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Abstract

Creating presentation materials requires complex multimodal
reasoning skills to summarize key concepts and arrange them
in a logical and visually pleasing manner. Can machines learn
to emulate this laborious process? We present a novel task
and approach for document-to-slide generation. Solving this
involves document summarization, image and text retrieval,
and slide structure to arrange key elements in a form suit-
able for presentation. We propose a hierarchical sequence-to-
sequence approach to tackle our task in an end-to-end man-
ner. Our approach exploits the inherent structures within doc-
uments and slides and incorporates paraphrasing and layout
prediction modules to generate slides. To help accelerate re-
search in this domain, we release a dataset of about 6K paired
documents and slide decks used in our experiments. We show
that our approach outperforms strong baselines and produces
slides with rich content and aligned imagery.

Introduction
Creating presentations is often a work of art. It requires skills
to abstract complex concepts and conveys them in a con-
cise and visually pleasing manner. Consider the steps in-
volved in creating presentation slides based on a white pa-
per or manuscript: One needs to 1) establish a storyline that
will connect with the audience, 2) identify essential sections
and components that support the main message, 3) delineate
the structure of that content, e.g., the ordering/length of the
sections, 4) summarize the content in a concise form, e.g.,
punchy bullet points, and 5) gather figures that help commu-
nicate the message accurately and engagingly.

Can machines emulate this laborious process by learn-
ing from the plethora of example manuscripts and slide
decks created by human experts? Building such a system
poses unique challenges in vision-and-language understand-
ing. Both the input (a manuscript) and output (a slide deck)
contain tightly coupled visual and textual elements; thus, it
requires multimodal reasoning. Further, there are significant
differences in the presentation: compared to manuscripts,
slides tend to be more concise (e.g., containing bullet points
rather than full sentences), structured (e.g., each slide has a
fixed screen real estate and delivers one or few messages),
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Figure 1: We introduce DOC2PPT, a novel task of gener-
ating a slide deck from a document. This requires solving
several challenges in the vision-and-language domain, e.g.,
visual-semantic embedding and multimodal summarization.
In addition, slides exhibit unique properties such as concise
text (bullet points) and stylized layout.

and visual-centric (e.g., figures are first-class citizens, the
visual layout plays an important role, etc.).

Existing literature only partially addresses some of the
challenges above. Document summarization (Cheng and La-
pata 2016; Chopra, Auli, and Rush 2016) aims to find a con-
cise text summary of the input, but it does not deal with
images/figures and lacks multimodal understanding. Cross-
modal retrieval (Frome et al. 2013; Kiros, Salakhutdinov,
and Zemel 2014) focuses on finding a multimodal embed-
ding space but does not produce summarized outputs. Mul-
timodal summarization (Zhu et al. 2019) deals with both
(summarizing documents with text and figures), but it lacks
the ability to produce structured output (as in slides). Fur-
thermore, none of the above addresses the challenge of find-
ing an optimal visual layout of each slide. While assessing
visual aesthetics have been investigated (Marchesotti et al.
2011), exiting work focuses on photographic metrics for im-
ages that would not translate to slides. These aspects make
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ours a unique task in the vision-and-language literature.
In this paper, we introduce DOC2PPT, a novel task of cre-

ating presentation slides from scientific documents. As with
no existing benchmark, we collect 5,873 paired scientific
documents and associated presentation slide decks (for a to-
tal of about 70K pages and 100K slides, respectively). We
present a series of automatic data processing steps to extract
useful learning signals and introduce new quantitative met-
rics designed to measure the quality of the generated slides.

To tackle this task, we present a hierarchical recurrent
sequence-to-sequence architecture that “reads” the input
document and “summarizes” it into a structured slide deck.
We exploit the inherent structure within documents and
slides by performing inference at the section-level (for docu-
ments) and at the slide-level (for slides). To make our model
end-to-end trainable, we explicitly encode section/slide em-
beddings and use them to learn a policy that determines
when to proceed to the next section/slide. Further, we learn
the policy in a hierarchical manner so that the network de-
cides which actions to take by considering the structural con-
text, e.g., a decision to create a new slide will depend on both
the current section and the previous generated content.

