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Abstract

Scene graph in a video conveys a wealth of information about
objects and their relationships in the scene, thus benefiting
many downstream tasks such as video captioning and vi-
sual question answering. Existing methods of scene graph
generation require large-scale training videos annotated with
objects and relationships in each frame to learn a power-
ful model. However, such comprehensive annotation is time-
consuming and labor-intensive. On the other hand, it is much
easier and less cost to annotate images with scene graphs, so
we investigate leveraging annotated images to facilitate train-
ing a scene graph generation model for unannotated videos,
namely image-to-video scene graph generation. This task
presents two challenges: 1) infer unseen dynamic relation-
ships in videos from static relationships in images due to
the absence of motion information in images; 2) adapt ob-
jects and static relationships from images to video frames
due to the domain shift between them. To address the first
challenge, we exploit external commonsense knowledge to
infer the unseen dynamic relationship from the temporal evo-
lution of static relationships. We tackle the second challenge
by hierarchical adversarial learning to reduce the data dis-
tribution discrepancy between images and video frames. Ex-
tensive experiment results on two benchmark video datasets
demonstrate the effectiveness of our method.

Introduction
The task of generating a scene graph in a video aims to de-
tect objects and their relationships on both spatial and tem-
poral dimensions, which provides a fine-grained representa-
tion of the video and underpins numerous downstream visual
tasks, such as action recognition (Girdhar et al. 2017),video
captioning (Xu et al. 2019; Hao, Zhou, and Li 2020; Cao,
Zhao, and Fu 2020), video retrieval (Girdhar et al. 2017)
and visual question answering (Liu and Huet 2016). Exist-
ing methods require a large number of training videos to be
annotated with objects and their relationships in each video
frame. However, it is a time-consuming and labor-intensive
process to acquire such comprehensive annotation. On the
other hand, it is much easier and less cost to annotate scene
graphs in images and also there exist several available anno-
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{Person, Ride front, Person} {Person, Ride left, Person} {Person, Ride behind, Person}

Static relationship of Person and Person: Ride front → Ride left → Ride behind

Dynamic relationship: {Person, Ride past, Person}

Figure 1: An example of inferring the dynamic relationship
from static relationships on the time dimension. The subject
and object are denoted in the brown box and the purple box,
respectively.

tated image datasets such as Visual Genome (Krishna et al.
2017) and Visual Relationship Dataset (Lu et al. 2016).

Therefore, we investigate exploiting existing annotated
images to facilitate training a video scene graph genera-
tion model without video annotations, called image-to-video
scene graph generation, which breaks the heavy dependency
on the large-scale annotated training videos. This new task
introduces two challenges. First, since the temporal motion
information is absent in images, it is difficult for a scene
graph generation model trained using images to capture the
dynamic object relationships in videos. Second, the domain
shift between images and video frames makes the difficulty
to adapt the detection models of objects and static relation-
ships from images to videos.

To address the first challenge, we propose knowledge rea-
soning to infer unseen dynamic relationships in videos. Our
insight is that a dynamic relationship can be inferred from
the temporal evolution of related static relationships. As il-
lustrated in Figure 1, the dynamic relationship {person, ride
past, person} can be inferred from sequential static relation-
ships: {person, ride front, person} → {person, ride left, per-
son} → {person, ride behind, person}. We denote such as-
sociation between static and dynamic relationships as com-
monsense knowledge that can be exploited from many ex-
ternal text resources such as Action genome (Ji et al. 2020)
and Wikipedia (Pataki, Vajna, and Marosi 2012). To be more
specific, starting with learning a shared embedding space be-
tween visual features and language features of relationships,
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called visual-language embedding space, we then learn to
generate the embedding feature of an unseen dynamic re-
lationship from its associated sequential static relationships
in the visual-language embedding space for prediction, with
the guidance of the commonsense knowledge.

