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Abstract

Handwritten mathematical expression recognition aims to
automatically generate LaTeX sequences from given im-
ages. Currently, attention-based encoder-decoder models are
widely used in this task. They typically generate target se-
quences in a left-to-right (L2R) manner, leaving the right-to-
left (R2L) contexts unexploited. In this paper, we propose an
Attention aggregation based Bi-directional Mutual learning
Network (ABM) which consists of one shared encoder and
two parallel inverse decoders (L2R and R2L). The two de-
coders are enhanced via mutual distillation, which involves
one-to-one knowledge transfer at each training step, mak-
ing full use of the complementary information from two in-
verse directions. Moreover, in order to deal with mathemati-
cal symbols in diverse scales, an Attention Aggregation Mod-
ule (AAM) is proposed to effectively integrate multi-scale
coverage attentions. Notably, in the inference phase, given
that the model already learns knowledge from two inverse di-
rections, we only use the L2R branch for inference, keeping
the original parameter size and inference speed. Extensive ex-
periments demonstrate that our proposed approach achieves
the recognition accuracy of 56.85 % on CROHME 2014,
52.92 % on CROHME 2016, and 53.96 % on CROHME 2019
without data augmentation and model ensembling, substan-
tially outperforming the state-of-the-art methods. The source
code is available in https://github.com/XH-B/ABM.

Introduction
Handwritten Mathematical Expression Recognition
(HMER) has multiple application scenarios, such as intelli-
gent education, human-computer interaction and academic
paper writing auxiliary tools. Traditional methods gener-
ating LaTeX sequences from input images always depend
on specially designed grammars (Lavirotte and Pottier
1998; Chan and Yeung 2001; MacLean and Labahn 2013).
These grammars need extensive prior knowledge to define
mathematical expression structures, symbols’ position
relationship, and corresponding parsing algorithms, so that
they cannot recognize complex mathematical expressions.

Recently, attention based encoder-decoder models have
been applied to HMER, due to its excellence in machine
translation (Cho et al. 2014), speech recognition (Bahdanau
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et al. 2016), segmentation (Tianfei et al. 2020, 2021; Wen-
guan et al. 2021). These attention-based methods (Deng
et al. 2017; Le and Nakagawa 2017; Zhang et al. 2017, 2018;
Zhang, Du, and Dai 2018; Wu et al. 2018; Le, Indurkhya,
and Nakagawa 2019; Li et al. 2020; Wu et al. 2020) are
remarkably superior to grammar-based ones. For example,
WAP (Zhang et al. 2017) first introduces the 2D coverage
attention to solve the problem of lacking coverage, as shown
in Fig. 1 (a). The coverage attention is the sum of past at-
tentions aiming to keep track of past alignment information,
such that the attention model can be guided to assign higher
attention probabilities to the untranslated regions of images.
Nevertheless, one main limitation of the coverage attention
is that it only employs historical alignment information, dis-
regarding future information (untranslated regions). For ex-
ample, many mathematical expressions are of symmetrical
structures, where the left “{” and right “}” braces always
appear together or sometimes far apart. And some sym-
bols in an equation are correlated, such as “

∫
” and “dx”.

Most methods only use the left-to-right coverage attention
to identify the current symbol, ignoring the fact that the fu-
ture information from the right is also important, which may
cause the problem of attention drift. And the captured depen-
dence information between the current symbol and previous
symbols becomes weaker as their distances increase. There-
fore, they may not adequately exploit long-distance corre-
lation or grammatical specification of mathematical expres-
sions (Zhao et al. 2021). BTTR (Zhao et al. 2021) uses a
transformer decoder with two directions to handle attention
drift (Fig. 1(f)), but there is no explicitly supervised infor-
mation for BTTR to learn from the reversed direction, and
BTTR aligns attention without a coverage mechanism, mak-
ing it still suffer from some limitations in recognizing long
formulas. Besides, variable scales of characters in a math-
ematical expression may result in recognition difficulty or
uncertainty. DWAP-MSA (Zhang et al. 2018) attempts to en-
code multi-scale features to alleviate this problem. However,
they do not scale the local receptive field, but only scale the
feature map, making it impossible to accurately attend to
small characters during recognition.

