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Abstract
Point cloud registration is a fundamental step for many tasks.
In this paper, we propose a neural network named DetarNet
to decouple the translation t and rotation R, so as to over-
come the performance degradation due to their mutual inter-
ference in point cloud registration. First, a Siamese Network
based Progressive and Coherent Feature Drift (PCFD) mod-
ule is proposed to align the source and target points in high-
dimensional feature space, and accurately recover translation
from the alignment process. Then we propose a Consensus
Encoding Unit (CEU) to construct more distinguishable fea-
tures for a set of putative correspondences. After that, a Spa-
tial and Channel Attention (SCA) block is adopted to build a
classification network for finding good correspondences. Fi-
nally, the rotation is obtained by Singular Value Decompo-
sition (SVD). In this way, the proposed network decouples
the estimation of translation and rotation, resulting in better
performance for both of them. Experimental results demon-
strate that the proposed DetarNet improves registration per-
formance on both indoor and outdoor scenes. Our code will
be available in https://github.com/ZhiChen902/DetarNet.

Introduction
Point cloud registration is one of the fundamental problem-
s in computer vision, which is widely applied to 3D recon-
struction, robotics, autonomous driving and medical tasks. It
aims to establish correspondences between two point clouds,
and estimate the rigid transformation (translation t and rota-
tion R). The most commonly used way is first establishing
coarse correspondences, and then recovering rigid transfor-
mation. The main challenge is that there always exist wrong
correspondences (outliers). Although some methods attemp-
t to generate more accurate correspondences through hand-
crafted (Rusu, Blodow, and Beetz 2009; Rusu et al. 2008) or
deep-learning technique based descriptors (Zhou et al. 2018;
Yew and Lee 2018; Choy, Park, and Koltun 2019), it is hard
to be totally outlier-free when dealing with complicated s-
cenarios. Thus, it is worth studying how to better perform
point cloud registration in the scenarios when the initial cor-
respondences contain outliers.

Recently, some methods have studied how to use the neu-
ral networks (Pais et al. 2020; Choy, Dong, and Koltun 2020;
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Figure 1: (a): A toy example shows the challenge when
translation and rotation are coupled. When accurately esti-
mating translation in advance and there only exists rotation
as shown in (b), the consensus between inliers is easier to be
mined.

Bai et al. 2021; Lee et al. 2021) to find correct 3D correspon-
dences between two point clouds and estimate the relative
pose (translation t and rotationR) of them. The core of these
methods is to learn the consensus (Bai et al. 2021) of correct
correspondences (inliers). Each correspondence can be ab-
stracted as an arrow between a pair of points, as shown in
Fig. 1. The consensus of inliers is that the length and direc-
tion of inliers are satisfied with some consistency. As shown
in Fig. 1 (a), due to the coupling of translation and rota-
tion, the consistency between inliers is difficult to be mined.
However, as illustrated in Fig. 1 (b), if we can first eliminate
the translation transformation and only the rotation is left,
it is much easier for us to find out the correct correspon-
dences. Inspired by this observation, we expect to decouple
the whole rigid transformation into separate translation and
rotation estimation.

Considering the non-linearity of the rotation space (Peng
et al. 2019; Li et al. 2018), it is more feasible to first recov-
er the translation t because it is linear and easy to handle.
However, decoupling t and solving it accurately in advance
is still challenging in two aspects: 1) It is hard for tradition-
al geometric optimization methods to only recover t without
considering R. These methods usually need to jointly opti-
mize t and R. Although centroid alignment (Arun, Huang,
and Blostein 1987) can yield a rough t, it can only be used
to assist the optimization of the whole rigid transformation
due to the existence of outliers. 2) Although deep learning
networks have made remarkable progress in point cloud reg-
istration, translation transformation is still hard to be sepa-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

401



rately modeled in the neural networks while excluding the
influence of R. Most of the methods try to simultaneously
estimate both t and R in the same way.