To tackle the second challenge, we propose hierarchical
adversarial learning to reduce the domain shift in both image
and instance levels for adapting an object detection model
from images to video frames. Specifically, the image-level
shift (e.g, variance of image style, illumination, etc.) is min-
imized by aligning the second-order statistics of the image
and video frame features via adversarial training between a
domain classifier and a feature extractor. The instance-level
shift (e.g, variance of object appearance, size, etc.) is min-
imized by aligning the appearance of region proposals ex-
tracted from images and video frames in a similar adversar-
ial manner. In this way, we learn the domain-invariant visual
features of images and video frames, thus benefiting the pre-
diction of static relationships in video frames.

The contributions of this work are three-fold: (1) We pro-
pose a new task, image-to-video scene graph generation, that
adapts well the scene graph generation model trained using
annotated images to unannotated videos. This task breaks
the heavy dependency on large-scale videos annotated with
objects and their relationships for training, making it more
practical and general in real-world scenarios. (2) We pro-
pose a knowledge reasoning method that exploits external
commonsense knowledge to infer unseen dynamic relation-
ships from the temporal evolution of static relationships. (3)
We propose a hierarchical adversarial learning method to re-
duce the domain shift between image and video domains for
promoting the adaptation of objects and static relationships.

Related Work

Video Scene Graph Generation

Video scene graph generation is more challenging than im-
age scene graph generation since there exist dynamic rela-
tionships with complex changes over both space and time
dimension. Shang et al. (Shang et al. 2017) firstly build a
dataset for video visual relationship detection and propose
a three-stage scheme including object tracklet proposal gen-
eration, relationship prediction and relationship association.
Later, several methods focus on learning relationship repre-
sentation via constructing spatial-temporal graph by condi-
tional random fields (Tsai et al. 2019) or graph convolutional
networks (Qian et al. 2019; Liu et al. 2020). In (Su et al.
2020), Su et al. propose a multiple hypothesis association
method to handle the inaccurate or missing problem in the
relationship association.

All existing methods require a large-scale number of an-
notated videos for training, but it is costly to label objects
and relationships in every frame. In contrast, our method
does not rely on the annotated videos and uses existing avail-
able annotated images for training the video scene graph
generation model, which is more suitable for realistic ap-
plications.

Image-to-video Adaptation
Image-to-video adaptation has been applied into many vi-
sual tasks such as action recognition (Li et al. 2017; Yu et al.
2018; Liu et al. 2019; Yu et al. 2019; Chen et al. 2021b)
and object detection (Chanda et al. 2017; RoyChowdhury
et al. 2019; Lahiri et al. 2019), which transfers the knowl-
edge from images to videos in order to relieve the reliance on
the large-scale training videos. In video action recognition,
Chen et al. (Chen et al. 2021b) introduce a spatial-temporal
causal inference framework, which can help infer how the
spatial and temporal domain shifts affect the adaptation via
counterfactual causality. In video object detection, Chanda
et al. (Chanda et al. 2017) transfer the knowledge from la-
beled images to weakly labeled videos with a two-stream
architecture trained on images and video frames.

To the best of our knowledge, we are the first to apply
the image-to-video adaptation on video relation detection,
i.e., image-to-video scene graph generation. Compared with
the aforementioned two tasks, our task involves both cross-
domain object detection and cross-domain relationship de-
tection and is more challenging.

Our Method
Overview
In this paper, we propose an image-to-video scene graph
generation method that infers unseen dynamic relationships
in videos via knowledge reasoning and reduces the domain
shift via hierarchical adversarial learning. Our method con-
sists of three modules: a cross-domain object detection mod-
ule, a static relationship prediction module and a dynamic
relationship learning module, as illustrated in Figure 2.

