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Abstract

In this paper, we propose a novel method to mine the com-
monsense knowledge shared between the video and text
modalities for video-text retrieval, namely visual consen-
sus modeling. Different from the existing works, which
learn the video and text representations and their compli-
cated relationships solely based on the pairwise video-text
data, we make the first attempt to model the visual con-
sensus by mining the visual concepts from videos and ex-
ploiting their co-occurrence patterns within the video and
text modalities with no reliance on any additional concept
annotations. Specifically, we build a shareable and learn-
able graph as the visual consensus, where the nodes de-
noting the mined visual concepts and the edges connect-
ing the nodes representing the co-occurrence relationships
between the visual concepts. Extensive experimental results
on the public benchmark datasets demonstrate that our pro-
posed method, with the ability to effectively model the vi-
sual consensus, achieves state-of-the-art performance on the
bidirectional video-text retrieval task. Our code is available at
https://github.com/sqiangcao99/VCM.

Introduction
As a meaningful but challenging task for bridging vision and
language, the video-text retrieval task aiming to match video
and text has been drawing more and more attention under the
rapid development of the Internet and the increasing number
of videos. It can be applied in various practical applications,
such as video search engine that returns the relevant videos
by the input text queries. Besides, this task could benefit
many downstream tasks, such as video caption (Tan et al.
2020; Zhang et al. 2019; Wang et al. 2018) and video tem-
poral grounding (Wang, Ma, and Jiang 2020).

Although great progress has been made for the video-text
retrieval task over the past few years, the semantic gap be-
tween video and text still remains a significant challenge.
Some methods learn the video and text feature in a common
space to enforce the correlated video and text being closer
to each other (Dong et al. 2019; Liu et al. 2019; Mithun
et al. 2018; Song and Soleymani 2019). To further exploit
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Figure 1: The proposed visual consensus modeling method
based on the video-text pair data. The video clips within the
red dotted rectangles are the extracted visual concepts from
a large scale of video sequences. Given a video-text pair,
it can be observed that co-occurrence patterns of the visual
concepts (denoted by arrows with different colors) are dif-
ferent in the video (top row) and text (bottom row) modality.
With the consideration of visual consensus in both video and
text modalities, the constructed visual consensus graph is ex-
pected to contain much richer commonsense knowledge and
help boost the performance of video-text retrieval task.

the complicated relationships between video and text, some
methods perform fine-grained matching of the visual and
textual features at different representation levels (Chen et al.
2020; Wang, Zhu, and Yang 2021).

Although these methods achieve more effective video-text
alignment and competitive performance, only some limited
internal information in pairwise video-text data is exploited.
The external information such as commonsense knowledge,
which is hidden in vision and language, believed as an es-
sential complement for the cross-modality retrieval task,
has not been considered. To explore commonsense knowl-
edge, Wang et al. (Wang et al. 2020a) propose the CVSE
to model the co-occurrence relationships of textual concepts
and demonstrate that commonsense knowledge benefits the
image-text retrieval task. However, the co-occurrence rela-
tionships in the vision domain are ignored.

With the reservoir of commonsense knowledge, humans
can handle multi-modal information accurately and effi-
ciently (Wang et al. 2020a). Since vision is the most im-
portant channel through which people obtain information,
visual commonsense knowledge has become a major com-
ponent of commonsense knowledge for people (Hutmacher
2019). As a basis of visual commonsense knowledge, the
visual consensus describes the potential associations and
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highly co-occurrence relationships among visual concepts,
with which the pairwise video and text can be aligned to-
gether even if they contain different information.