To consider the concise nature of text in slides (e.g., bullet
points), we incorporate a paraphrasing module that converts
document-style full sentences to slide-style phrases/clauses.
We show that it drastically improves the quality of the gener-
ated textual content for the slides. In addition, we introduce
a text-figure matching objective that encourages related text-
figure pairs to appear on the same slide. Lastly, we explore
both template-based and learning-based layout design and
compare them both quantitatively and qualitatively.

Taking a long-term view, our objective is not to take hu-
mans completely out of the loop but enhance humans’ pro-
ductivity by generating slides as drafts. This would create
new opportunities to human-AI collaboration (Amershi et al.
2019), e.g., one could quickly create a slide deck by revis-
ing the auto-generated draft and skim them through to di-
gest lots of material. To summarize, our main contributions
include: 1) Introducing a novel task, dataset, and evaluation
metrics for automatic slide generation; 2) Proposing a hi-
erarchical sequence-to-sequence approach that summarizes
a document in a structure output format suitable for slide
presentation; 3) Evaluating our approach both quantitatively,
using our proposed metrics, and qualitatively based on hu-
man evaluation. We hope that our DOC2PPT will advance
the state-of-the-art in the vision-and-language domain.

Related Work
Vision-and-Language. Joint modeling of vision-and-
language has been studied from different angles. Im-
age/video captioning (Vinyals et al. 2016; You et al. 2016; Li
et al. 2016; Xu et al. 2016), visual question answering (Jang
et al. 2017; Agrawal et al. 2015; Anderson et al. 2018), and
visually-grounded dialogue generation (Das et al. 2017) are
all tasks that involve learning relationships between image
and text. Despite this large body of work, there remain many
tasks that have not been addressed, e.g., multimodal docu-
ment generation. As argued above, our task brings a new
suite of challenges to vision-and-language understanding.

Document Summarization. This task has been tackled
from two angles: abstractive (Chopra, Auli, and Rush 2016;
See, Liu, and Manning 2017; Cho, Seo, and Hajishirzi 2019;
Liu and Lapata 2019; Dong et al. 2019; Zhang et al. 2020;
Celikyilmaz et al. 2018; Rush, Chopra, and Weston 2015;
Liu et al. 2018; Paulus, Xiong, and Socher 2018) and extrac-
tive (Barrios et al. 2015; Narayan, Cohen, and Lapata 2018;
Liu 2019; Chen et al. 2018; Yin and Pei 2014; Cheng and
Lapata 2016; Yasunaga et al. 2017). Our DOC2PPT task in-
volves both abstractive and extractive summarization since
it requires to extract the key content from a document and
paraphrase it into a concise form. A task closely related
to ours is scientific document summarization (Elkiss et al.
2008; Lloret, Romá-Ferri, and Palomar 2013; Hu and Wan
2013; Jaidka et al. 2016; Parveen, Mesgar, and Strube 2016;
Sefid and Wu 2019), but to date that work has only focused
on producing text summaries, while we focus on generat-
ing multimedia slides. Furthermore, existing datasets in this
domain (such as TalkSumm (Lev et al. 2019) and Scisumm-
Net (Yasunaga et al. 2019)) are rather small with only about
1K documents each. We propose a large dataset of 5,873
pairs of high-quality scientific documents and slide decks.

Visual-Semantic Embedding. Our task involves generat-
ing slides with relevant text and figures. Learning text-image
similarity has been studied in the visual-semantic embed-
ding (VSE) literature (Karpathy and Fei-Fei 2014; Vendrov
et al. 2016; Faghri et al. 2018; Huang, Wu, and Wang 2018;
Gu et al. 2018; Song and Soleymani 2019). However, unlike
the VSE setting where text instances are known in advance,
ours requires simultaneously generating text and retrieving
the related images at the same time.

Multimodal Summarization. MSMO (Zhu et al. 2019,
2020; Li et al. 2020) generates textual summarization with
related images for news articles. Similarly, our task includes
summarizing multimodal documents, but it also involves
putting the summary in a structured format such as slides.

Approach
The goal of DOC2PPT is to generate a slide deck from a mul-
timodal document with text and figures.1 As shown in Fig. 1,
the task involves “reading” a documen and summarizing it,
paraphrasing the summarized sentences into a concise for-
mat suitable for slide presentation, and placing the chosen
text and figures to appropriate locations in the output slides.