Formulation
In this task, we are given an annotated source image do-
main and an unannotated target video domain. The source
domain is denoted asDs = {(xs

i ,Gsi )|
Ns
i=1}, where xs

i repre-
sents the i-th image, and Gsi denotes the scene graph anno-
tation of xs

i . Each scene graph annotation G is represented
as a 3-tuple set G = {B,O,R}. B = {b1, b2, ..., bn} is
a region proposal set, where bk ∈ R4 denotes the bound-
ing box of the k-th region proposal. O = {o1, o2, ..., on}
is an object set, where ok ∈ C is the class label of bk,
and C is the set of all object classes including background.
R = {r1→2, r1→3, ..., rn→n−1} is a relationship set, where
rk→q is a triplet of a subject (ok, bk) ∈ O × B, an object
(oq, bq) ∈ O × B and a predicate label ypk→q ∈ P , and P
is the set of all predicate classes including non-relationship.
The target domain is formulated as Dt = {xt

i|
Nt
i=1}, where

xi represents the i-th video. Each video consists of multiple
video frames, formulated as xt

i = {f i,j |
Ni
j=1}, where f i,j

denotes the j-th frame of the i-th video.

Cross-domain Object Detection by Hierarchical
Adversarial Learning
There exist two-level domain shifts between images and
video frames: 1) the image-level shift caused by the vari-
ances of image styles, illumination and the motion blur in
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Figure 2: Overview of our method. (a) The cross-domain object detection module learns domain-invariant features between im-
ages and video frames by hierarchical adversarial learning to reduce the image-level and instance-level shifts simultaneously,
where GRL is a gradient reverse layer (Ganin and Lempitsky 2015) to enable adversarial training. (b) The static relationship
prediction module learns to project both the domain-invariant visual feature and the language feature of each relationship into
a visual-language embedding space to generate visual embedding and language embedding, respectively. (c) The dynamic re-
lationship learning module learns to generate the visual embedding of dynamic relationship from sequential static relationships
by exploiting the external Relationship Commonsense Base.

videos; 2) the instance-level shift caused by the variances of
object appearances. To reduce them, we propose hierarchical
adversarial learning that incorporates two adversarial learn-
ing components into the training of detection model to learn
the domain-invariant features of images and video frames.

Image-level Adversarial Learning. We align the second-
order statistics of the image and video frame features to re-
duce the image-level shift since the second-order statistics
contain pairwise correlations between features, well reflect-
ing the detailed information in images. Since the low-level
feature contains more texture information, an adversarial
learning component is constructed on the low-level feature,
which consists of a domain classifier and a feature extractor
of the object detector.

The feature extractor F consists of F1 and F2, and the
domain classifier Dimg is designed to predict the domain la-
bels of the second-order statistics of features extracted from
F1. Given an input image x, we represent the convolutional
features extracted from F1 as F1(x) ∈ RC×W×H , where C
is the number of distinct filters (the number of feature maps),
W and H are the width and height of each feature map, re-
spectively. A factorized bilinear pooling scheme (Gao et al.
2020) is utilized to compute the second-order statistics of
image features and video frame features. Concretely, the
convolutional features F1(x) are reshaped into a matrix
M = [m1, ...,mN ] ∈ RC×N where mj ∈ RC represents
the j-th column. A d-dimensional second-order statistic de-

scriptor g ∈ Rd of M is computed by

g =
∑
j

A(U>mj ◦ V >mj), (1)

where U ∈ RC×L and V ∈ RC×L are learnable parame-
ters, L = r × d, and r is a hyperparameter. ◦ denotes the
Haramard product. A ∈ Rd×L is a fixed binary matrix and
in the l-th row of A with l ∈ [1, d], the elements from col-
umn ((l − 1) × r + 1) to column (l × r) are set to “1” and
others are set to “0”.

For the domain classifier Dimg , its input is the second-
order statistics of image features gs

i or video frame fea-
tures gt

i,j , and the output of Dimg is the domain label of the
second-order statistics of input features, i.e., 0 for source im-
age and 1 for target video frames. We utilize a least-squares
loss (Mao et al. 2017) to train Dimg for distinguishing the
second-order statistics of images from that of video frames,
formulated by

Limg =
∑
i

(
Dimg(g

s
i )
)2

+
∑
i,j

(
1−Dimg

(
gt
i,j

))2
. (2)

The feature extractor F1 tries to confuse Dimg to make the
second-order statistics of the two different domains as indis-
tinguishable as possible. Hence, Dimg and F1 are optimized
via adversarial learning: max

F1

min
Dimg

Limg .