Based on the above analysis, we propose a Siamese Net-
work based Progressive and Coherent Feature Drift (PCFD)
module to decouple t from the whole transformation and
solve it accurately. PCFD module converts the registration
into an alignment process of two point clouds in high-
dimensional feature space. First, the features of the two point
clouds are respectively extracted by a Siamese Network with
shared parameters. Then a global feature offset is learned by
establishing global interaction between the two point cloud-
s. The global feature offset forces the source points to move
towards the target points coherently as a group to preserve
the topological structure of point sets. Thus, the transforma-
tion is explicitly encoded by the alignment process, which
is named as Coherent Feature Drift (CFD) operation. The
whole PCFD module is composed of multiple CFD opera-
tions, which progressively align the source and target points
to obtain the optimal estimation of t.

The formulation of PCFD module has three advantages:
1) CFD operations explicitly encode the transformation by
the global features in the network. Thus, the coupling be-
tween R and t can be disentangled by introducing the su-
pervision on the middle layers. We supervise the alignment
process by using only the ground truth translation tgt, so that
the global features tend to encode the translation transforma-
tion. 2) When putative correspondences are given, previous
methods usually (Choy, Dong, and Koltun 2020; Pais et al.
2020; Bai et al. 2021) concatenate the two points of a cor-
respondence and form a virtual point to process together.
Different from them, our PCFD module adopts a Siamese
Network to retain the features of two point clouds. Since the
two point clouds are handled respectively, it is easier to es-
tablish interaction between them, which benefits the regres-
sion for transformation. 3) The network adopts a progressive
alignment approach to regress t and gradually eliminates t
by using a multi-layer CFD operation. The multiple layer-
s of CFD constitute an iterative optimization structure, so t
can be more accurately estimated.

Since we obtain the accurate estimation of t, the consis-
tency between the correct correspondences is more obvious
and easier to be decided, as shown in Fig. 1 (b). Then we fol-
low the previous works (Moo Yi et al. 2018; Pais et al. 2020)
and build a correspondence classification network to prune
outliers. Specifically, a Consensus Encoding Unit (CEU) is
proposed to remove t when encoding the consensus to make
the feature more distinguishable. It combines the spatial and
feature consistency items as the feature for each correspon-
dence. Furthermore, we design a Spatial and Channel At-
tention (SCA) block for the construction of classification
network. It simplifies the current spatial attention module
(Sun et al. 2020; Chen, Yang, and Tao 2021) and combines
it with an instance-unique channel attention. Thus, the net-
work can capture more complex context to better find the
consensus of inliers. Finally, according to the established
correspondences, R is obtained by Singular Value Decom-
position (SVD) (Arun, Huang, and Blostein 1987).

The above modules are integrated into an end-to-end reg-

istration network named DetarNet. In a nutshell, our main
contributions are threefold: 1. We propose a Progressive and
Coherent Feature Drift (PCFD) module to gradually align
the source and target points in feature space. With this pro-
cess, the t vector can be accurately recovered. 2. We pro-
pose a Consensus Encoding Unit (CEU) to construct a fea-
ture for each correspondence and a Spatial and Channel At-
tention (SCA) block to find correct correspondences. They
can establish accurate matches for R estimation. 3. The
above modules are integrated to build decoupling solutions
for R and t. Experiments show that the proposed network
achieves state-of-the-art performance on both indoor and
outdoor datasets.