Overview. Given the multi-objective nature of the task,
we design our network with modularized components that
are jointly trained in an end-to-end fashion. Fig. 2 shows an
overview of our network that includes these modules:
• A Document Reader (DR) encodes sentences and fig-

ures in a document;
• A Progress Tracker (PT) maintains pointers to the in-

put (i.e., which section is currently being processed) and
the output (i.e., which slide is currently being generated)
and determines when to proceed to the next section/slide
based on the progress so far;

1In this work, figures include images, graphs, charts, and tables.
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Figure 2: An overview of our architecture. It consists of
modules (DR, PT, OP, PAR) that read a document and gen-
erate a slide deck in a hierarchically structured manner.

• An Object Placer (OP) decides which object from the
current section (sentence or figure) to put on the current
slide. It also predicts the location and the size of each
object to be placed on the slide;

• A Paraphraser (PAR) takes the selected sentence and
rewrites it in a concise form before putting it on a slide.

Notation. A document D is organized into sections S =
{Si}i∈Nin

S
and figures F = {F inq }q∈Min

F
. Each section

Si contains sentences T ini = {T ini,k}k∈Nin
i

, and each fig-
ure Fq = {Iq, Cq} contains an image Iq and a caption
Cq . We do not assign figures to any particular section be-
cause multiple sections can reference the same figure. A
slide deck O = {Oj}j∈Nout

O
contains a number of slides,

each containing sentences T outj = {T outj,k }k∈Nout
j

and fig-
ures Foutj = {F outj,k }k∈Mout

j
. We encode the position and

the size of each object on a slide in a bounding box format
using an auxiliary layout variable Lj,k, which includes four
real-valued numbers {lx, ly, lw, lh} encoding the x-y offsets
(top-left corner), the width and height of a bounding box.

Model
Document Reader (DR). We extract sentence and fig-
ure embeddings from an input document and project them
to a shared embedding space so that the OP treats both
textual and visual elements as an object coming from a
joint multimodal distribution. For each section Si, we use
RoBERTa (Liu et al. 2019) to encode each of the sentences
T ini,k, and then use a bidirectional GRU (Chung et al. 2014)
to extract contextualized sentence embeddings Xin

i,k:

Bini,k = RoBERTa(T ini,k),

Xin
i,k = Bi-GRU(Bini,0, ..., B

in
i,Nin

i −1
)
k
,

(1)

Similarly, for each figure F inq = {Iinq , Cinq }, we apply
ResNet-152 (He et al. 2016) to extract the image embedding
of Iinq and RoBERTa for the caption embedding of Cinq . We
then concatenate them as the figure embedding V inq :

V inq = [ResNet(F inq ),RoBERTa(Cinq )]. (2)

Next, we project Xin
i,k and V inq to a shared embedding us-

ing a two-layer multilayer perceptron (MLP) and combine
Etxti and Efig as the section embedding Eseci of Si:

Etxti,k = MLPtxt(Xin
i,k), Efigq = MLPfig(V inq ),

Eseci = {Etxti,k , E
fig
q }k∈Nin

i ,q∈Min
F

(3)

We include all figures F in each section embedding Eseci
because each section can reference any of the figures.

Progress Tracker (PT). We define the PT as a state ma-
chine operating in a hierarchically-structured space with sec-
tions ([SEC]), slides ([SLIDE]), and objects ([OBJ]). This is
to reflect the structure of documents and slides, i.e., each
section of a document can have multiple corresponding
slides, and each slide can contain multiple objects.

The PT maintains pointers to the current section i and the
current slide j, and learns a policy to proceed to the next sec-
tion/slide as it generates slides. For simplicity, we initialize
i = j = 0, i.e., the output slides will follow the natural or-
der of sections in an input document. We construct PT as a
three-layer hierarchical RNN with (PTsec,PTslide,PTobj),
where each RNN encodes the latent space for each level in
a section-slide-object hierarchy. This is a natural choice to
encode our prior knowledge about the hierarchical structure.