Instance-level Adversarial Learning. We employ a
patch-based adversarial learning method (Chen et al. 2021a)
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to reduce the instance-level domain shift, thus further im-
proving the detection performance. Specifically, an instance
domain classifier Dins is introduced to predict multiple do-
main labels for pixels of a region proposal of images or
video frames. Let W2 and H2 denote the width and height
of a region proposal, respectively. The output of Dins is
a domain prediction map with the size of W2 × H2, and
Dins(p)(w,h) denotes the domain prediction of the pixel
(w, h) of the region proposal p. Let P s

i and P t
i,j denote the

region proposal sets of source image xs
i and target video

frame f t
i,j , respectively. The loss of Dins is formulated by

Lins =
∑
i

∑
p∈P s

i

∑
w,h

(
Dins(p)(w,h)

)2
+
∑
i,j

∑
p∈P t

i,j

∑
w,h

(
1−Dins(p)(w,h)

)2
.

(3)

Similarly, Dins and F are optimized via adversarial learn-
ing: max

F
min
Dins

Lins, to make the region proposals of the two

different domains as distinguishable as possible.
Therefore, the complete objective is given by

Ladpt = Ldet + Limg + Lins, (4)

where Ldet denotes the detection losses detailed in (Ren
et al. 2015), including a classification loss and a bounding
box regression loss.

Predicating Static Relationship by Visual-language
Embedding Space
We learn a visual-language embedding space to bridge the
visual and language modalities for predicting static rela-
tionships. We construct a visual mapping φ and a language
mapping ϕ to project the domain-invariant visual features
and the language features (i.e., word vectors) of relation-
ships into the visual-language embedding space, respec-
tively, where the distance of the matched visual and lan-
guage embeddings is minimized and that of the dismatched
ones is maximized.

We use images and their corresponding scene graph anno-
tations to learn the visual-language embedding space. Let z
and e denote the visual feature and the language feature of
a relationship rk→q = {ok, yk→q, oq}, respectively, where
ok and oq represent the subject class label and the object
class label, respectively, and yk→q represents a predicate la-
bel between subject ok and object oq . The visual feature z
is extracted from images, consisting of 1) domain-invariant
visual features of subject, object, and predicate, and 2) a
spatial feature (Liang et al. 2018) of the relative location
of subject and object. All domain-invariant visual features
are extracted by RoI pooling from the object detector via the
corresponding bounding box, and the bounding box of the
predicate is the union bounding box of the subject bound-
ing box bk and the object bounding box bq . The language
feature e is represented by an word vector of the predicate
label yk→q , extracted from GloVe (Pennington, Socher, and
Manning 2014). We project z and e by the visual mapping
φ and the language mapping ϕ, respectively, formulated as

v = φ(z),w = ϕ(e), (5)

where v and w represent the visual and language embed-
dings of the relationship rk→q , respectively.

The visual-language embedding space is learned by mini-
mizing the distance of the matched visual and language em-
beddings and maximizing that of the dismatched ones, and
the loss is given by

Lemb =
∑
i

∑
rk→q∈Rs

i

Iyk→q=1 log(
1

1 + e−wTv
)

+
∑
i

∑
rk→q∈Rs

i

Iyk→q=0 log(
1

1 + ewTv
),

(6)

where Iyk→q=0 and Iyk→q=1 are indicator functions. When
yk→q = 1, Iyk→q=1 = 1, which means that v and w are
matched and otherwise dismatched. Rs

i is the relationship
set of the source image xs

i .

Learning Dynamic Relationship by Knowledge
Reasoning
Due to the absence of dynamic relationships in images, it
is impossible to optimize the distance between the domain-
invariant visual features and language features of dy-
namic relationships in the visual-language embedding space
learned with source images. Fortunately, there exists the as-
sociation between a dynamic relationship and a sequence of
static relationships, and a dynamic relationship can be rep-
resented by the temporal evolution of static relationships.
Such association can be regarded as commonsense knowl-
edge of the dynamic relationship. In this paper, we propose
knowledge reasoning to first generate an associated sequen-
tial static relationships for a dynamic relationship with the
guidance of commonsense knowledge, and then learn a vi-
sual embedding of the dynamic relationship from the gen-
erated sequence by minimizing its distance to the language
embedding.

