† ACL 2020 84.8 0.8GB 4.0 -1.0 (-0.8) % 0.86

Ours (|Γ|=8) - 85.3 0.7GB 3.7 -0.5 (-0.3) % 0.79
Ours (|Γ|=64) - 85.5 0.8GB 5.0 -0.3 (-0.1) % 0.82

Ours (with PE,|Γ|=64) - 85.6 0.8GB 5.1 -0.2 (0.0)% 0.83

Table 1: Performance of different models on ShapeNet. † means the result is under our implementation. Performance gap
represents the gap between the efficient transformer and the baseline. “PE” demonstrates positional embedding. |Γ| is the
hyper-parameter as in Alg. 1. Performance gap is the gap of baseline and efficient transformers.

128 and 64, respectively. A gradient clip is utilized, and the
maximum norm is set to 10.

Point Cloud Segmentation, Classification and
Object Detection
We first validate the proposed method on ShapeNet. The
experimental settings are mentioned in Sec. 6, and the re-
sults are shown in Table 1. The performance gaps inside
the “()” represent the performance gap between the effi-
cient transformers and the baseline method under our im-
plementation, while the ones outside represent the gaps the
ones compared with the baseline method reported officially.
The proposed approach achieves a comparable performance
compared with the baseline and requires much less memory,
which shows that our approximation is effective yet simple.
We also compare the proposed SD-SA with other efficient
transformers by directly substituting them for SA. We set the
corresponding hyper-parameter equal to |Γ| for a fair com-
parison. The number of budgets in Reformer is set to 64.
The result shows that the proposed SD-based transformer
achieves higher performance than other efficient transform-
ers thanks to the approximation precision. Since the inter-
section is sparse and also low-rank as shown Table 4, a small
subset is capable of covering the information of SA.

We further validate the proposed SD-based transformer
on the ModelNet40 dataset. The results are presented in Ta-
ble 2, in which ∗ means that we introduce a grouping layer
as in (Qi et al. 2017). The results reveal that replacing SA
with the proposed SD-SA causes a slight performance drop
compared with the standard SA (91.8% vs 92.0%). More-
over, simply adding a grouping layer as in (Hao and Guibas
2017) improves the performance by 0.4%, and exceeds the
baseline, which demonstrates that the proposed approach is
capable of taking the advantage of the low-rank characteris-
tic, and outperforms the other efficient transformers.

To validate SD-SA for 3d object detection, the experimen-

Method Publish mAcc(%)
PointNet CVPR 2017 89.2

SpiderCNN ECCV 2018 90.5
YOGO Arxiv 2021 91.4

PointNet++ NIPS 2017 91.9
PointCNN NIPS 2018 92.2
DGCNN NC 2017 92.2
PointWeb CVPR 2019 92.3

PointASNL CVPR 2020 93.2
‡SPCT CVM 2021 92.0

Reformer† ICLR 2019 89.7
Linformer† Arxiv 2020 90.0
Deformer† ACL 2020 91.1

Ours - 91.8
Ours∗ - 92.2

Table 2: Performance of different methods on ModelNet40.
† means the result is under our implementation. ‡ represents
the baseline. ∗ represents added grouping layer.

tal settings of LiDAR-RCNN (Li, Wang, and Wang 2021)
are employed, and we simply replace the PointNet detector
with an SD-based transformer. The results are presented in
Table 3, revealing that the proposed SD-SA is also helpful
for 3D object detection.

Ablation Study
Row selection approach. We validate random selection,
norm-based selection (l1-norm and l2-norm), furthest point
sampling (FPS), and use the mean of self-attention gener-
ated by randomly samples point for 3 three times (“Mean”),
show the results in Table 4. FPS obtains the worst perfor-
mance in the approaches, which may be because the sampled
points are irrelevant to each other. “Mean” shows worse per-
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Model Easy Moderate Hard
baseline 86.8 79.0 70.4
SD-SA 86.7 78.7 70.2

Linformer 86.1 78.5 69.9
PointNet 86.3 78.0 69.2

Table 3: Detection performance of different stage-2 detector
for LiDAR-RCNN on KITTI validation set on “Car”.

formance than random sampling which may be because the
attention matrix is over smoothed. Norm-based approaches
have the best performance, as norm-based approaches are
proved to have a limited approximation error.

Method FPS Mean Random l2 l1 (ours)
mIoU(%) 85.2 85.3 85.4 85.6 85.6

rank 5.38 - 4.25 4.18 4.17
cond 7e12 - 1e17 3e17 4e17

Table 4: Performance of proposed SD-based transformer on
ShapeNet with different row selection methods.

Number of SD-SA 4 3 2 1 0
mIoU (%) 85.5 85.5 85.5 85.6 85.6

Table 5: Performance of proposed SD-based transformer on
ShapeNet with different number of replaced standard self-
attention layers.

Number of replaced self-attetion layers. To further figure
out the influence of replacing standard self-attention by SD-
SA, we gradually take the place of self-attention layer from
1 to four. The results are shown in Table 5. Replacement of
self-attention has minor effect on the model, which demon-
strates the precision of our approximation.

|Γ| 8 16 32 64
mIoU(%) 85.3 85.3 85.4 85.6
Acc(%) 91.3 91.4 91.6 91.8

Table 6: Performance of proposed SD-based transformer on
ShapeNet (mIoU) with different number of selected indices.

Approach of calculating pseudo-inverse. As demonstrated
in Table 4, the condition number of the intersection matrix is
large and is therefore difficult to calculate its pseudo-inverse
reasonably. We show the cumulative distribution of absolute
error between SA and SD-SA with different inverse opera-
tions of the valid samples in Fig. 5. The proposed approach
avoids the problem of large condition numbers and therefore
achieves smaller errors.
Number of selected indexes. To validate the influence
of different number of selected indexes, we set |Γ| =
8, 16, 32, 64. The results are shown in Table 6. When |Γ| ≥
8, the number of selected indexes has a minor effect on the

performance of the proposed method. This result indicates
that only a few main components could be effective enough
to reconstruct the main information of SA.

Figure 6: Normalized cumulative density function of self-
attention matrix with different number of selected rows. X-
axis represents the normalized weight and Y-axis represents
the cumulative density. Numbers in legend represent |Γ|.

Statistics of the Proposed SD-SA
To validate the low-rank assumption, we visualize the sin-
gular value of the self-attention matrix in in Fig. 4. We show
the rank and condition number of the ICR in Table 4. The
intersection matrix is low-rank and ill-conditioned, indepen-
dent of the row selection strategy. Therefore, the solution of
ICRI

†
CR = E is non-robust in which E is identity matrix.

We draw the normalized distribution of SA, SD-SA and
Linformer in Fig. 6. We also show the non-normalized ab-
solute error of A and Â = D−1AΓcUAΓr

in Appendix. The
aforementioned result demonstrate that SA could be well ap-
proximated by SD-SA.

Conclusions
We propose a skeleton decomposition-based self-attention
mechanism, named SD-SA. We decompose the self-
attention matrix into multiple smaller matrices and validate
that the multiplication of these matrices provides a good ap-
proximation of the standard self-attention while greatly re-
ducing the computational complexity. We implement our ap-
proach on point cloud classification, segmentation, and ob-
ject detection tasks and dramatically reduce the GPU mem-
ory while maintaining precision. The proposed SD-based
transformer has a much smaller performance gap than the
baseline compared to previous works, which demonstrates
the effectiveness and efficiency of our SD-SA.
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