Inspired by this, we make the first attempt to build com-
monsense knowledge from the videos to narrow the seman-
tic gap between vision and language, and a novel visual con-
sensus model for video-text retrieval is proposed in this pa-
per. As shown in Fig. 1, based on the video-text pairs as
well as the extracted visual concepts, the visual consensus
in both video and text modalities is established. Combin-
ing the visual consensus information, our model can pro-
duce richer commonsense knowledge, which helps boost the
performance of the video-text retrieval task. Specifically, we
first employ the spherical K-means method (Hornik et al.
2012) on the video frame representations to yield the cen-
ters of all clusters, which are regarded as the visual con-
cept representations and utilized to tokenize the videos and
sentences. Afterwards, based on the visual concept repre-
sentations, a consensus graph for visual consensus model-
ing is constructed, where the nodes denoted as visual con-
cepts are learnable and initialized by the extracted visual
concept representations, and the edges connecting nodes are
obtained by analyzing the co-occurrence correlations of vi-
sual concepts in all the tokenized videos and sentences. Fi-
nally, the visual and textual representations are yielded by
referring to the learned consensus graph, which is utilized
to perform the video-text retrieval task. The differences be-
tween our method and the CVSE (Wang et al. 2020a) lie
in three-fold: 1) The concepts from the visual domain are
modeled, which provides much richer information than the
textual domain in CVSE. 2) A novel approach to exploiting
the co-occurrence relationship of visual concepts in different
modalities is brought up by replacing word representations
with visual concept representations and then calculating co-
occurrence frequency. 3) A hybrid graph that incorporates
multi-modalities consensus is designed, while only textual
consensus is considered in CVSE.

To summarize, the contributions of this work lie in three-
fold: 1) We propose a novel visual consensus modeling
framework, which relies on a learnable multi-model con-
sensus graph exploring the commonsense information in
both vision and language domain to narrow the their se-
mantic gap. 2) We model the co-occurrence relationships
of visual concepts in vision and textual modalities, respec-
tively, and exploit their co-occurrence relationships to im-
prove the performance of video-text retrieval. 3) Extensive
results on benchmark datasets indicate that the proposed vi-
sual consensus modeling method can fully utilize the com-
monsense information to improve the cross-modal retrieval
performance.

Related Works
Knowledge Based Learning
The key to human wisdom is the absorption and utiliza-
tion of knowledge, based on which many knowledge-based
approaches have been proposed for various deep learning
tasks (Deng et al. 2014; Gu et al. 2019; Marino, Salakhut-
dinov, and Gupta 2016; Wang et al. 2017; Yu et al. 2019;

Shi et al. 2019; Wang et al. 2020a,b; Fang et al. 2020).
Commonsense can be expressed in many ways. Wang et
al. (Wang et al. 2020a) propose a framework to mine the co-
occurrence relationships among words as consensus-aware
concept embeddings for image-text retrieval. Furthermore,
Wang et al. (Wang et al. 2020b) utilized causal reason-
ing to solve object detection. This work also belongs to
knowledge-based learning but mines the consensus knowl-
edge in both visual and textual domains, which is differ-
ent from the existing methods and gains semantically richer
commonsense knowledge.

Video-Text Retrieval
Most existing video-text retrieval frameworks (Wang,
Zhu, and Yang 2021; Portillo-Quintero, Ortiz-Bayliss, and
Terashima-Marı́n 2021; Luo et al. 2021; Liu et al. 2021a;
Chen et al. 2020; Mithun et al. 2018; Wang, Zhu, and Yang
2021; Liu et al. 2019; Dzabraev et al. 2021; Lei et al. 2021)
focus on constructing meaningful representations for video
and text, which contain essential information in their respec-
tive modalities, such as motion information for video and the
internal relevance of part-of-speech for text. These represen-
tations are embedded in a shared space and matched accord-
ing to their similarity metric. Dong et al. (Dong et al. 2021)
encode videos by CNN and texts by bi-GRU, and employ
mean pooling to get multi-levels representations. Chen et
al. (Chen et al. 2020) propose the hierarchical graph reason-
ing model, which solves the video-text retrieval task using
a global-local method by decomposing the texts into events,
actions, and entities. Some methods introduce multi-modal
features extracted from videos for efficient retrieval, such as
motion and audio features (Liu et al. 2019; Mithun et al.
2018; Wang, Zhu, and Yang 2021). Recently, the pre-trained
models (Amrani et al. 2020; Luo et al. 2020; Lei et al. 2021;
Dzabraev et al. 2021; Liu et al. 2021b; Portillo-Quintero,
Ortiz-Bayliss, and Terashima-Marı́n 2021; Luo et al. 2021)
bring significant performance improvements over previous
models. Portillo et al. (Portillo-Quintero, Ortiz-Bayliss, and
Terashima-Marı́n 2021) adopt CLIP (Radford et al. 2021),
an image-text pre-trained model, for zero-shot video-text re-
trieval, and Luo et al. (Luo et al. 2021) build an end-to-end
model based on CLIP and explore several similarity calcu-
lation methods.