Thereby, we propose a novel framework with Attention
aggregation and Bi-directional Mutual learning (ABM) for
HMER, as shown in Fig. 1(g). Specially, our framework in-
cludes three modules: Feature Extraction, Attention Aggre-
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|ab|=|a|+1|
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|ab|=|a|\cdot|\cdot|c|

|ab|=|a|\cdot|b|

|ab|=|a|||||

|ab|=|a||||| |b|\cdot|a|=|ba|

Figure 1: Typical architectures and our proposed model for HMER. (a) is 2D attention based encoder-decoder framework
for HMER (Zhang et al. 2017). (b) uses multi-scale features (Zhang et al. 2018). (c) introduces a symbol classification net-
work (Truong et al. 2020). (d) utilizes existing printed expressions (Wu et al. 2020). (e) introduces a tree decoder (Zhang et al.
2020). (f) uses a transformer decoder (Zhao et al. 2021). (g) is our proposed model with two inverse decoders learning from
each other to enhance their decoding ability.

gation and Bi-directional Mutual Learning. (1) In Feature
Extraction module, we use DenseNet as feature extractor as
it has proved to be effective in WAP (Zhang et al. 2017). (2)
In Attention Aggregation module, we propose multi-scale
coverage attention to recognize characters of different sizes
in mathematical expressions, thereby improving the recog-
nition accuracy at the current moment and alleviating the
problem of error accumulation. (3) In Bi-directional Mutual
Learning module, we propose a novel decoder framework
with two parallel decoder branches in opposite decoding di-
rections (L2R and R2L) and use mutual distillation to learn
from each other. Specifically, this framework helps the cur-
rent coverage attention to capitalize upon historical and fu-
ture information sufficiently at the same time, so as to bet-
ter determine the current attention position. Therefore, each
branch can learn more complementary context information
and explore long-distance dependency information through
step-by-step mutual learning, leading to stronger decoding
ability. Note that while we use two decoders for training, we
only use one L2R branch for inference. Our contributions
are summarized as follows:

(1) We propose a novel bi-directional mutual learning
framework with a shared encoder and two inverse decoders,
to better learn complementary context information. To our
best knowledge, we are the first to introduce mutual learn-
ing into HMER.

(2) We propose a multi-scale coverage attention mecha-
nism to better recognize the symbols with variable scales in
an expression.

(3) Comprehensive experiments show that ABM greatly
surpasses the state-of-the-art methods on CROHME 2014,
2016 and 2019, respectively. And the ABM framework can
be applied to various decoders including GRU, LSTM, and

Transformer.

Related Work
Methods of HMER Traditional HMER methods require
specially designed grammatical rules to represent the two-
dimensional structural information of formulas, such as
graph grammar (Lavirotte and Pottier 1998), attributive
clause grammar (Chan and Yeung 2001), relational gram-
mar (MacLean and Labahn 2013) or probabilistic model
based grammar (Awal, Mouchere, and Viard-Gaudin 2014;
MacLean and Labahn 2015; Álvaro, Sánchez, and Benedı́
2016).