First, PTsec takes as input the head-tail contextualized
sentence embeddings from the DR, which encodes the over-
all information of the current section Si. We use GRU for
PTsec and initialize hsec0 to the contextualized sentence em-
beddings of the first section, i.e., hsec0 = [Xin

0,1, X
in
0,Nin

0 −1
]:

hseci = PTsec(hseci−1, [X
in
i,1, X

in
i,Nin

i
]), (4)

Based on the section state hseci , PTslide models the
section-to-slide relationships:

asecj , hslidej = PTslide(asecj−1, h
slide
j−1 , E

sec
i ), (5)

where hslide0 = hseci , Eseci is the section embedding (Eq. 3),
and asecj is a binary action variable that tracks the section
pointer, i.e, it decides if the model should generate a new
slide for the current section Si or proceed to the next section
Si+1. We implement PTslide as a GRU and a two-layer MLP
with a binary decision head that learns a policy φ to predict
asecj = {[NEW SLIDE],[END SEC]}:

asecj = MLPslideφ ([hslidej ,
∑

r
αslidej,r Eseci,r ]),

αslidej = softmax(hslidej W (Eseci )ᵀ).
(6)

αslidej ∈ RNin
i +Min

is an attention map overEseci that com-
putes the bilinear compatibility between hslidej and Eseci .
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Finally, the object PTobj tracks which objects to put on
the current slide Oj based on the slide state hslidej :

aslidek , hobjk = PTobj(aslidek−1 , h
obj
k−1, E

sec
i ),

aslidek = MLPobjψ ([hobjk ,
∑

r
αobjk,rE

sec
i,r ]),

αobjk = softmax(hobjk W (Eseci )ᵀ).

(7)

Similarly, aslidek = {[NEW OBJ], [END SLIDE]} is a bi-
nary action variable that decides whether to put a new object
for the current slide or proceed to the next. We again set
hobj0 = hslidej and use a GRU and a two-layer MLPψ to im-
plement PTobj , together with an attention matrixW between
hobjk and Eseci . Note that each of the three PTs have an inde-
pendent set of weights to ensure that they model distinctive
dynamics in the section-slide-object structure.

Object Placer (OP). When PTobj takes an action aslidek =
[NEW OBJ], the OP selects an object from the current sec-
tion Si and predicts the location on the current slide Oj in
which to place it. For this, we use the attention score αobjk to
choose an object (sentence or figure) that has the maximum
compatibility score with the current object state hobjk , i.e.,
argmaxr α

obj
k . We then employ a two-layer MLP to predict

the layout variable for the chosen object:

{lxk , l
y
k, l

w
k , l

h
k} = MLPlayout([hobjk ,

∑
r
αobjk,rE

sec
i,r ]). (8)

Note that the distinctive style of presentation slides re-
quires special treatment of the objects. If an object is a fig-
ure, we take only the image part and resize it to fit the bound-
ing box region while maintaining the original aspect ratio. If
an object is a sentence, we first paraphrase it into a concise
form and also adjust the font size to fit inside.

Paraphraser (PAR). We paraphrase sentences before
placing them on slides. This step is crucial because with-
out it the text would be too verbose for a slide presentation.2
We implement the PAR as Seq2Seq (Bahdanau, Cho, and
Bengio 2015) with the copy mechanism (Gu et al. 2016):

{w0, ..., wl−1} = PAR(T outj,k , h
obj
k ), (9)

where T outj,k is a sentence chosen by OP. We condition PAR
on the object state hobjk to provide contextual information
and demonstrate this importance in the supplementary.

Training
We design a learning objective that captures both the
structural similarity and the content similarity between the
ground-truth slides and the generated slides.

Structural similarity. The series of actions asecj and
aslidek determines the structure of output slides. To encour-
age our model to generate slide decks with a similar struc-
ture as the ground-truth, we adopt the the cross-entropy loss
(CE) and define our structural similarity loss as:

Lstructure =
∑

j
CE(asecj ) +

∑
k

CE(aslidek ). (10)
2In our dataset, sentences in the documents have an average of

17.3 words, while sentences in slides have 11.6 words; the differ-
ence is statistically significant (p = 0.0031).