Related Works
Feature-Based 3D Matching. A common way to estab-
lish correspondences between 3D point clouds is by ex-
tracting local descriptors. Traditional hand-crafted descrip-
tors are usually generated by extracting the local informa-
tion, such as histograms of spatial coordinates (Frome et al.
2004; Johnson and Hebert 1999; Tombari, Salti, and Di Ste-
fano 2010) and geometric attributes (Chen and Bhanu 2007;
Salti, Tombari, and Di Stefano 2014). To improve the robust-
ness on rotation transformation, some other methods (Rusu
et al. 2008; Rusu, Blodow, and Beetz 2009) design rotation
invariant descriptors. Recently, deep learning techniques are
explored to learn 3D descriptors. Many of these methods
(Su et al. 2015; Zhou et al. 2018; Zeng et al. 2017; Deng,
Birdal, and Ilic 2018) take the point cloud patches as input to
learn local features. Some other methods (Choy, Gwak, and
Savarese 2019; Choy, Park, and Koltun 2019; Yew and Lee
2018; Bai et al. 2020; Huang et al. 2021) use point clouds as
input to generate dense feature descriptors on point cloud-
s. Although the methods above can usually establish good
initial correspondences, it is hard to be totally outlier-free in
the application. Our method is to address the challenge of
registration when there are outliers in the correspondences.
Outlier Removal. Given a putative correspondence set that
contains outliers, one can use outlier removal methods to
remove outliers. The most widely used method is the RAN-
dom SAmple Consensus (RANSAC) (Fischler and Bolles
1981), and its variants (Chum and Matas 2005; Fragoso et al.
2013; Brahmachari and Sarkar 2009; Goshen and Shimshoni
2008). Recently, some methods start adopting deep learn-
ing techniques to find good 2D-2D correspondences. The
CN-Net (Moo Yi et al. 2018) proposes a Context Normal-
ization (CN) operation for finding correct correspondences.
Later works (Plötz and Roth 2018; Zhang et al. 2019; Zhao
et al. 2019; Sun et al. 2020; Brachmann and Rother 2019;
Liu et al. 2021) capture more complicated context to en-
hance the performance of network. Besides, recent attempts
try to use deep learning networks for finding 3D correspon-
dences, such as 3DReg-Net (Pais et al. 2020), DGR (Choy,
Dong, and Koltun 2020) and PointDSC (Bai et al. 2021).
Our work aims to better find correct 3D correspondences
and align point clouds through decoupling translation and
rotation transformations.
Pose Estimation. Pose estimation is the final goal of rigid
3D point registration, i.e., estimating a rigid transformation
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Figure 2: Overview of our network. 1. A Progressive and Coherent Feature Drift (PCFD) module progressively aligns the
source and target points in feature space, and recovers t vector from the alignment process. 2. A Consensus Encoding Unit
(CEU) constructs feature for each correspondence by combining the spatial and feature consistency. 3. Several Spatial and
Channel Attention (SCA) blocks are adopted to find correct correspondences, and followed with weighted SVD for estimating
R matrix.

to align point clouds. Besl and McKay (Besl and McKay
1992) propose the iterative closest point (ICP) algorithm
to align point cloud through iteratively establishing point
correspondence and performing least squares optimization.
The variants of ICP (Rusinkiewicz and Levoy 2001; Se-
gal, Haehnel, and Thrun 2009; Bouaziz, Tagliasacchi, and
Pauly 2013) are proposed to address the challenges existing
in ICP, such as efficiency, partiality and sparsity. Recent-
ly, some methods adopt end-to-end frameworks for direct-
ly estimating the rigid transformation between point clouds.
Deep Closest Point (DCP-Net) (Wang and Solomon 2019a)
uses deep global features to form correspondences and esti-
mate relative pose. Later works (Yew and Lee 2020; Wang
and Solomon 2019b) consider the problems of partial vis-
ibility and optimal transport to further improve the perfor-
mance of registration.

Methods
Given two point clouds to be registered: X = {xi ∈
R3 | i = 1, ..., Nx} and Y = {yj ∈ R3 | j = 1, ..., Ny}, we
first form N pairs of correspondences as follows:

C =

[
x1 x2 ... xN
y1 y2 ... yN

]
∈ R2×N×3, (1)

where xi and yi (1 < i < N ) are a pair of matched points.
These putative correspondences are established by extract-
ing local descriptors and matching. Limited by the distinc-
tiveness of descriptors, many of these correspondences are
wrong (outliers). The goal of the network is to recover the
rigid transformation from these noisy correspondences. It
takes the coordinates of these correspondences as input, and
outputs the probability of being correct (inliers) for each cor-
respondence and the rigid transformation as follows:

t, R, L = Φ(C); t ∈ R3, R ∈ R3×3, L ∈ RN×1, (2)

where Φ(·) is the network with trained parameters. t and
R are the estimated translation and rotation respectively. L
is the logit value of each correspondence being inlier. In this
paper, we propose a decoupling solution for the t andR. The
pipeline of our method is shown in Fig. 2. We will explain
the details of each module in the following sections.

Translation Estimation
Progressive and Coherent Feature Drift. The PCFD mod-
ule transforms point cloud registration into a process of co-
herently moving source points to target points. Since deep
neural network can extract more informative feature for
each point, we convert the coherent drift operation to high-
dimensional feature space. As shown in Fig. 2, the PCFD
module is composed ofK Coherent Feature Drift (CFD) op-
erations. Each CFD tries to align the features of source and
target points generated by the previous CFD layer, so it is a
progressive process.