In recent years, with the success of sequence learning
in various applications, such as machine translation (Lu-
ong et al. 2014) and speech recognition (Bahdanau et al.
2016), the encoder-decoder framework has been widely
used to solve image-to-sequence tasks. (Deng et al. 2017)
first introduced such a framework to HEMR, which uses
Convolutional Neural Network (CNN) and Recurrent Neu-
ral Network (RNN) (Kawakami 2008) as an encoder
for feature extraction, while the Gated Recurrent Unit
(GRU) (Chung et al. 2014) is used as a decoder to rec-
ognize LaTeX characters. Many approaches typically im-
prove the encoder with stronger convolutional networks to
strengthen feature extraction, such as introducing full con-
volutional networks (Zhang et al. 2017; Wang et al. 2019),
DenseNet (Zhang, Du, and Dai 2018; Le, Indurkhya, and
Nakagawa 2019; Truong et al. 2020) and ResNet (Li et al.
2020; Yan et al. 2021). For the decoder, most methods design
attention mechanisms to improve their translation. For ex-
ample, the coverage attention mechanism (Zhang et al. 2017;
Zhang, Du, and Dai 2018; Li et al. 2020; Le 2020; Truong
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et al. 2020), overcomes the under-parsing or over-parsing
problem by considering past alignment probabilities. Ad-
ditionally, some methods improve their recognition perfor-
mance by introducing additional data such as data augmen-
tation, including the pattern generation strategy PGS (Le, In-
durkhya, and Nakagawa 2019), random scale enhancement
SCDA (Li et al. 2020), as well as the use of printed ex-
pressions DLA (Le 2020), PAL (Wu et al. 2018) and PAL-
v2 (Wu et al. 2020). Besides, some methods also improve
the decoder with transformer to utilize bi-directional infor-
mation (BTTR) (Zhao et al. 2021) or tree decoder to enhance
the decoding ability to handle complex formulas (DWAP-
TD) (Zhang et al. 2020). The structures of some models
above are illustrated in Fig. 1(a∼f).
Mutual Learning Mutual learning refers to the process in
which a group of models learn together during training.
DML (Zhang et al. 2018) first proposed the concept of mu-
tual learning in the field of knowledge distillation, and im-
proved the model generalization ability through collabora-
tive training. Co-distillation (Anil et al. 2018) forces each
network to maintain its diversity through distillation losses.
ONE (Lan, Zhu, and Gong 2018) trains a multi-branch net-
work and uses the predictions of these branches as soft goals
to guide each branch network. CLNN (Song and Chai 2018)
designs hierarchical multiple branches and uses correspond-
ing zoom gradients. KDCL (Guo et al. 2020) proposes to
integrate soft targets from multiple networks, and then su-
pervise the learning of each network. These methods have
been widely tried on public classification datasets, and each
mutual learning work is usually of single CNN-based archi-
tecture.

However, our experimental results show that direct mu-
tual learning between two encoder-decoder networks can-
not achieve satisfactory recognition accuracy for the HMER
task. Therefore, we design a novel architecture consisting
of a shared encoder and two inverse decoders that can be
aligned in each decoding step and learn from each other to
fully explore the specific features of mathematical expres-
sions, such as symmetry and long-distance correlation.

Method
We propose a novel end-to-end architecture with Attention
aggregation and Bi-directional Mutual learning (ABM) for
HMER, as shown in Fig. 2. It mainly consists of three
modules: 1) Feature Extraction Module (FEM) that ex-
tracts feature information from a mathematical expression
image. 2) Attention Aggregation Module (AAM), which in-
tegrates multi-scale coverage attentions to align historical
attention information, and effectively aggregates different
scales of features from various sizes of symbols in the de-
coding phase. 3) Bi-directional Mutual Learning Module
(BML) is comprised of two parallel decoders with opposite
decoding directions (L2R and R2L) to complement informa-
tion reciprocally. During training, each decoder branch can
learn not only the ground-truth LaTeX sequence but also the
prediction of the other branch, thereby enhancing the decod-
ing ability.
Feature Extraction Module We use the densely connected
convolutional network (DenseNet (Huang et al. 2017)) as