Content Similarity. We formulate our content similarity
loss to capture various aspects of slide generation quality,
measuring whether the model 1) selected important sen-
tences and figures from the input document, 2) adequately
phrased sentences in the presentation style (e.g., shorter sen-
tences), 3) placed sentences and figures to the right locations
on a slide, and 4) put sentences and figures on a slide that are
relevant to each other. We define our content similarity loss
to measure each of the four aspects described above:

Lcontent =
∑

k
CE(αobjk ) +

∑
l
CE(wl)+∑

u,v
CE(δ([Etxtu , Efigv ])) +

∑
k

MSE(Lk).
(11)

Selection loss (αobjk ). The first term checks whether it se-
lected the “correct” objects that also appear in the ground
truth. This term is slide-insensitive, i.e., the correct/incorrect
inclusion is not affected by which specific slide it appears in.

Paraphrasing loss (wl). The second term measures the
quality of paraphrased sentences by comparing the output
sentence and the ground-truth sentence word-by-word.

Text-Figure matching loss (δ([Etxtu , Efigv ])). The third
term measures the relevance of text and figures appearing in
the same slide. We follow the literature on visual-semantic
embedding (Kiros, Salakhutdinov, and Zemel 2014; Karpa-
thy and Fei-Fei 2014) and learn an additional multimodal
projection head δ([Etxtu , Efigv ]) with a sigmoid activation
that outputs a relevance score in [0, 1]. For positive training
pairs, we sample text-figure pairs from a) ground-truth slides
and b) paragraph-figure pairs where the figure is mentioned
in that paragraph. We randomly construct negative pairs.

Layout loss (Lk). The last term measures the quality of
slide layout by regressing the predicted bounding box to the
ground-truth. While there exist several solutions to bounding
box regression (He et al. 2015; Ren et al. 2015), we opted
for the simple mean squared error (MSE) computed directly
over the layout variable Lk = {lxk , l

y
k, l

w
k , l

h
k}.

The Final Loss. We define our final learning objective as:

LDOC2PPT = Lstructure + γLcontent (12)

where γ controls the relative importance between structural
and content similarity; we set γ = 1 in our experiments.

To train our model, we follow the standard teacher-forcing
approach (Williams and Zipser 1989) for the sequential pre-
diction and provide the ground-truth results for the past pre-
diction steps, e.g., the next actions asecj and aslidek are based
on the ground-truth actions ãsecj−1 and ãslidek−1 , the next object
αobjk is selected based on the ground-truth object α̃objk−1, etc.

Inference
The inference procedures during training and test times
largely follow the same process, with one exception: At test
time, we utilize the multimodal projection head δ(·) to act
as a post-processing tool. That is, once our model generates
a slide deck, we remove figures that have relevance scores
lower than a threshold θR and add figures with scores higher
than a threshold θA. We tune the two hyper-parameters θR
and θA via cross-validation (we set θR = 0.8, θA = 0.9).
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Document - Slide Documents Slides

Train / Val / Test #Sections #Sentences #Figures #Slides #Sentences #Figures

CV 2,073 / 265 / 262 15,588 (6.0) 721,048 (46.3) 24,998 (9.6) 37,969 (14.6) 124,924 (8.0) 4,290 (1.7)
NLP 741 / 93 / 97 7,743 (8.3) 234,764 (30.3) 8,114 (8.7) 19,333 (20.8) 63,162 (8.2) 3,956 (4.2)
ML 1,872 / 234 / 236 17,735 (7.6) 801,754 (45.2) 15,687 (6.7) 41,544 (17.7) 142,698 (8.0) 6,187 (2.6)

Total 4,686 / 592 / 595 41,066 (6.99) 1,757,566 (42.8) 48,799 (8.3) 98,856 (16.8) 330,784 (8.1) 14,433 (2.5)

Table 1: Descriptive statistics of our dataset. We report both the total count and the average number (in parenthesis).

Dataset
We collect pairs of documents and the corresponding
slide decks from academic proceedings, focusing on three
research communities: computer vision (CVPR, ECCV,
BMVC), natural language processing (ACL, NAACL,
EMNLP), and machine learning (ICML, NeurIPS, ICLR).
Table 1 reports the descriptive statistics of our dataset.

For the training and validation set, we automatically ex-
tract text and figures from documents and slides and perform
matching to create document-to-slide correspondences. To
ensure that our test set is clean and reliable, we use Ama-
zon Mechanical Turk (AMT) and have humans perform im-
age extraction and matching for the entire test set. We pro-
vide an overview of our extraction and matching processes;
including details of data collection and extraction/matching
processes with reliability analyses in the supplementary.