Commonsense Knowledge. We generate commonsense
knowledge from both the popular action recognition dataset,
i.e., Action Genome (Ji et al. 2020), and the most widely
used visual relationship detection datasets, i.e., the VidVRD
dataset (Shang et al. 2017) and the VidOR dataset (Shang
et al. 2019). In Action Genome, each action corresponds to
five temporally sequential scene graphs. The action is ac-
tually a dynamic relationship, and the static relationships
with the same subject and object to this action are chosen
from the five scene graphs as a sequence of static relation-
ships associated with the dynamic relationship. For exam-
ple, for the “awakening in bed” action, the two relation-
ship triplets {person, lying on, bed} and {person, sitting on,
bed} are selected from the scene graphs, and formulated as a
rule {awakening in: lying on→sitting on}. For the VidVRD
dataset (Shang et al. 2017) and the VidOR dataset (Shang
et al. 2019), we first count the frequency of static relation-
ships that appear together with the dynamic relationship of
the same subject and object and then summarize a rule man-
ually according to the frequency. For example, for the dy-
namic relationship “past”, the three most frequent static re-
lationships are “front”, “behind”, and “right”, and the asso-
ciation between these relationships are formulated as a rule
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manually, i.e., {past: front→right→behind}. Totally, we ob-
tain 249 rules about 35 dynamic relationships and 76 static
relationships to build a Relationship Commonsense Base
(RCB).

Learning Visual Embeddings of Dynamic Relationships.
We propose knowledge reasoning to learn dynamic rela-
tionships. First, we generate sequential static relationships
by sampling video frames according to the rules in RCB.
Second, the visual embedding of a dynamic relationship is
learned by modeling the temporal evolution of the generated
sequential static relationships via LSTM. Finally, the dis-
tance between the visual embedding and the language em-
bedding of the dynamic relationship is minimized to opti-
mize LSTM.

Specifically, for a dynamic relationship ra, we retrieve
its corresponding rule {ra : r1, r2, ..., rt} from RCB
where {r1, r2, ..., rt} represents a sequence of static re-
lationships associated with the dynamic relationship ra.
With the retrieved rule, we obtain domain-invariant fea-
tures of these static relationships by sampling relationship
instances of the corresponding labels (i.e., {r1, r2, ..., rt})
from video frames, and extract their visual embeddings
{vr1 ,vr2 , ..., vrt} using the visual mapping φ learned by
the static relationship prediction module. With the visual
embeddings of the sequential static relationships, the visual
embedding za and the language embedding wa of the dy-
namic relationship ra are obtained via LSTM and the lan-
guage mapping ϕ, respectively, formulated as

za = LSTM(vr1 ,vr2 , ..., vrt),wa = ϕ(era), (7)

where era is the language feature (i.e., word vector) of ra.
Afterwards, the distance between za and wa is minimized
to optimize LSTM:

min
LSTM

Ldis = ||wa − za||2. (8)

Scene Graph Generation in Videos
During testing, given an input video, we first detect objects
for each video frame via the cross-domain object detector
and then predict static relationships for all the combinations
of detected objects by finding the most similar language em-
bedding as the relationship label in the visual-language em-
bedding space. Afterwards, the static relationships between
the same subject and the same object on the time dimen-
sion form a sequence of static relationships, which are fed
into LSTM to generate the visual embedding of a dynamic
relationship. And then the class label of the dynamic rela-
tionship is determined by finding the most similar language
embedding to its visual embedding. Finally, scene graphs are
generated using both static and dynamic relationships.