the encoder to extract features from an input image, sim-
ilar to (Zhang, Du, and Dai 2018). The output is a three-
dimensional feature map F of H ×W × D, where H , W
and D respectively denote height, width and channel of the
feature map. Specially, we consider the output features as
content information a of M dimensions, forming a vector
a = {a1, a2, ..., aM}, where ai ∈ RD,M = H ×W .
Attention Aggregation Module The attention mechanism
prompts a decoder to focus on a specific area of input image.
Specially, coverage-based attention can better track align-
ment information and guide a model to assign higher atten-
tion probabilities to untranslated regions (Zhang et al. 2017).
Inspired by the Inception module (Szegedy et al. 2015), we
propose the Attention Aggregation Module (AAM) to aggre-
gate different receptive fields on coverage attention. Com-
pared with traditional attention, AAM not only pays atten-
tion to the detailed features of local areas, but also the global
information on larger receptive fields. Therefore, AAM will
generate finer information alignment and help the model
capture more accurate spatial relationships. Note that our
AAM is different from DWAP-MSA (Zhang et al. 2018),
which proposes a dense encoder with multi-scale branches
to generate low-resolution and high-resolution features, re-
quiring more parameters and calculations. Fig. 2 shows the
details of our AAM that uses the hidden state ĥt, feature map
F and coverage attention βt to compute the current attention
weights αt and then obtain context vector ct:

As = Usβt, Al = Ulβt, (1)

Us and Ul denote the convolution operations of small and
large kernel sizes (e.g., 5, 11), respectively, and βt repre-
sents the sum of all past attention probabilities, which is ini-
tialized as a zero vector and then calculated by

βt =
t−1∑
l=1

αl, (2)

where αl denotes the attention score at step l. The current
attention map αt is calculated by

αt = vTa tanh(Wĥĥt + UfF +WsAs +WlAl), (3)

where Wĥ ∈ Rn×d, Ws ∈ R1×d and Wl ∈ R1×d are train-
able weight matrices, Uf is 1×1 convolution operation, and
ĥt denotes the hidden state generated from a GRU in Eq. (7).

The context vector is denoted as ct and is computed as a
weighted sum of the feature content information a:

ct =
M∑
i=1

αt,iai, (4)

where αt,i is the weight of the i-th feature of F at step t.
Bi-directional Mutual Learning Module Given an input
mathematical expression image, traditional HMER meth-
ods decode it from left to right (L2R) (Zhang et al. 2017;
Zhang, Du, and Dai 2018), without sufficiently consider-
ing the long-distance dependence. Therefore, we propose to
leverage dual-stream decoders to translate the input image to
LaTex sequences in two opposite directions (L2R and R2L),
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Figure 2: Architecture of our proposed model. An image is first input into the DenseNet to extract features, then two decoders
separately generate the LaTeX sequences in two reverse directions. During decoding, two branches are trained by minimizing
the distance between their predicted probabilities at each time step. An attention aggregation module is proposed to generate
current attention by coverage attentions with different scales. The operation “tile” duplicates the hidden state vector H ×W
times. The “MLP” denotes the trainable multi-layer perception layers. The two branches do not share parameters during training.

and then learn the decoding information from each other.
The two branches have the same architecture, but are merely
different in their decoding directions.

For bi-directional training, we add ⟨sos⟩ and ⟨eos⟩ re-
spectively as the start and end symbol of LaTeX sequences.
Specially, for the target LaTeX sequence of length T , Y =
{Y1, Y2, ..., YT }, we denote it from left to right (L2R) as
−→Y l2r = {⟨sos⟩, Y1, Y2, ..., YT , ⟨eos⟩} and from right to
left (R2L) as←−Y r2l = {⟨eos⟩, YT , YT−1, ..., Y1, ⟨sos⟩}. The
probabilities of the predicted symbols at step t for the L2R
and R2L branch, are computed as follows:

p(−→y t|−→y t−1) = Womax(WyE−→y t−1+Whht+Wtct), (5)

p(←−y t|←−y t−1) = W
′

omax(W
′

yE
′←−y t−1 +W

′

hh
′

t +W
′

t c
′

t),
(6)

where ht, −→y t denote the current state and previous predic-
tion output at step t in the L2R branch. The mark ∗′ denotes
the R2L branch. Wo ∈ RK×d, Wy ∈ Rd×n, Wh ∈ Rd×n

and Wt ∈ Rd×D are trainable weight matrices. Let d, K
and n denote the attention dimension, the number of symbol
classes and GRU dimension, respectively. E is an embed-
ding matrix. max denotes the maxout activation function.
The hidden representations {h1, h2, ..., ht} are produced by:

ĥt = f1(ht−1, E−→y t−1), (7)

ht = f2(ĥt, ct), (8)

where f1 and f2 denote two unidirectional GRU models sim-
ilar to (Zhang et al. 2017).