Method
Given a video V = {v1, v2, ..., vn} or a sentence S =
{s1, s2, ..., sm}, where n and m respectively denote the num-
ber of frames in a video and the number of words in a sen-
tence, video-text retrieval task aims to find the most rele-
vant sentence or video. In this paper, we propose the vi-
sual consensus modeling(VCM) framework which consists
of a cross-modal knowledge learning(CKL) module and a
knowledge integration(KI) module to exploit the common-
sense knowledge hidden in videos and sentences and narrow
the semantic gap between vision and language, as shown as
Fig. 2. The CKL module learns to extract visual concepts in
videos and incorporates their co-occurrence relationships in
videos and sentences to obtain visual consensus representa-
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Figure 2: Overview of the proposed VCM method for video-text retrieval. The VCM consists of CKL module and KI module.
Firstly, the instance representations of frames and words are extracted by the CLIP model. Then the CKL module learns the
visual concepts from frame instance representations and embeds the consensus information of visual and textual modalities
into the consensus representations by a cross-modal consensus graph. Finally, the instance representations and the consensus
representations are integrated together by the KI module for the video-text retrieval, where ⊗ denotes the attention module and
⊕ denotes the weighted sum.

tions which have been embedded in the consensus informa-
tion of both visual and textual modalities. The KI module
aims to incorporate commonsense knowledge into the video
and text representations for the final similarity calculation.

Cross-modal Knowledge Learning Module
Visual Concept Extracting To extract the visual concept
representations, we first employ the CLIP model (Radford
et al. 2021) that pretrained on the image-text retrieval task
as the video encoder to extract the frame instance repre-
sentations for all frames in a video, which are denoted as
V = {v1, v2, ..., vn}, where n denotes the number of frames
in this video and vn denotes the instance representation of
the n-th frame. The CLIP model is text-dependent and con-
siders not only the visual appearance of frames but also the
semantic meanings of textual descriptions, which helps to
further enrich the consensus information in visual concepts
by mining the co-occurrence relationships in words. After-
wards, we apply the spherical K-means method (Dhillon and
Modha 2001) on all of the frame instance representations,
and k cluster center vectors which are considered as the vi-
sual concept representations are generated and denoted as
C = {c1, c2, c3, ..., ck}, where ck denotes the k-th visual
concept representation.

Consensus Knowledge Extracting As shown in Fig. 3,
to obtain the consensus relationships of visual concepts in
vision modality, we tokenize each video by calculating the
cos-similarity between the frame instance representations
and the visual concept representations. In this case, a tok-
enized video can be expressed as Vc =

{
c0v, c

1
v, . . . , c

n
v

}
,

where cnv ∈ C denotes visual concept representation that
replaces the n-th frame instance representation vn in a
video.To further narrow the semantic gap in video and text,
the sentences are first embedded to word instance represen-
tations S = {s1, s2, ..., sm} by the Transformer and then
tokenized as Sc =

{
c0s, c

1
s, . . . , c

m
s

}
in the same way as the

video tokenization mentioned above, where cms ∈ C denotes
visual concept representation that replaces the m-th word in-
stance representation sm in a sentence.

𝐕 = 𝑣! ,𝑣" , … , 𝑣#

𝐂 = 𝑐! ,𝑐" , … , 𝑐$

𝐒 = 𝑠!, 𝑠" ,… , 𝑠%

C
oncept Tokenlize

𝐒𝐜 = 𝑐'( ,𝑐'! , … , 𝑐'%

𝐕𝐜 = 𝑐)( , 𝑐)! , … , 𝑐)#

C
o-occurrence R

elationship
Extracting

𝐆*

𝐆𝑺

Figure 3: Illustration of the Consensus Knowledge Extract-
ing. First, the videos (V) and sentences (S) are tokenized
by the visual concept representations (C). Afterwards, the
co-occurrence relationships in video and text corpora are
counted, with which a cross-modal consensus graph contain-
ing the consensus knowledge is constructed.