Specifically, the CFD first encodes feature for each point
in a Siamese architecture. We use the CN Block (Moo Y-
i et al. 2018), which is a variant of PointNet (Qi et al.
2017), for encoding global context. Formally, let fl−1(x)
and fl−1(y) be the output of l − 1 layer, then l-th CFD en-
codes the features as follows:

f
′

l (x) = CN(fl−1(x)), f
′

l (y) = CN(fl−1(y)), (3)

where f
′

l (x) and f
′

l (y) are the extracted features for source
and target points. Note that the CN operations for source and
target points are parameter-shared. In this way, the feature
difference between a pair of correspondences is complete-
ly caused by the rigid transformation between them. Then
we perform coherent drift by moving the features of source
points to target points. A core of coherent drift is to force the
source points to move coherently as a group to preserve the
topological structure of the point sets (Myronenko and Song
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Figure 3: The global interaction operation.

2010). To ensure coherent constraints, a global feature offset
(δl, 1 ≤ l ≤ K) shared by all the source points is learned the
l-th CFD. After that, we hold the target points and move the
source points are moved by the δl to the target points.

fl(xi) = f
′

l (xi) + δl, fl(yi) = f
′

l (yi); 1 ≤ i ≤ N, (4)

where xi and yi are the i-th point in the source and target
points. fl(xi) and fl(yi) are the output feature.

An important issue of CFD is how to learn the global fea-
ture offset δl. Each δl needs to make the source points grad-
ually approach the target points in the feature space. In the
CFD operation, a global interaction is adopted to learn it as
in Fig. 3. It first computes the feature difference between the
features of source and target points, as follows:

d
′

l = f
′

l (y)− f
′

l (x). (5)

As mentioned before, xi and yi are a pair of putative cor-
respondences. So d

′

l is the feature offset between putative
correspondences. We then learn a weight (w

′

l) for each cor-
respondence by a convolution and sigmoid function:

w
′

l = sigmoid(Conv(d
′

l)) (6)

Finally, we use an average pooling to integrate the feature
difference of all correspondences to produce the global fea-
ture offset δl. The 1D convolution plays two roles in the
learning of δl: 1) Since there are many outliers in the putative
correspondences, the weights produced by the convolution
and sigmoid function are expected to suppress the outliers.
2) There are learnable parameters in the convolution opera-
tion to increase the flexibility of global interaction.
Supervising Drift Process. In order to reduce the inter-
ference of R for better encoding the translation transfor-
mation, we introduce supervision in the middle of the net-
work. Supervision is applied to the global feature offset δl
(1 < l < N ). Specifically, we first add up all the previous
offsets, then use a 1D convolution to regress a temporary
tl ∈ R3 vector as follows:

tl = Conv(Sum(δ1, ..., δl−1, δl)). (7)

Then a drift loss is used to supervise all layers of tl:

Lalign =
1

K

K∑
l=1

{ 1

N

N∑
i=1

mi · ρ(yi, Rgtxi + tl)}, (8)

where ρ(., .) is the distance metric function. Rgt is the
ground truth rotation. mi is the mask for correspondence i.
mi is set to 1 if the ground-truth of correspondence i is in-
liers. Otherwise, it will be set to be 0. It is a semi-alignment

loss that uses the estimated translation tl in l-th layer and
ground-truth rotation Rgt to align the two point cloud and
penalizes the alignment error. Thus, it expects all alignment
to approximate the accurate t vector.
Translation Regression. As mentioned before, every time a
CFD is performed, the source point cloud is globally aligned
to the target point cloud by the global feature offset, and δl
encodes the alignment process. We can naturally solve the t
vector by integrating the offsets of all layers. We concatenate
all of the δl (1 ≤ l ≤ K) and then adopt a 1D convolution
to regress t vector.

Consensus Encoding Unit
An important issue for finding correct correspondences from
putative correspondences is to mine consensus of inliers
(Pais et al. 2020; Choy, Dong, and Koltun 2020; Bai et al.
2021), so that outliers can be distinguished from inliers. As
introduced in Introduction Section and Fig. 1, it becomes
easier to mine the consensus when removing translation t
and remaining only rotation R between two point clouds. S-
ince our PCFD module can regress t vector in advance, the
Consensus Encoding Unit (CEU) tries to remove translation
for better encoding consensus. The architecture of CEU is
shown in Fig. 2. It combines the consensuses in coordinate
and feature space.

