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Abstract

Vehicle re-identification (ReID) has attracted considerable at-
tention in computer vision. Although several methods have
been proposed to achieve state-of-the-art performance on
this topic, re-identifying vehicle in foggy scenes remains
a great challenge due to the degradation of visibility. To
our knowledge, this problem is still not well-addressed so
far. In this paper, to address this problem, we propose a
novel training framework called Semi-supervised Joint De-
fogging Learning (SJDL) framework. First, the fog removal
branch and the re-identification branch are integrated to per-
form simultaneous training. With the collaborative training
scheme, defogged features generated by the defogging branch
from input images can be shared to learn better representa-
tion for the re-identification branch. However, since the fog-
free image of real-world data is intractable, this architec-
ture can only be trained on the synthetic data, which may
cause the domain gap problem between real-world and syn-
thetic scenarios. To solve this problem, we design a semi-
supervised defogging training scheme that can train two
kinds of data alternatively in each iteration. Due to the
lack of a dataset specialized for vehicle ReID in the foggy
weather, we construct a dataset called FVRID which con-
sists of real-world and synthetic foggy images to train and
evaluate the performance. Experimental results show that the
proposed method is effective and outperforms other existing
vehicle ReID methods in the foggy weather. The code and
dataset are available in https://github.com/Cihsaing/SJDL-
Foggy-Vehicle-Re-Identification--AAAI2022.

Introduction
With the prosperity of the deep convolutional neural network
(DCNN) and comprehensive construction of dataset, vehi-
cle re-identification (ReID) has attained great success in the
past decade (Lou et al. 2019; He et al. 2019; Meng et al.
2020; Chen et al. 2020; He et al. 2021). Vehicle ReID is in-
dispensable for building intelligent transportation and public
security systems. Its goal is to find images of the same ve-
hicle in a large gallery set based on a query image under
multiple cameras and various viewpoints. Though several
methods have shown superior performance on the normal
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(a) Applying existing ReID method.

(b) Two-stage method (Defogging+ReID).

(c) Proposed Method.

Figure 1: Comparison of different strategies for vehicle
ReID in the foggy weather in terms of the mean average pre-
cision (mAP) and CMC@1. We adopt (Meng et al. 2020) as
the existing ReID method and MPR-Net (Zamir et al. 2021)
as the defogging method. One can notice that the proposed
method can achieve superior performance on this task com-
pared to other methods. In this figure, we evaluate the real-
world ReID dataset in the foggy weather.

images, they usually fail to perform vehicle ReID tasks un-
der the foggy scenario, which is one of the most common
weather types that appeared in the real world. This is be-
cause these methods are designed for clear images. Fog is
an atmospheric phenomenon that consists of smoke, dust,
and other floating particles, which may lead to poor visibil-
ity and degrade the features extracted from these images for
the purpose of vehicle ReID.

A straightforward way to resolve this problem is to im-
prove the visibility of input images via existing defogging
strategies (e.g., the MPR-Net (Zamir et al. 2021) or the MS-
BDN (Dong et al. 2020)) and then conduct the ReID after-
ward. However, this two-stage solution is not effective for
the following reasons. First, the conventional image defog-
ging methods are not trained for the purpose of ReID but
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for human perception. Using these defogging methods as
the pre-process cannot always guarantee the performance of
ReID. Second, integrating the defogging and ReID models
may increase the complexity of the entire system because
most defogging methods require a heavy computational bur-
den. Fig. 1 illustrates the limitation of the existing ReID
methods and the aforementioned two-stage methods.

Therefore, to tackle the vehicle ReID problem in the
foggy scenario, in this paper, a novel joint defogging learn-
ing (JDL) paradigm to keep the fog-free feature representa-
tion is proposed. The proposed JDL mechanism is embed-
ded in a two-branch network, which consists of a defog-
ging model, a re-identification model, and a feature shar-
ing module. Specifically, the proposed framework is trained
in an end-to-end fashion to learn the defogging and ReID
jointly. With the simultaneous optimization paradigm, clean
features extracted by the defogging branch from foggy in-
put images for visibility enhancement can be shared to learn
better ReID features in the re-identification branch. There-
fore, the performance of ReID in the foggy weather can be
improved effectively by this design.