Afterwards, we formalize the co-occurrence relationship
of visual concepts in video and text corpora as a graph to
obtain the cross-modal commonsense knowledge. Specifi-
cally, we utilize conditional probabilities PM

ij to model the
co-occurrence relationships in visual concepts:

PM
ij =

EM
ij

NM
i

, (1)

where M ∈ {V,S} represents the video and text modality
and i, j represent ci and cj in Vc or Sc, respectively. EM

ij
represents co-occurrence times of visual concept representa-
tion ci and cj in video or text corpus, and NM

i indicates the
occurrence times of visual concept ci. Subsequently, to over-
come the bias caused by the long-tail distribution of video
concepts, we adopt the scale function (Wang et al. 2020a)
denoted as fCS(·) to rescale the probability:

P̃M
ij = fCS

(
PM

ij

)
, (2)

where P̃M
ij is the rescaled probability. Besides, to extenuate

the aligning errors of the CLIP between the video and text,
the binary operation (Chen et al. 2019) is employed to the
rescaled co-occurrence probability P̃M

ij :
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𝑆3

Mean Pooling

Figure 4: Illustration of the Knowledge Integration mod-
ule(KI), where the superscripts I , F , and C of videos(V )
and sentences(S ) are denote as instance representation,
knowledge enhanced representation and knowledge con-
structed representation, respectively. The KI module ex-
plores the consensus information related to instance infor-
mation of the video or sentence, and integrates them with
the instance information together.

GM
ij =

{
0 if P̃M

ij < ϵM

1 if P̃M
ij ≥ ϵM

, (3)

where GM
ij ∈ {GV,GS} denotes the binary co-occurrence

probability of visual concepts in video corpus V and text
corpus S, ϵM is a hyper-parameter and used to filter out un-
reliable co-occurrence relationships whose P̃M

ij is too small
to achieve the ϵM . In this work, ϵM is set as 0.3.

Thus, an initialized cross-modal graph with shared visual
consensus information in video and text domains can be con-
structed by C and GM , where the nodes are visual concept
representations and the edges connecting nodes are the co-
occurrence relationships in both video and text.

Cross-modal Commonsense Knowledge Learning The
Graph Convolutional Network(GCN) (Kipf and Welling
2016; Bruna et al. 2013) is employed on the initialized cross-
modal graph to embed the co-occurrence relationships into
the visual concepts. Afterwards, the nodes, that are the vi-
sual concept representations, are updated by propagating in-
formation along the edges of the graph. We take the output
nodes of the GCN as the cross-modal consensus representa-
tions Y = {y1, y2, y3, ..., yk} which incorporate the inter-
actions between visual concepts in video and text, where yk
denotes the k-th visual consensus representation.

Knowledge Integration Module
In order to integrate the instance information and related
consensus information together, a KI module is introduced
in this work, as shown in Fig. 4. For videos, we employ
mean pooling on all the frame instance representations V =
{v1, v2, ..., vn} in a video and obtain the video instance rep-
resentation:

V I =
1

n

n∑
j=1

vj , (4)

where V I denotes the video instance representation of a
video. For sentences, the sentence instance representation
SI is obtained from “CLS token” of the CLIP model.

Afterwards, we take video and sentence instance repre-
sentations M I ∈ {V I , SI} as the query to gain the attention
weights αM

i with the consensus knowledge representations
Y. Thence a knowledge constructed representation MC can
be calculated via weighted summation of cross-modal con-
sensus representations as follows:

αM
i =

exp
(
θM IWMy⊤i

)∑k
j=1 exp

(
θM IWMy⊤j

) , (5)

MC =
k∑

i=1

αM
i · yi, (6)

where M I ∈ {V I , SI} represents the video or sentence in-
stance representation, WM denotes the learnable parameter
matrix, θ controls the smoothness of the softmax function.
It’s worth noting that MC contains the knowledge that re-
lated to the video or sentence instance representation, even if
the knowledge did not appear in them. This external knowl-
edge can further enhance the alignment between video and
text by merging instance representation and the knowledge
constructed representation as the knowledge enhanced rep-
resentation:

MF = γM I + (1− γ)MC , (7)

where MF ∈ {V F , SF } is the knowledge enhance rep-
resentation and γ is a hyper-parameter that controls the
proportion of instance representation and knowledge con-
structed representation.

Training
During the training process, we employ the symmetric cross
entropy loss (Wang et al. 2019) to train video and sen-
tence instance representation M I , knowledge constructed
representation MC , and knowledge enhanced representation
MF .