We define the probability of the L2R branch as
−→P l2r = {⟨sos⟩,−→y 1,

−→y 2, ...,
−→y T , ⟨eos⟩}, and R2L branch

as ←−P r2l = {⟨eos⟩,←−y 1,
←−y 2, ...,

←−y T , ⟨sos⟩}, where −→y i ∈

RK is the predicted probability of label symbols when the
i-th step decoding is performed. In order to apply mutual
learning to the prediction distributions from two branches,
we need to align the LaTeX sequences generated by the L2R
and R2L decoders. Specifically, we discard the first and last

predictions (⟨eos⟩ and ⟨sos⟩) to obtain −→P
′

l2r and←−P
′

r2l, and

then reverse←−P
′

r2l to obtain←−P
∗
r2l = {←−y T ,

←−y T−1, ...,
←−y 1}.

At the same time, Kullback-Leibler (KL) loss is introduced
to quantify the difference in prediction distribution between
them. During training, we use the soft probabilities gen-
erated by the model to provide more information, similar
to (Zhang, Du, and Dai 2018). Thus, for k categories, the
soft probability from L2R branch is defined as:

σ(
−→
Z i,k, S) =

exp(
−→
Z i,k/S)∑K

j=1 exp(
−→
Z i,j/S)

, (9)

where S denotes the temperature parameter for generat-
ing soft labels. The logits of the i-th symbol of this se-
quence calculated by the decoder network are defined as
−→
Z i = {z1, z2, ..., zK}. Our objective is to minimize the
distance between the two branch probability distributions.

Thus, the KL distance between −→P
′

l2r and←−P
∗
r2l is computed

as follows:

LKL = S2
T∑

i=1

K∑
j=1

σ(
−→
Z i,j , S)log

σ(
−→
Z i,j , S)

σ(
←−
Z T+1−i,j , S)

, (10)

where S2 ensures that the ground-truth and the probabil-
ity distribution from the other branch can make comparable
contributions to model training (Hinton, Vinyals, and Dean
2015), and −→Z i,j and←−Z T+1−i,j denote the logits from L2R
and R2L branch, respectively.

116



Dataset methods ExpRate ≤1 er-
ror

≤2 er-
ror

2014

PAL 39.66 56.80 685.11
WAP 46.55 61.16 65.21
PGS 48.78 66.13 73.94

PAL-v2 48.88 64.50 69.78
DWAP-TD 49.10 64.20 67.8

DLA 49.85 - -
DWAP 50.60 68.05 71.56

DWAP-MSA 52.80 68.10 72.00
WS WAP 53.65 - -

BTTR 53.96 66.02 70.28
ABM 56.85 73.73 81.24

2016

PGS 36.27 - -
TOKYO 43.94 50.91 53.70

WAP 44.55 57.10 61.55
DWAP-TD 48.50 62.30 65.30

DLA 47.34 - -
DWAP 47.43 60.21 63.35
PAL-v2 49.61 64.08 70.27

DWAP-MSA 50.10 63.80 67.40
WS WAP 51.96 64.34 70.10

BTTR 52.31 63.90 68.61
ABM 52.92 69.66 78.73

2019

DWAP 47.70 59.50 63.30
DWAP-TD 51.40 66.10 69.10

BTTR 52.96 65.97 69.14
ABM 53.96 71.06 78.65

Table 1: Comparison with prior works (in %). Note that
our results are from L2R branch. The results shown in
upper are partly cited from their corresponding papers.