Experiments
Datasets
To evaluate the proposed method, we conduct experi-
ments on two video benchmark datasets, i.e., the VidVRD
dataset (Shang et al. 2017) and the VidOR dataset (Shang
et al. 2019). With the VidVRD dataset as the target domain,

Task VidVRD VidOR
#Img #Obj #Rel #Img #Obj #Rel

Video SGG 32160 83865 314340 4970534 16195788 42777103
Ours 1572 4280 6050 22188 74747 14371

Table 1: Numbers of annotations on the VidVRD and VidOR
datasets. #Img, #Obj and #Rel denote the numbers of anno-
tated images/video frames, object instances and relationship
instances, respectively.

we use the VRD dataset (Lu et al. 2016) as the source im-
age domain. With the VidOR dataset as the target video
domain, we use the VG dataset (Zhang et al. 2017) as the
source image domain. Therefore, we construct two image-
to-video scene graph generation tasks: VRD→VidVRD and
VG→VidOR. For the two tasks, we use the objects and
their relationships shared by the source and target domains
to train and evaluate. The dynamic relationships that only
exist in the video domain. For the VRD→VidVRD task,
there are 15 object categories and 89 relationship categories
(74 static relationship categories and 15 dynamic relation-
ship categories). For the VG→VidOR task, there are 41
object categories and 26 relationship categories (16 static
relationship categories and 10 dynamic relationship cate-
gories). We adopt the unsupervised domain adaptation pro-
tocol, where the training data consists of annotated images
from the source domain and unannotated videos from the
target domain. The annotations of target videos are only used
for evaluation.

The numbers of annotations of the image-to-video scene
graph generation task (“Ours”) and the video scene graph
generation task (“Video SGG”) are shown in Table 1. It is
noteworthy that our task requires much fewer annotations,
clearly showing it can relieve the heavy dependency on the
large-scale annotated videos for training by leveraging ex-
isting available images.

Implement Details
Network Architecture. We use Faster R-CNN (Ren et al.
2015) as the object detection model and an MS COCO-
pretrained ResNet101 (He et al. 2016) as the backbone of
the detection model, following (Xu et al. 2017; Zhang et al.
2019). The shorter side of images and video frames is re-
sized into 600 while preserving its aspect ratio. The dimen-
sion of the second-order statistic descriptor is set to 512 and
the hyperparameter r in the factorized bilinear pooling is set
to 5. The domain classifier Dimg and the instance domain
classifier Dins are designed using five fully-connected lay-
ers (1024 → 512 → 256 → 128 → 1) and three convolu-
tion layers (512→ 128→ 1), respectively. The visual map-
ping φ and the language mapping ϕ consist of three fully-
connected layers (256→ 256→ 300) and two fully-connect
layers (1024→ 300), respectively.

Training and Test Details. During training, a three-stage
training strategy is employed. First, the object detection
model is optimized by the loss function shown in Eq. (4),
where gradient reverse layer (Ganin and Lempitsky 2015)
is used for hierarchical adversarial training. Second, the
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Method
Object Detection Relationship Detection Relationship Tagging

mAP R@50 R@100 mAP P@1 P@5 P@10
sta dyn sta dyn sta dyn sta dyn sta dyn sta dyn

VidVRD (Shang et al. 2017) - 13.35 0.00 14.64 0.00 17.20 0.00 54.03 0.00 34.03 0.00 23.23 0.00
w/o adversarial learning 36.70 4.01 0.00 4.53 0.00 6.73 0.00 30.65 0.00 23.23 5.00 16.45 4.03

w/o image-level adversarial 45.17 7.09 0.00 8.14 0.00 9.89 0.00 48.39 9.09 32.90 4.55 21.96 4.55
w/o instance-level adversarial 41.29 6.16 1.47 7.09 1.47 8.20 0.15 42.74 0.00 32.26 12.88 23.06 12.88

w/o knowledge reasoning 49.40 7.67 0.00 9.36 0.00 12.79 0.00 43.55 0.00 33.23 0.00 23.15 0.00
Ours 49.40 7.67 2.94 9.36 2.94 12.79 0.38 43.55 13.64 33.23 12.58 23.15 12.58

Oracle - 30.58 4.41 36.74 4.41 36.11 1.36 58.87 18.19 42.58 16.29 30.40 16.29

Table 2: Results on the VidVRD dataset. R@K and P@K are abbreviations of Recall@K and Precision@K, respectively. “sta”
and “dyn” denote the static relationship and the dynamic relationship, respectively.