LN
v2t = − 1

B

B∑
i

log
exp

(
sim

(
V N
i , SN

i

))∑B
j=1 exp

(
sim

(
V N
i , SN

j

)) , (8)

LN
t2v = − 1

B

B∑
i

log
exp

(
sim

(
V N
i , SN

i

))∑B
j=1 exp

(
sim

(
V N
j , SN

i

)) , (9)

LN = LN
v2t + LN

t2v, (10)

where B denotes the batch size, N ∈ {I, C, F} represents
instance representation, knowledge constructed representa-
tion and knowledge enhanced representation, and V N

i and
SN
i denotes the representation mentioned above of the i-th

video and the i-th sentence, respectively. The sim denotes
the function for calculating similarity, which is the cosine
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Text → Video (T2V) Video → Text (V2T)
Model R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

CE (Liu et al. 2019) 20.9 48.8 62.4 6.0 28.2 20.6 50.3 64.0 5.3 25.1
MMT-Pretrained (Gabeur et al. 2020) 26.6 57.1 69.6 4.0 24.0 27.0 57.5 69.7 3.7 21.3
AVLnet (Rouditchenko et al. 2020) 27.1 55.6 66.6 4.0 - 28.5 54.6 65.2 4.0 -
SUPPORT-SET (Patrick et al. 2020) 27.4 56.3 67.7 3.0 - 26.6 55.1 67.5 3.0 -

FROZEN (Bain et al. 2021) 31.0 59.5 70.5 3.0 - - - - - -
CLIP (Portillo-Quintero et al. 2021) 31.2 53.7 64.2 4.0 - 27.2 51.7 62.6 5.0 -

TT-CE+ (Croitoru et al. 2021) 29.6 61.6 74.2 3.0 - 32.1 62.7 75.0 3.0 -
HIT-pretrained (Liu et al. 2021b) 30.7 60.9 73.2 2.6 - 32.1 62.7 74.1 3.0 -
MDMMT (Dzabraev et al. 2021) 38.9 69.0 79.7 2.0 16.5 - - - - -

CLIP4Clip-meanP (Luo et al. 2021) 43.1 70.4 80.8 2.0 16.2 43.1 70.5 81.2 2.0 12.4
CLIP4Clip-seqTransf (Luo et al. 2021) 44.5 71.4 81.6 2.0 15.3 42.7 70.9 80.6 2.0 11.6

VCM(v+t) 43.8 71.0 80.9 2.0 14.3 45.1 72.3 82.3 2.0 10.7

Table 1: Comparisons of experimental results on the testing split of the MSR-VTT dataset (%).

function in this work. The losses for video-to-text and text-
to-video retrieval task are denoted as LN

v2t and LN
t2v , respec-

tively, which are summed as LN for the convenience of ex-
pression, where LN ∈ {LI ,LC ,LF }.

As the video and text in one pair usually contain sim-
ilar information, the attention weights on the cross-modal
consensus representations obtained by the video and text
in one pair should have a similar distribution. Thus, the
KL divergence is employed to force the information dis-
tribution of weight vectors aV = {αV

1 , α
V
2 , . . . , α

V
k } and

aS = {αS
1 , α

S
2 , . . . , α

S
k } to be close to each other:

LKL
(
aV ∥aS

)
=

k∑
i=1

αV
i log

(
αV
i

αS
i

)
, (11)

where LKL denotes the degree of information divergence.
The smaller the LKL is, the more similar information distri-
butions the aV and aS have.

In conclusion, the final training loss L is defined as fol-
lows:

L = λ1LI + λ2LC + λ3LF + λ4LKL, (12)
where λ1 to λ4 are used to control the learning pace of dif-
ferent modules.

Inference
During the inference stage, three kinds of similarity con-
fidences between video and sentence are calculated by in-
stance representation, knowledge constructed representation
and knowledge enhanced representation, which are denoted
as SimI , SimC and SimF , respectively. The final similar-
ity confidence Sim is obtained as follows:

Sim = β1Sim
I + β2Sim

C + β3Sim
F , (13)

where β1, β2 and β3 are trade-off parameters. The higher the
Sim is, the more relevant the video and the sentence are.