Loss Function Specially, for the target LaTex sequence of
length T , −→Y l2r = {⟨sos⟩, Y1, Y2, ..., YT , ⟨eos⟩}, we denote
the corresponding one-hot ground-truth label at the i-th time
step as Yi = {x1, x2, ..., xK} with xi ∈ {0, 1}. The softmax
probability of the k-th symbol is computed as:

−→y i,k =
exp(
−→
Z i,k)∑K

j=1 exp(
−→
Z i,j)

. (11)

For multi-class classification, the cross-entropy losses be-
tween the target label and softmax probability for two
branches are defined as:

Ll2r
ce =

T∑
i=1

K∑
j=1

−Yi,j log(−→y i,j). (12)

Lr2l
ce =

T∑
i=1

K∑
j=1

−Yi,j log(←−y T+1−i,j). (13)

The overall loss function is as follows:

L = Ll2r
ce + Lr2l

ce + λLKL, (14)

where λ is a hyper-parameter to balance the recognition loss
and KL divergence loss.

Methods ExpRate ≤1 error ≤2 error WER
Baseline 50.60 68.05 71.56 13.12
+AAM 52.64 68.62 77.25 12.12
+BML 55.23 72.58 79.08 10.25
ABM 56.85 73.73 81.24 10.01
1 “+” means to append to baseline model.

Table 2: Ablation study (in %). We evaluate AAM and
BML modules on CROHME 2014 test dataset.

Experiments
Datasets and Metrics We train our models based on the
CROHME 2014 competition dataset with 111 classes of
mathematical symbols and 8836 handwritten mathematical
expressions, and test our model on three public test datasets:
CROHME 2014, 2016, and 2019, with 986, 1147 and 1199
expressions, respectively. We use two indicators to evalu-
ate the models: (1) Expression level: ExpRate (%), ≤ 1
error (%), and ≤ 2 error (%) represent expression recog-
nition accuracy when zero to two structural or symbol er-
rors can be tolerated. (2) Word level: Word Error Rate
(WER(%)) (Klakow and Peters 2002) is used to evaluate
such errors as substitutions, deletions, and insertions in word
level.
Implementation Details Setup: Two different decoder
branches in our model are set to different weight initializa-
tion methods (Glorot and Bengio 2010; He et al. 2015). For
the decoder, we set n = 256, d=512, D=684 and K=113
(adding ⟨sos⟩ and ⟨eos⟩ on 111 labels). In the loss func-
tion, λ is set to 0.5. Training: Our proposed method is op-
timized with Adadelta optimizer, and its learning rate starts
from 1, decaying two times smaller when the WER does not
decrease within 15 epochs. And the training will stop early
when the learning rate drops 10 times. We set the batch size
as 16. Testing Platform: All the models are trained/tested
on a single NVIDIA V100 16GB GPU.
Comparison with Prior Works We compare the ABM
with the previous state-of-the-arts, including PAL (Wu
et al. 2018), PAL-v2 (Wu et al. 2020), WAP (Zhang
et al. 2017), PGS (Le, Indurkhya, and Nakagawa 2019),
DWAP (WAP with DenseNet as encoder), DWAP-MSA
(DWAP with multi-scale attention) (Zhang et al. 2018),
DWAP-TD (DWAP with tree decoder) (Zhang et al.
2020), DLA (Le 2020), WS WAP (weakly supervised
WAP) (Truong et al. 2020) and BTTR ( bidirectionally
trained transformer) (Zhao et al. 2021). To ensure the fair-
ness of the performance comparison, all the methods we
show do not use data augmentation. From Table 1, we can
observe that: (1) The proposed model ABM significantly im-
proves the recognition accuracy (ExpRate) and outperforms
the baseline (DWAP) by 6.25%, 5.49% and 6.26% on three
test datasets, demonstrating the success of bi-directional mu-
tual learning module and attention aggregation module in
enhancing the prediction capacity. (2) Compared with other
methods, our ABM model is superior to the previous state-
of-the-arts in terms of almost all metrics. BTTR uses a tra-
ditional transformer as a decoder, which can reduce the de-
coding errors of long sequences to a certain extent. However,
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Figure 3: Parameter sensitivity analysis on combination of
kernels in AAM and hy-parameter λ in Eq. (14).