For the consensus in coordinate space, it is intuitive to re-
move the t vector. We subtract the estimated t vector from
the target point cloud, so that the translation t between the
source point cloud and the target point cloud is removed.
Then the coordinate offset between the source point cloud
and the target point cloud is followed with a 1D convolu-
tion to be as a feature. Meanwhile, CEU also tries to mine
feature consistency between the correct correspondences. It
utilizes the feature produced by the previous PCFD module
to construct feature for correspondence to integrate more in-
formation. As introduced before, in PCFD module, source
points are aligned to target points in feature space. By intro-
ducing the supervision of the intermediate layer, the t trans-
formation between the source points and the target points
is removed in feature space. Thus, we use the feature dif-
ference of these layers to construct the feature for the corre-
spondence, which can encode consensus without translation.
In order to make full use of the context of shallow and deep
networks, all the layers of PCFD module are used to form a
multi-layer correlation feature. Then a max-pooling, which
performs the best with other choices based on our experi-
ments, is adopted to integrate multi-layer context. The con-
sensus feature in coordinate and feature space is combined
by a concatenation operation.

Rotation Estimation
After constructing features for correspondences, the classifi-
cation network and weighted SVD operation are adopted to
finding correct correspondences and recover rotation.
Classification Network. As shown in Fig. 2, the classifica-
tion network is composed of M Spatial and Channel Atten-
tion (SCA) Blocks. Each SCA block integrates a spatial at-
tention, batch normalization (Ioffe and Szegedy 2015), Re-
LU and a channel attention in a ResNet architecture. The
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spatial attention is already proposed for finding 2D-2D cor-
respondences in previous works (Sun et al. 2020; Chen,
Yang, and Tao 2021). They integrate local, global and pri-
or information to learn weight for learning global contex-
t to ignore outliers. In this paper, since the CEU can con-
struct more distinguishable features, we simplified the spa-
tial attention to reduce the parameters of the network as Fig.
4 (a). For the input feature, it first learns a weight vector
(ws ∈ RB×N×1) by means of a 1D convolution and Soft-
max function. Then the weight vector is utilized as guid-
ance to perform a weighted context normalization (Moo Yi
et al. 2018) for encoding global context. The weight vector
is to allow outliers to be ignored when performing context
normalization. Meanwhile, interdependencies between fea-
ture channels are proved to be helpful for feature learning
(Hu, Shen, and Sun 2018). So we also introduce a chan-
nel attention operation as Fig. 4 (b). We use instance-unique
channel attention, which learns an independent weight vec-
tor for each instance instead of a shared one. Thus, it can
capture more complex channel information for each cor-
respondence. In order to reduce network computation and
establish connection between correspondences for learning
the weight map, the group convolution (Cohen and Welling
2016) is used instead of the regular one.
Weighted SVD. We use weighted SVD (Choy, Dong,
and Koltun 2020), which reformulates the traditional SVD
(Arun, Huang, and Blostein 1987) into a weighted version,
to recover R matrix. Specifically, xi and yi (1 ≤ i ≤ N ) are
the points in source and target point clouds respectively. We
first use the estimated t vector to process the target points:

y
′

i = yi − t, 1 ≤ i ≤ N. (9)
Then a weighted matrix H for SVD is computed as follows:

H =
∑

wixiy
′

i

T
, H ∈ R3×3, (10)

where the weight wi is computed by the logit value of clas-
sification as follows:

wi = tanh(ReLU(Li)), 1 ≤ i ≤ N, (11)
Finally, R can be obtained by performing SVD on H matrix
as follows:
R = Udiag(1, 1, det(UV T ))V T , H = U

∑
V T . (12)

 

Figure 5: The qualitative results of four different method-
s. From top row to bottom: 3DRegNet (Pais et al. 2020),
RANSAC (Fischler and Bolles 1981), FGR (Zhou, Park, and
Koltun 2016) and ours. The alignment areas with large er-
rors are marked with red boxes. Our method achieves the
best alignment result among these methods.