Experiments
Datasets
We perform experiments on two public benchmark datasets
for the video-text retrieval task, including the MSR-
VTT (Xu et al. 2016) and the ActivityNet (Krishna et al.
2017).

• The MSR-VTT (Xu et al. 2016) dataset contains 10,000
videos and 200,000 descriptions, where each video
is annotated with 20 sentences. Following the setting
from (Liu et al. 2019; Miech et al. 2019; Gabeur et al.
2020; Luo et al. 2021), we use 9,000 videos for training
and report results on the other 1,000 videos.

• The ActivityNet (Krishna et al. 2017) dataset consists
of 20,000 Youtube videos with 100,000 densely anno-
tated descriptions. Following the setting from (Zhang,
Hu, and Sha 2018; Gabeur et al. 2020), we perform a
video-paragraph retrieval task by concatenating all the
descriptions of a video as a paragraph. Performances are
reported on the “val1” split of the ActivityNet.

Metrics
We employ the standard retrieval metrics, including recall at
rank K (R@K), median rank (MdR), and mean rank (MnR),
to evaluate our method. The R@K measures the fraction of
queries for which the matched samples are found among the
top K retrieved results. The higher the R@K is, the better the
model performs. We report R@1, R@5, and R@10 for the
MSR-VTT and R@50 for the ActivityNet. The MdR/MnR
measures the median/mean positions of the ground-truth re-
sults in the ranking. The lower the MdR and MnR are, the
better the model performs.

Implementation Details
We employ the pretrained CLIP(ViT-B/32) as the visual
and textual encoders and initialize the other parameters ran-
domly. The length of the input sequence varies according
to the average length of the sequences of the dataset. For
the MSR-VTT, the frame sequence length is set to 12, and
the word sequence length is set to 32, while for the Activi-
tyNet, both the frame and word sentence lengths are set to
64. The dimensions of instance representations, visual con-
cept representations, knowledge constructed representations
and knowledge enhanced representations are set to 512. In
the CKL module, the number of visual concept representa-
tions k for building the cross-modal consensus knowledge
graph is set to 300, and 0.3 is assigned to ϵM in Eq. 3
to filter out unreliable relationships in video concepts. In
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the KI module, we set θ in Eq. 5 to 10 and γ = 0.85 in
Eq. 7. Besides, we set λ1, λ2, λ3 and λ4 to 1.0, 0.25, 0.0125
and 0.4 in the loss function Eq. 12, respectively. The hyper-
parameters β1, β2 and β3 for different types of similarity in
Eq.13 are set to 0.35, 0.25, 0.40, respectively. In the exper-
iments, the encoders are optimized by Adam (Kingma and
Ba 2014), and the rest components of the model are trained
by AdaDelta (Zeiler 2012). During the training stage, the
batch size is set to 128, the learning rate is set to 1e-4, and
the max training epoch is set to 10. All of the experiments
are conducted on 4 NVIDIA Tesla V100 GPUs.

Comparison to the State of the Art
In this subsection, we compare our VCM with the state-
of-the-art methods on the video-text retrieval task on the
MSR-VTT and ActivityNet datasets, the experimental re-
sults of which are listed in Table 1 and Table 2, respectively,
where VCM(v+t) represents that the consensus graph is con-
structed with the co-occurrence relationships in both video
and text modalities. It can be observed from Table 1 that the
proposed VCM(v+t) performs better than the other meth-
ods on most metrics. For example, compared to CLIP4Clip-
meanP that transforms frame features to video features in
the same way with the VCM, that is mean pooling, the
VCM(v+t) increases the R@1 by 0.7 and decreases the MnR
by 1.9 in T2V task. Moreover, an overall improvement on
all the metrics in V2T task is achieved by VCM(v+t) on the
MSR-VTT. The improvements motioned above demonstrate
that the visual consensus of vision and language derive se-
mantically rich representations for video-text retrieval task.
It is worth noting that the VCM(v+t) is slightly inferior to
the CLIP4Clip-seqTransf on R@1, R@5 and R@10 in the
T2V task. The reason is that a transformer module is utilized
in CLIP4Clip-seqTransf to further explore the temporal in-
formation of the video domain, which is a strong feature
for this task but the VCM lacks. With these strong tempo-
ral features, VCM is expected to perform better. Addition-
ally, VCM(v+t) achieves the SOTA on AcitvityNet on both
T2V and V2T tasks as shown in Table 2, which indicates that
VCM is more effective in boosting the retrieval performance
on a larger dataset.