Text and Figure Extraction. For each document D,
we extract sections S and sentences T in using Scien-
ceParse (AllenAI2 2018) and figures F in using PDFFig-
ures (Clark and Divvala 2016). For each slide deckO, we ex-
tract sentences T out using Azure OCR (Microsoft 2021) and
figures Fout using the border following technique (Suzuki
and Abe 1985; Intel 2015).

Slide Stemming. Many slides are presented with anima-
tions, and this makes O contain some successive slides that
have similar content minus one element on the preceding
slide. For simplicity we consider these near-duplicate slides
as redundant and remove them by comparing text and image
contents of successive slides: if Oj+1 covers more than 80%
of the content ofOj (per text/visual embeddings) we discard
it and keep Oj+1 as it is deemed more complete.

Slide-Section Matching. We match slides in a deck to the
sections in the corresponding document so that a slide deck
is represented as a set of non-overlapping slide groups each
with a matching section in the document. To this end, we use
RoBERTa (Liu et al. 2019) to extract embeddings of the text
content in each slide and the paragraphs in each section of
the document. We assume that a slide deck follows the sec-
tion order of the corresponding document, and use dynamic
programming to find slide-to-section matching based on the
cosine similarity between text embeddings.

Sentence Matching. We match sentences from slides to
the corresponding document. We again use RoBERTa to ex-
tract embeddings of each sentence in slides and documents,
and search for the matching sentence based on the cosine
similarity. We limit the search space only within the corre-
sponding sections using the slide-section matching result.

Figure Matching. Lastly, we match figures from slides

to those in the corresponding document. We use Mo-
bileNet (Howard et al. 2017) to extract visual embeddings
of all Iin and Iout and match them based on the highest co-
sine similarity. Note that some figures in slides do not appear
in the corresponding document (and hence no match). For
simplicity, we discard F out if its highest visual embedding
similarity is lower than a threshold θI = 0.8.

Experiments
DOC2PPT is a new task with no established evaluation met-
rics and baselines. We propose automatic metrics specifi-
cally designed for evaluating slide generation methods. We
carefully ablate various components of our approach and
evaluate them on our proposed metrics. We also perform hu-
man evaluation to assess the generation quality.

Evaluation Metrics
Slide-Level ROUGE (ROUGE-SL). To measure the
quality of text in the generated slides, we adapt the widely-
used ROUGE score (Lin 2014). Note that ROUGE does not
account for the text length in the output, which is problem-
atic for presentation slides (e.g., text in slides are usually
shorter). Intuitively, the number of slides in a deck is a good
proxy for the overall text length. If too short, too much text
will be put on the same slide, making it difficult to read; con-
versely, if a deck has too many slides, each slide can convey
only little information while making the whole presentation
lengthy. Therefore, we propose the slide-level ROUGE:

ROUGE-SL = ROUGE-L× e
|Q−Q̃|

Q , (13)
whereQ and Q̃ are the number of slides in the generated and
the ground-truth slide decks, respectively.

Longest Common Figure Subsequence (LC-FS). We
measure the quality of figures in the output slides by con-
sidering both the correctness (whether the figures from the
ground-truth deck are included) and the order (whether all
the figures are ordered logically – i.e, in a similar man-
ner to the ground-truth deck). To this end, we use the
Longest Common Subsequence (LCS) to compare the list
of figures in the output {Iout0 , Iout1 , ...} to the ground-truth
{Ĩout0 , Ĩout1 , ...} and report precision/recall/F1.

Text-Figure Relevance (TFR). A good slide deck should
put text with relevant figures to make the presentation infor-
mative and attractive. We consider text and figures simulta-
neously and measure their relevance by a modified ROUGE:

TFR =
1

M in
F

∑Min
F −1

i=0
ROUGE-L(Pi, P̃i), (14)
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Ablation Settings ROUGE-SL LC-FS TFR mIoU
Hrch-PT PAR TIM Post Proc. Ours w/o SL Prec. Rec. F1 (Layout / Template)

(a) 7 7 7 7 24.35 29.77 25.54 14.85 18.78 5.61 43.34 / 38.15
(b) 3 7 7 7 24.93 29.68 17.48 26.26 20.99 8.58 49.16 / 40.94
(c) 3 3 7 7 27.19 32.27 17.48 26.26 20.99 9.23 49.16 / 40.94
(d) 3 7 3 7 26.52 30.99 23.47 25.31 24.36 10.09 50.82 / 42.96
(e) 3 3 3 7 29.40 34.27 23.47 25.31 24.36 11.82 50.82 / 42.96

(f) 3 3 3 3 29.40 34.27 26.36 38.39 31.26 17.49 - / 46.73

Table 2: Overall result of different ablation settings under automatic evaluation metrics ROUGE-SL, LC-FS, TFR, and mIoU.