Loss Function
We formulate our training objective as a combination of four
types of loss functions, including translation loss (ltrans),
classification loss (lcls), alignment loss (lalign) and drift loss
(ldrift) as follows:

loss = λ1ltrans + λ2lcls + λ3lalign + λ4ldrift (13)

ltrans is the L2 loss between the ground-truth and estimated
t vector. lcls is the cross entropy loss. lalign penalizes the
wrong alignment between correct correspondences as fol-
lows:

lalign =
1

N

N∑
i=1

mi · ρ(yi, Rxi + t), (14)

where ρ(., .) is Euclidean distance. t andR are the estimated
translation and rotation transformation. N is the number of
correspondences. mi is also the mask for correspondence i
to label inliers, as introduced in Eq. 8. ldrift is to supervise
the middle layer as Eq. 8.

Experiments
Experimental Setup
Outdoor Dataset. We use the KITTI (Geiger, Lenz, and Ur-
tasun 2012) odometry dataset, which contains 11 outdoor
driving scenarios of points clouds. We follow the splitting
way of previous works (Bai et al. 2020; Choy, Park, and
Koltun 2019) and use scenario 0 to 5 for training, 6 to 7 for
validation and 8 to 10 for testing. Then for each point cloud,
we construct 30cm voxel grid to downsample the point cloud
(Choy, Park, and Koltun 2019).
Indoor Datasets. We use the SUN3D dataset (Xiao, Owen-
s, and Torralba 2013) to generate the dataset for training
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KITTI SUN3D 7Scenes (Generalization )
MRE MTE mAP recall MRE MTE mAP recall MRE MTE mAP recall Time

ICP 1.208 90.21 0.54 1.41 6.178 15.40 19.6 49.7 5.504 12.44 27.8 50.3 0.28
RANSAC 0.759 29.65 43.1 80.9 3.580 15.16 43.9 80.5 2.107 12.41 32.2 68.5 2.79

GCRANSAC 0.152 70.41 1.89 3.12 1.920 9.672 37.6 75.6 1.946 10.43 30.7 78.1 0.82
FGR 0.298 12.13 31.4 72.0 2.895 10.85 39.2 73.6 2.913 13.52 31.5 66.3 0.32
DGR 0.157 9.773 41.6 82.0 2.239 9.663 41.3 82.8 2.166 13.54 30.0 63.4 0.76

PointLK 5.352 43.84 4.01 7.25 7.732 27.64 17.2 32.0 26.49 32.37 5.12 9.61 0.13
PointDSC 0.152 8.966 46.9 91.5 1.913 7.283 50.1 89.7 1.902 11.31 38.6 78.4 0.09
3DRegNet 0.752 31.62 12.3 28.7 2.889 13.13 31.2 68.6 6.424 15.21 26.7 58.2 0.03

Ours 0.148 8.126 48.1 88.1 1.840 5.317 56.3 93.1 2.011 7.739 42.7 84.9 0.04

Table 1: Quantitative results on the KITTI, SUN3D and 7Scenes Datasets. The mean rotation error (MRE), mean translation
error (MTE), mAP and recall under the threshold of (5◦, 15 cm) are reported.