Moreover, since the fog-free ground truth in the real-
world scenario is intractable, directly leveraging real-world
foggy data on the aforementioned training framework is
challenging. Therefore, to train the proposed network, a syn-
thetic foggy vehicle ReID dataset is constructed. However,
the performance of the network on real-world ReID is lim-
ited because the network is only trained on synthetic data.
To well address the domain gap between real-world and syn-
thetic foggy data, we proposed a semi-supervised defogging
scheme to train our network in a supervised way and an un-
supervised way alternatively. With this mechanism, the do-
main gap problem can be solved effectively and the pro-
posed method can achieve state-of-the-art performance in
both synthetic and real-world datasets.

The contribution of this paper is summarized as follows:
• A novel training framework that unifies the defogging

network and re-identification network is proposed. The
joint defogging learning framework can preserve defog-
ging features for the ReID to cope with the poor visibility
problem.

• A semi-supervised defogging training mechanism is pro-
posed to optimize the proposed network on both syn-
thetic data and real-world data alternatively to address
the domain gap problem.

• Since there is no existing dataset mainly for ReID in
the foggy weather, we reorganize the existing bench-
marks and construct a dataset called Foggy Vehicle ReID
(FVRID).

Related Works

Vehicle Re-identification. With the development of the
DCNN and the releases of several large-scale benchmarks
(e.g., VehicleID (Liu et al. 2016), VeRi-776 (Liu et al.
2017), VERI-Wild (Lou et al. 2019), Vehicle-1M (Guo et al.
2018)), vehicle re-identification (vehicle ReID) has attracted
more and more attention recently. Numerous methods have
been proposed and achieved outstanding performance. Most

of existing methods rely on DCNN techniques and can be
divided into several classes. The first class leverages the
meta-information to contribute to embedding feature fusion.
Shen et al. (Shen et al. 2017) leveraged the spatial-temporal
regularization and the visual-spatio-temporal path propos-
als to improve the accuracy of the vehicle ReID. Zheng et
al. (Zheng et al. 2019) proposed a unified-attribute guided
network which learns the global feature, the camera view
and the vehicle type and color. The second class is to lever-
age the local information for representation learning. For ex-
ample, He et al. (He et al. 2019) developed a part-regularized
mechanism to preserve discriminative features based on
local information (e.g., light bounding box and window).
Khorramshahi et al. (Khorramshahi et al. 2020) applied
the Variational Auto-Encoder (VAE) to generate the coarse
output and the pixel-wise difference of the original input.
This coarse output contains important details in local regions
which can benefit the ReID process. Meng et al. (Meng et al.
2020) proposed a vehicle part parser to retrieve the com-
mon region information to conduct the common-visible at-
tention, which enhances the vehicle embeddings under dif-
ferent views. The third class applied the Generative Adver-
sarial Network to conduct feature learning. Lou et al. (Lou
et al. 2019) proposed the FDA-Net to generate hard exam-
ples based on the GAN architecture to improve the ability of
ReID. Zhou et al. (Zhou and Shao 2018) proposed to learn
global multi-view feature representation based on the single-
view input features by the viewpoint-aware attention model
and the GAN. The last class is based on the Vision Trans-
former (ViT), a powerful neural network architecture. He et
al. (He et al. 2021) leveraged the ViT to encode non-visual
information as a vector for embedding representation. Then,
vector projection was adopted to encode the correlation be-
tween patches to acquire robust feature representation.