Method
Object Detection Relationship Detection Relationship Tagging

mAP R@50 R@100 mAP P@1 P@5 P@10
sta dyn sta dyn sta dyn sta dyn sta dyn sta dyn

w/o adversarial learning 20.42 1.54 0.00 2.22 0.00 1.28 0.00 9.64 0.25 8.83 0.10 8.02 0.06
w/o image-level adversarial 26.52 2.72 0.11 3.69 0.11 2.01 0.03 23.46 7.52 22.44 4.31 17.61 3.76

w/o instance-level adversarial 27.69 2.77 0.04 3.75 0.04 2.30 0.03 25.14 7.77 22.22 4.16 17.17 3.53
w/o knowledge reasoning 28.13 2.84 0.00 3.95 0.00 2.61 0.00 24.02 0.00 21.84 0.00 17.38 0.00

Ours 28.13 2.84 0.21 3.95 0.21 2.61 0.14 24.02 7.77 21.84 5.43 17.38 5.48
Oracle - 18.55 1.35 25.92 1.35 16.63 0.53 46.93 16.54 38.86 9.77 30.86 8.40

Table 3: Results on the VidOR dataset.

visual-language embedding space is optimized according to
Eq. (6). Third, we use greedy association algorithm (Shang
et al. 2017) to obtain the visual embeddings of static rela-
tionships at the video level by merging detected static rela-
tionships at frame level. With the guidance of RCB, we sam-
ple the generated static relationships to generate sequential
static relationships and train LSTM by Eq. (8). During test,
we use non maximum suppression with an IoU threshold of
0.3 to select boxes from object proposals and then take the
selected boxes with a confidence score greater than 0.5 as
the final detected objects to predicate relationships. Besides,
we use language priors of the image domain to further im-
prove predictions following (Zellers et al. 2018).

Evaluation Metrics
We utilize three existing evaluation metrics of object de-
tection, relationship detection and relationship tagging to
evaluate the performance of the proposed method. Object
detection aims to localize objects in each video frame and
we adopt mean average precisions (mAP) as the metric of
the object detection task. The threshold of mAP is set to
0.5. Relationship detection aims at first detecting objects and
then predicting the relationships of detected objects. A de-
tected relationship is considered correct if it has the same
relationship triplet in the ground truth and the detected ob-
ject and subject trajectories have sufficient voluminal inter-
section over union (vIoU) to those in the ground truth. The
threshold of vIoU is set to 0.5, and we adopt mean average
precision (mAP) and Recall@K (K equals to 50 and 100)
metrics following (Shang et al. 2017). Relationship tagging
focuses on only relationship detection in videos. A detected
relationship is considered correct if it has the same relation-
ship triplet in the ground truth without taking the object tra-
jectories into account. We adopt Precision@K (K equals to
1, 5, and 10) metrics following (Shang et al. 2017).

Results
To the best of our knowledge, this is the first work for the
new task of image-to-video scene graph generation. So the
most related methods to our method are the methods of
video scene graph generation that use annotated videos for
training. Among these methods, only VidVRD (Shang et al.
2017) releases code on the VidVRD dataset, respectively, so
we implement it using our training data on the correspond-
ing dataset for comparison. We also compare our method
with several variants (i.e.,“w/o adversarial learning”,“w/o
image-level adversarial”, “w/o instance-level adversarial”,
“w/o knowledge reasoning”) to demonstrate the effect of
each individual component. Since both the relationship de-
tection task and the relationship tagging task are based on
the object detection results, we use the ground truth of ob-
ject detection as the object detection results to evaluate the
relationship tasks deeper, denoted as “Oracle”.