Ablation Studies
Study of the Consensus Information In this section, we
first discuss the impact of different configurations of vi-
sual consensus graphs on the retrieval performance. We de-
sign three types of visual consensus graphs with the co-
occurrence relationships in video modality only (VCM(v)),
text modality only (VCM(t)), and both video and text modal-
ities (VCM(v+t)), respectively. Besides, a graph without any
co-occurrence relationship in video or text modality is also
constructed (VCM(w/o)). Experimental results are shown
in Table 3. Compared with CLIP4Clip-meanP, VCM(w/o)
presents a slight performance improvement from 43.1 to
43.3 on R@1(T2V) and from 70.4 to 70.6 on R@5(T2V),
which benefits from some commonsense information in
video and text brought by the CLIP model. When we intro-
duce the co-occurrence information in video or text modality
to VCM, i.e., VCM(v) or VCM(t), the performance on both

a) a girl is doing her nails
b) a youtube channel is holding amakeup giveway
c) a fast moving film of a woman applyingmakeup

a) There is a race going on through the road
b) people are ridingmotorcycles on a racetrack
c) racing team of six people are being inverviewed

a) b) c)

a) b) c)

Figure 5: Visualization of the visual concepts in MSR-VTT.
The red and green dashed boxes denote different visual con-
cepts generated by employing the clustering algorithm on
the CLIP-based frame instance representations. Images in
red and green dashed boxes are selected from the clusters
randomly, and the sentence below each image is the textual
description of the video to which the image belongs.

T2V and V2T tasks are further improved. Finally, when the
co-occurrence relationships of the visual concepts in video
and text modalities are considered by VCM(v+t) simulta-
neously, a significant improvement is achieved, especially
for the V2T task where R@1 is improved from 43.6 to 45.1.
Such experimental results demonstrate two facts: 1) Consen-
sus knowledge in video and text modalities are complemen-
tary, using which at the same time helps to narrow the se-
mantic gap between the two modalities. 2) Besides the CLIP
features, the proposed VCM consisting of consensus mod-
eling and visual information clustering plays a key role in
performance improvements.

Study of the Trade-off Parameters We further explore
how the different hyper-parameters β1, β2 and β3 in Eq. 13
affect our performance. As shown in Table 4, the results
from No. (1) to (4) and No. (5) to (7) show the appropri-
ate β2 and β3 that balance the effectiveness of consensus
information embedded in knowledge constructed represen-
tation and knowledge enhanced representation will generate
optimal performance. However, it can be observed from No.
(2), (8), (9) that ignoring any one of the instance representa-
tion, knowledge constructed representation and knowledge
enhanced representation will make the performance worse,
which demonstrates the necessity of consensus information
from VCM.

Qualitative Analysis
The Visualization of Visual Concepts To demonstrate
the effectiveness of visual concepts, in this section, we visu-
alize the visual concept structure. It can be observed in Fig. 5
that although different appearances are presented, their se-
mantic meanings are similar, which are closely related to
makeup and racing. The reason is that the CLIP model con-
siders the visual appearance and the textual semantic mean-
ings simultaneously, which further enriches the consensus
information of visual concepts by mining the co-occurrence
relationships in words.
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Text → Video (T2V) Video → Text (V2T)
Model R@1 R@5 R@50 MdR MnR R@1 R@5 R@10 MdR MnR

FSE (Zhang, Hu, and Sha 2018) 18.2 44.8 89.1 7.0 - 16.7 43.1 7.0 -
CE (Liu et al. 2019) 18.2 47.7 91.4 6.0 23.1 17.7 46.6 - 6.0 24.4

HSE (Zhang, Hu, and Sha 2018) 20.5 49.3 - - - 18.7 48.1 - - -
MMT (Gabeur et al. 2020) 28.7 61.4 94.5 3.3 16.0 28.9 61.1 - 4.0 17.1
SSB (Patrick et al. 2020) 29.2 61.6 94.7 3.0 - 28.7 60.8 - 2.0 -

ClipBERT (Lei et al. 2021) 21.3 49.0 - 6.0 - - - - - -
HiT (Liu et al. 2021b) 29.6 60.7 95.6 3.0 - - - - - -