Single Image Fog Removal. The formation of fog can be
modeled by the atmospheric scattering model (Nayar and
Narasimhan 1999; Narasimhan and Nayar 2003):

I (x) = J (x) t (x) +A (1− t (x)) , (1)

where I(x) is the foggy image acquired by the sensor, J(x)
is the fog-free image, A is the global atmospheric light,
and t(x) is the transmission map which can be defined as
t (x) = e−βd(x), where β is the scattering coefficient of
the atmosphere and d(x) is the scene depth from the sen-
sor to the object. Based on this model, several fog removal
methods have been proposed in past decades. These meth-
ods can be categorized into two classes. The first class is
to extract the haze-relevant features such as the dark chan-
nel (He, Sun, and Tang 2010), the color attenuation (Zhu,
Mai, and Shao 2015), and the haze-line (Berman, Avidan
et al. 2016) to perform fog removal based on images pri-
ors. The other class is to leverage the DCNN. For example,
Zhang et al. (Zhang and Patel 2018) proposed a densely con-
nected pyramid dehazing network (DCPDN) based on atmo-
spheric model. Qu et al. (Qu et al. 2019) adopted global vi-
sual perception (Chen 2005; Yang et al. 2021) to recover the
clear image from coarse to fine scales by multi-resolution
generators and discriminators. Zamir et al. (Zamir et al.
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Figure 2: The architecture of the proposed joint defogging learning network for vehicle ReID. The proposed network consists
of two branches: the re-identification branch and the defogging branch. Two branches share the Collective Feature Sharing
Module to learn defogging and ReID simultaneously. Note that, the defogging branch is only involved in the network during
the training stage.

2021) designed a multi-stage architecture to produce con-
textually enriched and spatially accurate outputs.

Methodology
Overview of the Proposed Architecture
As shown in Fig. 2, the proposed architecture mainly con-
sists of two branches: the re-identification branch (ReID
Branch) and the defogging branch. At the training stage,
both ReID and defogging branches share a feature extraction
module called the collective feature sharing module (CFSM)
to ensure that the fog-free features generated by this module
termed FC can be applied to each branch in our joint de-
fogging learning architecture. Then, the extracted features
FC are passed to the fog-free image reconstruction module
(FIRM) and the re-identification module (ReIDM) to pro-
duce the corresponding outputs. At the inference stage, only
the CFSM and the ReIDM are required to perform ReID.
By this architecture, the performance of ReID in the foggy
weather can be improved significantly without additional
computational burden at the inference stage.

Re-identification Branch
In the re-identification branch, we adopt the ResNet-50 (He
et al. 2016) as the backbone. The first two Conv blocks from
ResNet-50 are assigned as the CFSM which is shared with
the defogging branch for feature extraction while the rest
blocks are assigned as the ReIDM. The detail of CFSM is
illustrated in the next sub-section. We pass the features ex-
tracted by the CFSM (termed FC) through rest ResBlocks
and down-scale them by the global average pooling (GAP)
and the batch normalization (BN) layer to generate 2048-
d embedding features. Then, the fully connected layer (FC

layer) is adopted to align the number of identities for the
classification. We adopt triplet loss LTri and ID loss LID to
optimize the ReID network. It can be defined as follows.

LTri = 1
Q

∑Q
i=1

[
maxzp∈P(zi)D(zi, zp)−minzn∈N (zi)D(zi, zn) +M

]
+

(2)
where Q denotes the batch size. P(zi) and N (zi) represent
the positive and negative sample sets where zi represents the
extracted features from ith input sample. M is the margin
of the triplet loss, D(·, ·) is the Euclidean distance of two
features, and [·]+ equals to max(·, 0). Second, the LID is
defined as:

LID = − 1

Q

Q∑
i=1

log
exp(σyii )∑C
j=1 exp(σji )

(3)

where σji represents the output of the FC layer with the class
j based on ith input image. C presents the total number of
the class. yi donates the ground truth class.

Although this architecture can extract the feature for vehi-
cle ReID in fog-free conditions effectively, the performance
may be degraded dramatically in the foggy weather because
the fog may deteriorate the ability of feature extraction.
Thus, we propose a joint defogging learning strategy that
simultaneously deals with fog removal and re-identification
by introducing the defogging branch.