Train ↓ / Test → CV NLP ML All

CV 31.2 / 32.1 / 19.7 24.1 / 21.5 / 5.6 24.0 / 25.6 / 11.2 24.7 / 29.2 / 15.8
NLP 28.8 / 30.0 / 13.4 34.7 / 30.7 / 11.8 29.2 / 32.7 / 15.3 28.9 / 30.9 / 13.6
ML 21.1 / 29.2 / 11.6 21.1 / 26.6 / 6.6 32.1 / 36.8 / 22.8 24.9 / 31.4 / 14.4
All 29.2 / 31.2 / 18.6 30.0 / 28.8 / 9.7 29.4 / 32.9 / 20.6 29.4 / 31.3 / 17.5

Table 3: Topic-aware evaluation results (ROUGE-SL / LC-F1 / TFR) when trained and tested on data from different topics.

where Pi and P̃i are sentences from generated and ground-
truth slides that contain Iini , respectively.

Mean Intersection over Union (mIoU). A good design
layout makes it easy to consume information presented in
slides. To evaluate the layout quality, we adapt the mean in-
tersection over union (mIoU) (Everingham et al. 2010) by
incorporating the LCS idea with the ground-truth Õ:

mIoU(O, Õ) = 1

Nout
O

∑Nout
O −1

i=0
IoU(Oi, ÕJi) (15)

where IoU(Oi, Õj) computes the IoU between a set of pre-
dicted bounding boxes from slide i and a set of ground-truth
bounding boxes from slide and Ji. To account for a potential
structural mismatch (with missing/extra slides), we find the
J = {j0, j1, ..., jNout

O −1} that achieves the maximum mIoU
between O and Õ in an increasing order.

Implementation Detail
For the DR, we use a Bi-GRU with 1,024 hidden units
and set the MLPs to output 1,024-dimensional embeddings.
Each layer of the PT is based on a 256-unit GRU. The
PAR is designed as Seq2Seq (Bahdanau, Cho, and Bengio
2015) with 512-unit GRU. All the MLPs are two-layer fully-
connected networks. We train our network end-to-end using
ADAM (Diederik P. Kingma 2014) withlearning rate 3e-4.

Results and Discussions
Is the Hierarchical Modeling Effective? We define a
“flattened” version of our PT (flat-PT) by replacing the hier-
archical RNN with a vanilla RNN that learns a single shared
latent space to model the section-slide-object structure. The
flat-PT contains a single GRU and a two-layer MLP with a
ternary decision head that learns to predict an action at =
{[NEW SECTION], [NEW SLIDE], [NEW OBJ]}. For a
fair comparison, we increase the number of hidden units in
the baseline GRU to 512 (ours is 256) so the model capaci-
ties are roughly the same between the two.

First, we compare the structural similarity between the
generated and the ground-truth slide decks. For this, we
build a list of tokens indicating a section-slide-object struc-
ture (e.g., [SEC],[SLIDE],[OBJ], ...,[SLIDE], ...)
and compare the lists using the LCS. Our hierarchical ap-
proach achieves 64.15% vs. the flat-PT 51.72%, suggesting
that ours was able to learn the structure better than baseline.

Table 2 (a) and (b) compare the two models on the four
metrics. The results show that ours outperforms flat-PT
across all metrics. The flat-PT achieves slightly better per-
formance on ROUGE-SL without the slide-length term (w/o
SL), which is the same as ROUGE-L. This suggests that ours
generates a slide structure more similar to the ground-truth.

A Deeper Look into the Content Similarity Loss. We
ablate different terms in the content similarity loss (Eq. 11)
to understand their individual effectiveness in Table 2.