TT-CE+ (Croitoru et al. 2021) 23.5 57.2 96.1 4.0 - - - - - -
CLIP4Clip-meanP (Luo et al. 2021) 40.5 72.4 98.1 2.0 7.4 42.5 74.1 85.8 2.0 6.6

CLIP4Clip-seqLSTM (Luo et al. 2021) 40.1 72.2 98.1 2.0 7.3 42.6 73.4 85.6 2.0 6.7
CLIP4Clip-seqTransf (Luo et al. 2021) 40.5 72.4 98.2 2.0 7.5 41.4 73.7 85.3 2.0 6.7

CLIP4Clip-tightTransf (Luo et al. 2021) 19.5 47.6 93.1 6.0 17.3 18.9 49.6 65.8 6.0 16.3
VCM(v+t) 40.8 72.8 98.2 2.0 7.3 42.6 74.9 86.2 2.0 6.4

Table 2: Comparisons of experimental results on the “val1” split of the ActivityNet dataset (%).

Text → Video (T2V) Video → Text (V2T)
Model R@1 R@5 R@50 MdR MnR R@1 R@5 R@10 MdR MnR

CLIP4Clip-meanP (Luo et al. 2021) 43.1 70.4 80.8 2.0 16.2 43.1 70.5 81.2 2.0 12.4
VCM(w/o) 43.3 70.6 80.5 2.0 14.9 43.6 71.7 81.9 2.0 10.9

VCM(v) 44.0 70.3 80.4 2.0 14.9 44.3 72.3 82.2 2.0 10.8
VCM(t) 43.5 70.1 80.9 2.0 15.3 44.2 71.9 82.6 2.0 10.8

VCM(v+t) 43.8 71.0 80.9 2.0 14.3 45.1 72.3 82.3 2.0 10.7

Table 3: Effect of different configurations of consensus graph on the MSR-VTT dataset (%).

No. β1 β2 β3 R@1 R@5 R@10 MdR MnR
(1) 0.35 0.00 0.00 43.3 70.5 79.8 2.0 15.5
(2) 0.35 0.00 0.25 43.3 70.5 80.0 2.0 15.4
(3) 0.35 0.00 0.40 43.4 70.6 80.0 2.0 15.4
(4) 0.35 0.00 0.45 43.4 70.5 79.9 2.0 15.5
(5) 0.35 0.20 0.40 43.5 71.0 80.6 2.0 14.5
(6) 0.35 0.25 0.40 43.8 71.0 80.9 2.0 14.3
(7) 0.35 0.30 0.40 43.6 70.6 80.9 2.0 14.3
(8) 0.35 0.25 0.00 42.5 70.2 80.7 2.0 14.5
(9) 0.00 0.25 0.40 43.0 70.7 80.3 2.0 14.4

Table 4: Experimental results of VCM(v+t) with different
β1, β2, and β3 on the test split of MSR-VTT for T2V task.

The Visualization of Attention Distributions on Visual
Concepts Furthermore, we visualize the attention distri-
butions on the visual concepts related to the video and sen-
tence instance information. As shown in the left part of
Fig. 6, even though drive does not appear in the textual de-
scription, concepts related to drive are captured by the sen-
tence, such as the first and the fifth visual concepts on the
text side. Besides, both the video and the sentence in the
right part of Fig. 6 are able to capture the same relevant vi-
sual concepts, which demonstrates that the proposed VCM
can narrow the semantic gap between video and text.

Conclusion
In this paper, a visual consensus modeling method is pro-
posed to extract the visual consensus knowledge which con-
sists of visual concepts and their consensus in both video and
text modalities. The individual instance information of each
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two guys in vehicle talking a man is giving a lecture

0.0230.019 0.015 0.014

0.022 0.017 0.016 0.011

0.008

0.009

0.0090.010 0.009 0.008

0.010 0.008 0.090 0.009

Figure 6: The visualization of the attention distributions on
the top 5 visual concepts focused by video and sentence.
Each frame arranged vertically represents a visual concept.

video and sentence is combined with the related consensus
information for video-text matching. Our proposed model
achieves competitive performances on both MSR-VTT and
ActivityNet datasets, which indicates the superiority of inte-
grating consensus information for video-text retrieval task.
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