Defogging Branch
The defogging branch aims to improve the quality of com-
mon features FC extracted by the CFSM to boost the perfor-
mance of the re-identification branch in the foggy weather.
To accomplish this goal, two modules are adopted in this
branch, namely, the CFSM and the fog-free image recon-
struction module (FIRM).
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Collective Feature Sharing Module. The CFSM aims to
extract the features of the input image which contains the
crucial information for jointly learning defogging and vehi-
cle ReID. The CFSM is designed based on some convolution
blocks in the ReID network because we want to keep the ar-
chitecture simple and prevent the network from increasing
computational burden. Based on previous works (Chen et al.
2021; Hui et al. 2020), the features extracted from the shal-
lower layer of the network contain more spatial and low-
level information which can benefit the fog removal pro-
cess while those of deeper layers contain more high-level
information. Thus, the proposed CFSM is constituted by the
first two convolution blocks (Conv_2) in the re-identification
branch. The extracted features by the CFSM are delivered to
the fog-free image reconstruction module for defogging si-
multaneously.
Fog-free Image Reconstruction Module. The features ex-
tracted by the CFSM may be deteriorated by fog, which
may lead to limited performance on vehicle ReID. To recon-
struct the FC which are shared to the re-identification branch
during the joint learning stage, the FIRM is proposed and
its architecture is illustrated as follows. First, the extracted
features FC pass through one convolution block and two
ResBlocks to extract more accurate features for defogging.
Then, since the dimension of these features is reduced in the
previous layers, the deconvolution operation is conducted to
upsample the features for matching the resolution of the in-
put. These two operations are repeated two times. Then, the
upsampled features are concatenated with the input image
and delivered to the pyramid enhancement block (Qu et al.
2019) to generate the final fog-free results. The operation of
pyramid enhancement can extract the features based on dif-
ferent receptive fields and multi-scale learning, which can
expand the representational ability of the network. This op-
eration is based on pyramid pooling (Zhao et al. 2017) and
the detail of it is illustrated as follows. Initially, there are two
3×3 front-end convolution layers. The output of the front-
end convolution layer is passed through an average pooling
layer to downsample by factors of 4×, 8×, 16×, 32× to
build a four-scale pyramid. Then, 1×1 convolution is ap-
plied to reduce the dimension on each scale layer. Next, the
features are up-sampled to the original size and concatenated
together. Finally, the 3×3 convolution is used on the con-
catenated features to generate the output.

Semi-supervised Optimization for Joint Defogging
Learning
Based on the proposed joint defogging learning architecture,
although the performance of vehicle ReID can be signifi-
cantly improved in the foggy weather, it may be limited in
real-world scenarios. Specifically, since the ground truth of
the fog-free image in real-world scenarios is intractable, the
defogging branch can only be optimized on the synthetic
data. Thus, the performance of vehicle ReID may have a
domain gap between real-world and synthetic scenarios. To
address this issue, we proposed a semi-supervised optimiza-
tion scheme to train both real-world images and synthetic
images alternatively in each iteration. The training process

Figure 3: The overview of the proposed semi-supervised
joint defogging learning. Based on different sources of in-
put data, two optimized schemes are applied for the defog-
ging branch, namely unsupervised and supervised defogging
optimizations. Different sources of data are fed into the net-
work alternatively at the training stage.

can be divided into two parts: (i) the supervised defogging
learning stage for the synthetic data, and (ii) the unsuper-
vised defogging learning stage for the real-world data. The
detail is shown in Fig. 3.
Supervised Learning Stage. In this stage, the defogging
branch is optimized based on the synthetic data in a super-
vised way. It is jointly optimized with the re-identification
branch. The loss function of the defogging branch LDFs

can
be expressed as follows.

LDFs =
1

Q

Q∑
i=1

‖Ji − JGTi ‖2. (4)

where ‖ · ‖2 presents the L2 norm. Ji and JGTi represent the
ith predicted fog-free image and the corresponding ground
truth in a batch, respectively. The total loss at this stage
LSupervised is:

LSupervised = LTri + LID + λ1LDFs . (5)

Unsupervised Learning Stage. To address the domain gap
between the real-world and the synthetic data, we propose
unsupervised defogging learning to optimize the defogging
branch without the ground truth of foggy images. Four
losses are involved at this stage: (1) the color entropy loss
(LCE); (2) dark channel loss (LDC); (3) total variation loss
(LTV ); (4) self-constraint loss (LSC).