and testing. Sun3D is composed of 268 sequences of RGB-
D videos. We randomly select 115 sequences for training
and validation, and 20 sequences for testing. For each video
sequence, we first subsample the videos by a factor of 10.
Then for each frame, we recover the point cloud by depth
map, and construct 5cm voxel grid to downsample the point
cloud (Zhou, Park, and Koltun 2018). The 7scenes (Shotton
et al. 2013) dataset contains 46 RGBD sequences under var-
ious camera motion statuses, we follow the official split to
use the 18 sequences of them as test dataset. It is adopted for
generalization experiments.
Data Processing. Following 3DReg-Net (Pais et al. 2020),
we use FPFH descriptors (Rusu, Blodow, and Beetz 2009)
to generate 2560 pairs of correspondences between adjacen-
t frames as input. Then we generate the ground-truth rota-
tion and translation according to the offered camera pose of
each frame and label the correspondences as inlier/outlier (1
refers inliers and 0 refers outliers) by a predefined distance
threshold.
Evaluation Metrics. For a pair of point clouds, we evaluate
the results by computing the errors between the estimated
and ground-truth rigid transformation. The errors of rotation
(RE) are evaluated by the isotropic error (Ma et al. 2012).
The errors of translation (TE) are evaluated by the L2 error
(Choy, Dong, and Koltun 2020). For the whole test dataset,
we first report the mean of rotation (MRE) and translation
(MTE) errors. Then, given an error threshold of R and t,
we can determine whether each estimated pose is accurate
or not. We build a normalized cumulative precision curve of
pose estimation in the whole test set. After that, we use (5◦,
15 cm) as threshold to figure the recall (Choy, Dong, and
Koltun 2020) and the area under the curve as mean average
precision (mAP) (Moo Yi et al. 2018).
Implementation Details. In the PCFD module, we use 10
layers of CFD to progressively align the two point clouds (K
= 10 in Fig. 2). In the classification module, 4 SCA blocks
are utilized to build classification network (M = 4 in Fig. 2).
The number of channels in all layers of the network is set
to 128. During training, λ1, λ2, λ3 and λ4 in loss function
(Eq. 13) are set to 2, 1, 1 and 0.05 respectively. The network
is trained by Adam optimizer (Kingma and Ba 2015) with a
learning rate being 10−3 and batch size being 16. All the ex-
periments are conducted on a machine with an INTEL Xeon
E5-2620 CPU and a single NVIDIA GTX1080Ti. For time-

consuming, to do a fair comparison for all the methods, all
computation timings are obtained using CPU.

Comparison to Other Baselines
We compare our method with other baselines, includ-
ing ICP (Besl and McKay 1992), FGR (Zhou, Park,
and Koltun 2016), RANSAC (Fischler and Bolles 1981),
GCRANSAC (Barath and Matas 2018), DGR (Choy, Dong,
and Koltun 2020), PointLK (Aoki et al. 2019), PointDSC
(Bai et al. 2021) and 3DRegNet (Pais et al. 2020). ICP, FGR,
RANSAC and GCRANSAC are classical methods while D-
GR, PointLK, PointDSC and 3DRegNet are learning based
methods. All the learning based networks are retrained with
the same dataset. For ICP, RANSAC and FGR, we use the
version Open3D implemented, while the released codes are
adopted for other methods. We present the quantitative re-
sults on the KITTI, SUN3D and 7Scenes Datasets. The
results on 7Scenes are obtained by the model trained on
SUN3D dataset as generalization experiments. As shown in
Tab. 1, the recall and mAP of our method are higher than oth-
er methods. It shows the overall performance of our method.
More specifically, the t error of our method is much smaller
than other methods, especially on indoor scenes. The t er-
ror of our method is 7.81cm and 7.47cm smaller than that of
our baseline network (3DRegNet) on SUN3D and 7Scenes
datasets. It implies that the proposed Progressive and Coher-
ent Feature Drift (PCFD) module can boost the performance
of t estimation. For time-consuming, since our network can
output the results without repeated sampling as RANSAC
(Fischler and Bolles 1981) and post-processing, it is faster
than other methods except for 3DRegNet. Finally, in or-
der to visually demonstrate the registration performance, we
present the qualitative alignment results in Fig. 5. We select
multiple point clouds and calculate the relative pose between
each point cloud and its neighbor. Then we transform these
point clouds into the same coordinate frame. The results of
3DRegNet (Pais et al. 2020), RANSAC (Fischler and Bolles
1981), FGR (Zhou, Park, and Koltun 2016) are presented as
comparison. Our method achieves the best alignment results
with fewer errors.

Registration Robustness
So far, we have demonstrated the overall performance of the
proposed network. In order to further analyze the registra-
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Figure 6: The error curves of R (MRE) and t (MTE) under
different inlier ratios of initial correspondences on SUN3D
dataset.

tion robustness anti-noise, we test the performance under
the scenarios with the different inlier ratios of initial corre-
spondence set. Specifically, we divide the test set of SUN3D
dataset into several subsets according to the inlier ratio, and
respectively compute the mean errors of R (MRE) and t
(MTE) estimation at each inlier ratio, as shown in Fig. 6.
As we can see, our method has obtained results with smaller
errors under the scenarios of different inlier ratios for bothR
and t. It demonstrates that our method is robust to outliers.
Besides, when the inlier ratio changes, the error range of our
method is also smaller, which shows that the performance of
our method is relatively stable.