The comparison results on the VidVRD and VidOR
datasets are shown in Table 2 and Table 3, respectively.
We have the following observations: 1) in comparison with
the VidVRD method, our method performs worse on static
relationships due to the unavailable annotations of videos,
but achieves better performance on dynamic relationships
with 13.64%, 12.58%, and 12.58% gains on P@1, P@5
and P@10, respectively. These promising results show that
it is beneficial to exploit external knowledge for inferring
dynamic relationships from sequential static relationships;
2) when removing the knowledge reasoning, our method
fails to predict dynamic relationships. For example, in the
relationship detection task on the VidVRD dataset, “w/o
knowledge reasoning” cannot predict any dynamic relation-
ships, while our method achieves 2.94%, 2.94%, and 0.38%
on R@50, R@100, and mAP, respectively; 3) the results
of “w/o adversarial learning” are far from that of “Ours”,
clearly demonstrating the existence of domain shift and the
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(a) w/o adversarial learning (b) w/o image-level adversarial (c) w/o instance-level adversarial (d) Ours

Figure 3: Object feature visualization on the VRD→VidVRD task. Red and blue colors denote the target video feature and the
source image feature, respectively. Different shapes denote different classes as shown in the legend.
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Figure 4: One example of dynamic relationship prediction from sequential static relationships on the VRD→VidVRD task.

effectiveness of our hierarchical adversarial learning on re-
ducing the domain shift; 4) compared with “w/o image-
level adversarial” or “w/o instance-level adversarial”, our
method achieves better results, showing that both image-
level and instance-level adversarial learning benefit improv-
ing the performance; 5) “Oracle” achieves better results
than supervised video scene graph generation method (“Vid-
VRD”), showing the feasibility of learning a relationship
prediction model from existing annotated images with given
good object detector and the significance of learning a better
cross-domain object detection model.

Feature Visualization
To further analyze the effectiveness of the hierarchical ad-
versarial learning module on reducing the domain shift, we
visualize the object features (extracted from RoI pooling
of the object detector) of images and video frames learned
by “w/o adversarial learning”, “w/o image-level adversar-
ial”, “w/o instance-level adversarial”, and “Ours” using t-
SNE (Maaten and Hinton 2008). Due to the large amount
of objects, only five object classes are chosen and for each
class, 40 instances are randomly sampled from source im-
ages and target video frames to show the visualization re-
sults of different methods in Figure 3. We also show the
Jenson-Shannon divergence of source and target data dis-
tributions. The larger the Jenson-Shannon divergence is, the
more different the data distributions are. In Figure 3 (a), the
data distributions of different domains are quite different, in-
dicating that there is a large domain gap. Compared Figure 3
(d) with others, we can find that the data distribution discrep-
ancy is largely reduced when performing both image-level

and instance-level adversarial learning.

Qualitative Evaluation
We illustrate our qualitative results in Figure 4. Our method
detects static relationships of “stand right”, “walk left”,
“stand next to” and “feed” well. By the knowledge rea-
soning module, our method succeeds in inferring the dy-
namic relationship of “walk toward”, guided by the rule
{walk toward: walk left→stand next to}. In other words,
the LSTM learns the visual embedding of dynamic relation-
ships successfully via transferring commonsense in RCB to
the visual-language embedding space, further demonstrating
the effectiveness of the knowledge reasoning.

Conclusion
We have presented a new task called image-to-video scene
graph generation that leverages annotated images to train a
scene graph generation model for videos. This task breaks
the heavy dependency on large-scale annotated training
videos, making it more approaching to real-world appli-
cation. To infer dynamic relationships in videos, we have
proposed a knowledge reasoning method that can gener-
ate visual embedding representations of unseen dynamic
relationships for prediction via exploiting commonsense
knowledge. To reduce the domain shift between images and
videos, we have proposed a hierarchical adversarial learning
method that can learn domain-invariant visual features to en-
able the adaption of objects and static relationships from im-
ages to video frames. Extensive experiments on the bench-
mark dataset have validated the effectiveness of our method.
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