The former three losses aim to resolve the low-contrast,
noise, and residual fog problem based on image priors. They
enforce the defogging branch to learn the images that have
the same statistical properties as clean images. First, the
color entropy loss can enhance the contrast of the recovered
images. It is defined as:

LCE = − 1

Q

Q∑
i=1

255∑
k=0

Hk(Ji)log(Hk(Ji)), (6)

where Hk(·) denotes the normalized histogram counts at
value k. We can assume that the fog-free image generally
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contains clear image content and vivid color. The color vari-
ation may tend to have a higher value for a well-defogged re-
sult. On the other hand, an inappropriate fog removal output
may usually have a lower value of color variation. Therefore,
the color entropy can be considered as a metric to evaluate
the clearness of the defogged result.

Second, the dark channel operation (He, Sun, and Tang
2010) has been proved as an effective metric to represent the
density of fog (Chen, Ding, and Kuo 2019; Tang, Yang, and
Wang 2014). It can be defined:

DC(J) (x) = min
y∈Ω(x)

(
min

c∈{r,g,b}
Jc (y)

)
, (7)

where DC(·) is the dark channel operation, Jc(y) is the in-
tensity in the color channel c, and Ω(x) is a local patch with
a fixed size centered at x. He et al. (He, Sun, and Tang
2010) observed that, for most pixels in natural images, min{
JR(x), JG(x), JB(x)

}
is close to zero. Thus, we apply

the dark channel loss LDC to constrain the defogged image
to have less residual fog. Its definition is:

LDC =
1

Q

Q∑
i=1

‖DC(Ji)‖1. (8)

By reducing the dark channel value in a recovered image, a
desirable fog-free image is obtained.

Third, the total variation loss focuses on suppressing the
noise while preserving the image content and structural in-
formation. It is defined as:

LTV =
1

Q

Q∑
i=1

‖ 5x Ji‖1 + ‖ 5y Ji‖1. (9)

where 5x and 5y denote the gradient operation along the
horizontal and vertical direction. ‖ · ‖1 denotes the L1 norm.

Last, though the LCE , LDC , and LTV can enhance the
image quality effectively, the network may still need fur-
ther optimization. Specifically, undesirable results may be
produced to achieve lower values of three loss functions
because they are not optimized with the ground truths of
fog-free images. It may degrade the performance of the
CFSM and the fog-free image reconstruction module on
real-world images. Thus, to solve this issue, we applied the
self-constraint loss to prevent the network from learning un-
desired features. The self-constraint loss LSC is:

LSC = − 1

Q

Q∑
i=1

〈F(Ji),F(Ii)〉
‖F(Ji)‖2‖F(Ii)‖2

, (10)

where Ii,F(·), 〈, 〉 denote the ith input foggy image, Fourier
transformation, and dot product, respectively. Our idea is
that, in the Fourier domain, the amplitude component usu-
ally contains the style information while the phase com-
ponent often contains the structural and content informa-
tion (Yang and Soatto 2020; Yang et al. 2020). Based on
previous literature (Li et al. 2018b), image defogging can be
treated as a process of style transformation, which implies
that the content information of the defogged result should be
similar to that of the input. Thus, by using the self-constraint

Figure 4: Examples of the images in FVRID_Real and
FVRID_Syn datasets for vehicle ReID.

loss, the structural information can be constrained and the
network can be prevented from generating undesired results.