Method Analysis
In this section, we will analyze our method in detail. Expect
the previously introduced four evaluation metrics, we also
report the classification accuracy (Acc in Tab. 2 and 3) for
better understanding the effect of each module.
Regression or SVD - Tab. 2. In our network, t is estimat-
ed by regression while R is solved by SVD. We discuss
these two estimation heads for t and R. The regression and
weighted SVD are adopted as the estimation heads for t and
R, respectively. Through permutation and combination, we
can generate four alternatives. For each alternative, we use
the proposed network as the backbone for feature extraction.
By analyzing these four groups of control experiments, we
can get the following observations: 1) When the estimation
heads of R are consistent, direct regression will get better
results than the SVD method for t estimation. When the esti-
mated head of t is the same, theR result obtained by SVD is
better. This proves that regressing t in advance, which adopt-
ed in our method is a good choice. 2) We further compare the
results of the 2-th group and the 4-th group (ours). We can
find that our method obtains more accurate t. Meanwhile,
although the 2-th and the 4-th group use the same estimation
head forR estimation, the 4-th group still achieves better re-
sults for R estimation. This can be explained as our method
can estimate and remove t in advance before finding the cor-
respondence. Thus, there exists only rotation between corre-
spondence, which benefits the classification. In fact, the 4-th

Tag t R Acc MRE MTE mAP recall
1 Reg Reg 65.7 2.45 6.22 49.7 86.5
2 SVD SVD 69.1 2.29 9.17 43.2 80.0
3 SVD Reg 60.2 2.69 9.01 35.7 62.3
4 Reg SVD 72.9 1.84 5.32 56.3 93.1

Table 2: The registration result of using different estimation
heads.

Baseline PCDF CEU SCA Acc MRE MTE mAP recall
X 63.2 2.66 13.1 33.1 70.2
X X 60.0 2.92 6.02 41.7 78.8
X X X 70.1 2.02 5.99 52.1 90.5
X X X X 72.9 1.84 5.32 56.3 93.1

Table 3: Ablation studies of proposed modules.

group dose achieve a better classification accuracy than that
of the 2-th group. The above results prove the effectiveness
of decoupling the estimation t and R.
Ablation Study - Tab. 3. Finally, we perform ablation stud-
ies on SUN3D dataset to further analyze the effect of the
proposed modules, including Progressive and Coherent Fea-
ture Drift (PCFD), Consensus Encoding Unit (CEU) and S-
patial and Channel Attention (SCA) block. The 3DRegNet
(Pais et al. 2020) is adopted as our baseline model. Since
we have already proved that regression for t and SVD for
R is the most suitable combination of estimation head, we
use 3DRegNet with this alternative instead of the vanilla ver-
sion. We gradually add the proposed modules into the base-
line model. First, we use the PCDF module to replace the
CN Blocks (Moo Yi et al. 2018) of 3DRegNet. The error of
t estimation significantly decreased, which confirms the ef-
fectiveness of PCDF for regressing t. Then we adopt CEU
to construct features for correspondence classification. As
we can see, the classification accuracy is improved by 10%
compared with only using PCFD, leading to a better result
of R. It shows that the proposed CEU can construct better
classification features. Finally, we replace the CN blocks in
3DRegNet with SCA blocks, the performance of correspon-
dences classification and R estimation are further enhanced.

Conclusion
In this work, we develop a point cloud registration network
named DetarNet, which decouples the estimation of rotation
and translation. Specifically, we first propose a Progressive
and Coherent Feature Drift (PCFD) module. It transforms
the point cloud alignment process into a coherent drift oper-
ation in high-dimensional feature space and gradually esti-
mates the translation. Then, we adopt a classification mod-
ule to perform outlier pruning. It uses the proposed Con-
sensus Encoding Unit (CEU) to construct feature for each
correspondence, and adopts a Spatial and Channel Atten-
tion (SCA) for classification. Thus, the network can estab-
lish correct matches by taking advantages of the estimated t.
Finally, R matrix is obtained by performing weighted SVD.
Extensive experiments on real scenes demonstrate the effec-
tiveness of the proposed DetarNet.
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