PAR. The paraphrasing loss improves text quality in
slides; see the ROUGE-SL scores of (b) vs. (c), and (d) vs.
(e). It also improves the TFR metric because any improve-
ment in text quality will benefit text-figure relevance.

TIM. The text-figure matching loss improves the figure
quality; see (b) vs. (d) and (c) vs. (e). It particularly im-
proves LC-FS precision with a moderate drop in recall rate,
indicating the model added more correct figures. TIM also
improves ROUGE-SL because it helps constrain the multi-
modal embedding space, resulting in better selection of text.

Figure Post-Processing. At test time, we leverage the
multimodal projection head δ(·) as a post-processing mod-
ule to add missing figures and/or remove unnecessary ones.
Table 2 (f) shows this post-processing further improves the
two image-related metrics, LC-FS and TFR. For simplicity,
we add figures following equally fitting in template-based
design instead of using OP to predict its location.

Layout Prediction vs. Template. The OP predicts the lay-
out to decide where and how to put the extracted objects. We
compare this with a template-based approach, which selects
the current section title as the slide title and puts sentences
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Figure 3: Qualitative examples of the generated slide deck from our model (Paper source: top (Izmailov et al. 2020) and
bottom (Chen et al. 2020)). We provide more results on our project webpage: https://doc2ppt.github.io
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Figure 4: The average scores for how closely the generated
slides match the text and figures in the ground-truth slides.
And how well the generated text matches the figures in the
ground-truth slides. Error bars reflect standard error. Signif-
icance tests: two-sample t-test (p <0.05.)

and figures in the body line-by-line. For those extracted fig-
ures, they will equally fit (with the same width) in the re-
maining space under the main content. The result shows that
the predicted-based layout, which directly learns from the
layout loss, can bring out higher mIoU with the groundtruth.
And in the aspect of the visualization, the template-based
design can make the generated slide deck more consistent.

Topic-Aware Evaluation. We evaluate performance in a
topic-dependent and independent fashion. To do this, we
train and test our model on data from each of the three
research communities (CV, NLP, and ML). Table 3 shows
that models trained and tested within each topic performs
the best (not surprisingly), and that models trained on data
from all topics achieves the second best performance, show-
ing generalization to different topic areas. Training on NLP
data, despite being the smallest among the three, seems to
generalize well to other topics on the text metric, achieving
the second best on ROUGE-SL (28.9). Training on CV data
provides the second highest performance on the text-figure
metric TFR (15.8), and training on ML achieves the highest
figure extraction performance (LC-FS F1 of 31.4).

Human Evaluation. We conduct a user study to assess the
perceived quality of generates slides. To make the task easy

to complete, we sample 200 sections from 50 documents and
create 600 pairs of ground-truth and generate slides. We pre-
pare four slide decks per document: the ground-truth deck,
and the ones generated by the flat PT (Table 2 (a)), by ours
without PAR and TIM (b), and by our final model (f).

We recruited three AMT Master Workers for each task
(HIT). The workers were shown the slides from the ground-
truth deck (DECK A) and one of the methods (DECK B).
The workers were then asked to answer three questions:
Q1. Looking only at the TEXT on the slides, how similar
is the content on the slides in DECK A to the content on the
slides in DECK B?; Q2. How well do the figure(s)/tables(s)
in DECK A match the text or figures/tables in DECK B?;
Q3. How well do the figure(s)/table(s) in DECK A match
the TEXT in DECK B? The responses were all on a scale
of 1 (not similar at all) to 7 (very similar). Fig. 4 shows
the average scores for each method. The average rating for
our approach was significantly greater for all three questions
compared to the other two methods. There was no significant
difference between the ratings for the other two methods.

Qualitative Results. Fig. 3 illustrates two qualitative ex-
amples of the slide deck generated by our model with the
template-based layout generation approach. With the post-
processing, TIM can add the related figure into the slide and
make it more informative. PAR helps create a better presen-
tation by paraphrasing the sentences into bullet point form.

Conclusion
We present a novel task and approach for generating slides
from documents. This is a challenging multimodal task that
involves understanding and summarizing documents con-
taining text and figures and structuring it into a presentation
form. We release a large set of 5,873 paired documents and
slide decks, and provide evaluation metrics with our results.
We hope our work will help advance the state-of-the-art in
vision-and-language understanding.
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