Finally, the loss function for the defogging branch LDFu
and the total loss LUnsupervised at the unsupervised stage
can be presented as:

LDFu = LCE + λ2LDC + λ3LTV + λ4LSC , (11)

and
LUnsupervised = LDFu + LTri + LID. (12)

Experiments
Dataset and Evaluation Protocols
Real-world Dataset. For the real-world dataset, we inves-
tigate all existing benchmarks and find that only VERI-
Wild and Vehicle-1M datasets contain the cases in the foggy
weather. Thus, in our experiments, the real-world dataset is
constituted based on these two datasets and we called it the
Foggy Vehicle ReID for real-world scenes (FVRID_Real)
dataset. We carefully pick the vehicle images in the foggy
scenarios from the two datasets and organize these images
to the dataset. The details of this dataset are presented in Ta-
ble 1 and the lower part of Fig. 4. We leverage this dataset
for unsupervised defogging learning in our network.
Synthetic Dataset. Due to the limited number of vehicle
ReID data in foggy weather, to train the proposed network,
we construct a synthetic training set called FVRID_Syn for
the training process. We select fog-free images from VERI-
Wild and Vehicle-1M datasets. Then, we synthesize these
images based on the fog synthesis process in (Li et al.
2018a). First, we apply the (Liu et al. 2015) to estimate the
depth map d for each image. Second, based on these depth
maps, we synthesize the fog on these clear images by (1).
We set β ∈ [0.4, 1.6] andA ∈ [0.5, 1]. The examples and de-
tailed constitution of this dataset are shown in the upper part
of Fig. 4 and Table 2, respectively. We leverage this dataset
for the supervised defogging learning in our network.
Evaluation Protocols. The experiments are performed on
our FVRID_Syn and FVRID_Real datasets. We follow the
protocol proposed in (Lou et al. 2019; Guo et al. 2018) for
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Figure 5: Visualization of the ranking list on FVRID_Real dataset. The images in the first column are the query images while
the rest are retrieved top-10 ranking results. The false instances are on the red border while correct retrieved images are on the
green border.

Figure 6: Defogged results based on different optimization
schemes.

Set Train Probe Gallery
VERI-Wild 156/2472 389/389 389/5985
Vehicle-1M 247/2579 611/611 611/6242

FVRID_Real 403/5051 1000/1000 1000/12227

Table 1: The detailed constitution of the FVRID_Real
dataset. (IDs/Images)

evaluation. Specifically, we randomly select one foggy im-
age for each vehicle and put it into the probe set. The re-
mained images form the gallery set. We apply the cumula-
tive matching characteristic (CMC) curve and mean average
precision (mAP) to evaluate the performance.

Implementation Details
Training Stage. For the re-identification branch, the
ResNet-50 is adopted as the backbone, whose weights are
initialized from the model pre-trained on the ImageNet. We
apply two ID classifications and the dimensions of these FC
layers are set to 3000 (synthetic) and 403 (real-world), re-
spectively. The weights of the restoration branch are initial-

Set Train Probe Gallery
VERI-Wild 1167/19532 389/389 389/6125
Vehicle-1M 1833/23026 611/611 611/7093
FVRID_Syn 3000/42558 1000/1000 1000/13218

Table 2: The detailed constitution of the FVRID_Syn
dataset. (IDs/Images)

ized by Kaiming normalization (He et al. 2015). The whole
network is trained in an end-to-end fashion based on the
training sets of FVRID_Syn and FVRID_Real for learn-
ing defogging, vehicle ReID and ID classification simulta-
neously. The input image is resized to 384 × 384 and the
training batch size Q is set to 36. We apply horizontal flip
and random crop to prevent the overfitting problem due to
the limited number of training data. We train models for 120
epochs with a warm-up strategy. The initial learning rate is
1.09 × 10−5, which increases to 10−4 after the 10th epoch.
The Adam optimizer is adopted to optimize the model with
a decay rate of 0.6. The hyper-parameters λ1, λ2, λ3, and λ4

are set as to 1, 10−5, 10−5, and 300. The network is trained
on an Nvidia Tesla V100 GPU for 20 hours and we imple-
ment it on the Pytorch platform.
Inference Stage. At the inference stage, the defogging
branch is not involved. The computational burden caused by
it can be ignored. We calculate the Euclidean distance D
through embedding features to evaluate the performance.

Comparison with the Existing Methods
We compare our method with other existing ReID meth-
ods, including the original Triplet (Hermans, Beyer, and
Leibe 2017), the original VRCF (Gao et al. 2020), the orig-
inal VOC (Zhu et al. 2020), the original VEHICLEX (Yao
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Method mAP CMC@1 CMC@5 CMC@10
S R S R S R S R

Triplet 35.70 36.10 65.10 60.30 82.00 79.20 87.80 85.10
Triplet-defog 51.20 39.00 76.80 62.10 90.60 80.80 94.00 86.30
Triplet-fog 69.10 52.80 87.80 72.50 95.60 89.40 97.80 94.20

VRCF 25.90 36.60 61.70 63.70 76.50 78.80 81.30 83.20
VRCF-defog 61.50 50.80 85.40 78.00 95.10 92.00 97.20 95.40
VRCF-fog 69.00 58.00 88.60 81.10 97.60 93.80 98.40 96.80

VOC 59.70 57.40 86.10 82.80 94.30 94.00 95.60 96.60
VOC-defog 63.40 49.20 87.00 74.10 94.80 89.90 96.50 94.30

VOC-fog 67.10 59.90 88.70 83.50 95.10 94.00 96.50 97.20
VEHICLEX 63.64 61.56 86.50 83.20 95.00 95.20 97.40 97.90

VEHICLEX-defog 73.06 64.82 89.70 83.90 96.70 95.10 98.20 97.60
VEHICLEX-fog 77.86 69.01 91.20 84.80 97.10 96.10 98.70 98.10

DMT 73.90 71.70 93.40 93.20 97.20 97.40 97.90 98.50
DMT-defog 75.10 71.60 93.40 92.40 96.90 97.50 98.30 98.40
DMT-fog 77.30 73.40 94.00 93.40 97.60 97.60 98.60 98.80

PVEN 72.83 75.36 63.73 66.48 84.39 86.53 89.65 91.20
PVEN-defog 81.70 78.13 73.29 69.47 92.50 89.16 96.04 93.43
PVEN-fog 84.55 81.92 76.60 74.09 95.02 92.15 97.84 95.66
TransReID 62.90 64.00 82.40 77.70 92.30 88.80 98.40 94.00

TransReID-defog 66.80 65.30 83.00 76.60 94.10 89.90 98.10 94.60
TransReID-fog 73.90 72.10 84.80 82.60 95.20 90.70 98.70 95.60

Ours 85.36 82.70 94.60 94.60 97.90 98.10 98.90 99.20

Table 3: Quantitative evaluation on the foggy ReID datasets. The texts ’S’ and ’R’ denote FVRID_Syn and FVRID_Real
datasets. (The FVRID_Real dataset was constructed from the foggy images in VERI-Wild and Vehicle-1M datasets) The words
with boldface indicate the best results, and the words with underline indicate the second-best results.

Module mAP CMC@1 CMC@5 CMC@10
S R ∆ S R ∆ S R ∆ S R ∆

Baseline 81.88 76.17 5.71 94.40 93.40 1.0 97.60 97.50 0.5 98.70 98.50 0.2
JDL 83.04 79.47 3.57 94.50 93.80 0.7 98.10 97.90 0.2 98.80 99.00 -0.2

SJDL w/o LSC 84.39 81.50 2.89 94.50 94.20 0.3 98.00 98.00 0.0 98.80 99.00 -0.2
SJDL 85.36 82.70 2.66 94.60 94.60 0.0 97.90 98.10 -0.2 98.90 99.20 -0.3

Table 4: Effectiveness of the proposed joint defogging learning and semi-supervised defogging optimization. The text ’JDL’
denotes the joint defogging learning only with supervised defogging optimization, while the text ’SJDL’ presents the JDL mech-
anism with the semi-supervised defogging optimization, respectively. The ’Baseline’ presents the ResNet-50. The symbol ’∆’
presents the difference between the results of synthetic data and real-world data (The smaller value indicates better performance
for addressing the domain gap problem).

Method mAP CMC@1 CMC@5 CMC@10
S R S R S R S R

Conv_2 85.36 82.70 94.60 94.60 97.90 98.10 98.90 99.20
Conv_3 84.93 81.94 94.60 94.30 97.90 98.00 98.90 99.10
Conv_4 84.76 81.57 94.40 94.10 97.90 98.00 98.70 99.00
Conv_5 82.57 79.39 93.70 94.10 97.80 97.80 98.50 99.00

Table 5: Comparison of performance for using different blocks as collective feature sharing module.

et al. 2020), the original DMT (He et al. 2020), the origi-
nal PVEN (Meng et al. 2020), original TransReID (He et al.
2021). We also retrained these models in the foggy scenar-
ios using the same training sets as the proposed one and the
obtained ReID models are denoted by Triplet-fog, VRCF-
fog, VOC-fog, VEHICLEX-fog, DMT-fog, PVEN-fog,
and TransReID-fog, respectively. Moreover, Triplet-defog,

VRCF-defog, VOC-defog, VEHICLEX-defog, DMT-defog,
PVEN-defog, and TransReID-defog denote the two-stage
solutions that are the combinations of the defogging method
with the original ReID models. The adopted defogging
method is MPR-Net (Zamir et al. 2021). The results are
reported in Table 3, which show that the proposed method
can achieve the best performance on vehicle ReID in foggy
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weather on FVRID_Syn and FVRID_Real datasets in terms
of mAP and CMC. The proposed algorithm outperforms ex-
isting ReID models, no matter whether they are training in
the foggy scenarios or combined with a defogging method.

Ablation Studies
Effectiveness of the Joint Defogging Learning. Table 4
presents the effectiveness of the proposed joint defogging
learning strategy. We also present the visualization of the
ranking list on FVRID_Real dataset in Fig. 5. One can see
that, the baseline may retrieve the wrong instance because
the crucial features such as light and window may become
ambiguous, which may degrade the feature extraction of the
network. However, with the proposed JDL, clear features
can be extracted and the performance vehicle ReID in the
foggy weather can be improved. Furthermore, we present
the comparison of using different convolution blocks as the
CFSM in the ReID backbone in Table 5. One can see that
using Conv_2 can achieve the best performance.

Effectiveness of the Semi-supervised Optimization. The
experiments in Table 4 and Fig. 5 show that better per-
formance on real-world scenarios can be achieved if semi-
supervised learning is applied. Specifically, compared to the
baseline and the module only applies supervised learning
(i.e., JDL), the performance is improved. Moreover, with
semi-supervised learning, the domain gap between real-
world and synthetic scenarios is reduced effectively, that is,
the ∆ value in Table 4 is decreased in each metric. Based
on the aforementioned results, the proposed semi-supervised
defogging training technique can mitigate the domain prob-
lem between real-world and synthetic scenarios. Moreover,
in Fig. 6, we present a visual comparison of using differ-
ent optimization schemes. One can see that the proposed
semi-supervised optimization can generate more desirable
defogged results in real-world scenarios, which may further
benefit the performance of vehicle ReID.

In Table 4, we evaluate the effectiveness of using enhance-
ment loss (i.e., LDC , LTV , and LCE) and the self-constraint
loss LSC in unsupervised branch. One can see that, with the
use of three enhancement losses (i.e., SJDL w/o LSC), the
ReID performance can be improved compared to the JDL
module. Moreover, the usage of LSC can preserve the con-
tent and textural information in the recovered results, which
is beneficial to defogging and vehicle ReID simultaneously.

Conclusion
In this paper, to alleviate the vehicle ReID problem in the
foggy weather, we proposed a semi-supervised joint defog-
ging learning (SJDL) system that can conduct defogging and
vehicle ReID simultaneously. Moreover, this framework can
solve the performance gap between real-world and synthetic
scenarios, Furthermore, to train the proposed network, we
construct a dataset called FVRID which contains synthetic
and real-world foggy images. Experimental results indicate
the proposed method can achieve superior performance than
existing methods and each of the proposed modules con-
tributes to the performance of the network.
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