the results of ≤ 1 error and ≤ 2 error show that the word er-
ror rate cannot be significantly reduced. On CROHME 2014,
our model is more accurate than BTTR by large margins of
2.89%, 7.71% and 10.96% in ExpRate, ≤ 1 error and ≤ 2
error, respectively. This shows that our method can improve
the performance of GRU-based models and is completely
better than the transformer decoder of BTTR.
Ablation Study We conduct ablation studies to investi-
gate the contributions of different components in the pro-
posed network. The baseline model is a traditional encoder-
decoder architecture (DWAP) (Zhang et al. 2018), which
achieves 50.60% in ExpRate. From Table 2, it can be ob-
served that: (1) The results of “+AAM” show that adding
the attention aggregation module to the baseline model fur-
ther improves the recognition performance of over 2.04%,
and the multi-scale attention can benefit the baseline model
because of more attentions on small symbols. (2) “+BML”
means to equip the baseline model with an additional de-
coder in inverse decoding direction for mutual learning.
From the results, the model can achieve 4.63% accuracy
increment from 50.60% to 55.23% after taking advantage
of the inverse context information. (3) The results of ABM
show that the use of these two modules at the same time gen-
erates a cumulative effect, increasing the overall accuracy of
the model by a large margin of 6.25%. To this end, we prove
that every component in the proposed method can contribute
to the overall recognition effectiveness.
Parameter Sensitivity We perform the sensitivity analysis
on the proposed ABM on CROHME 2014 under the univari-
ate setting. Combination of convolution kernels in AAM:
Given that convolution kernels of different sizes have dis-
tinct receptive fields, we testify the potential values of differ-
ent convolution kernels in AAM. From Fig. 3(a), the setting
of multi-scale kernels can generate better performance on all
datasets and the multi-scale attention is beneficial, especially
for the symbols with variable scales. Our selection, i.e., com-
bining 5*5 and 11*11, is the most robust strategy. Hyper-
parameter λ: λ controls the trade-off between the mutual
learning loss from two decoding branches and the recogni-
tion loss in Eq. (14). In Fig. 3(b), λ starts from the small fac-
tor (=0.1) to the large (=1), and the performance (ExpRate)
increases at the beginning because the other branch brings
valuable information from the inverse direction. However,
the ExpRate tends to be lower with larger factors (like 0.7)
as unstable training may happen. Thus, we set the hyper-
parameter λ = 0.5.
Attention Visualization To further reveal the internal work-
ing mechanism of our proposed method, we visualize the at-

Methods ExpRate ≤1 error ≤2 error WER
Uni-L2R 50.60 68.05 71.56 12.75
Uni-R2L 49.24 68.05 71.56 13.26
AUM-L2R 56.24 71.56 77.34 10.76
AUM-R2L 54.71 69.94 74.12 11.01
ABM-L2R 56.85 73.73 81.24 10.01
ABM-R2L 54.86 72.01 78.90 10.86
1 “Uni” denotes applying one branch for training.
2 “AUM” denotes applying uni-directional mutual learn-

ing with AAM.
3 “-L2R” and “-R2L” denotes the results generated from

L2R and R2L decoder, respectively.

Table 3: Performance (in %) comparison on different decod-
ing directions. Note that we only use one decoding branch
for testing.

Methods Prefix-2 Suffix-2 Prefix-5 Suffix-5
Uni-L2R 85.29 80.02 72.21 67.14
Uni-R2L 81.22 84.47 67.01 71.17
ABM-L2R 88.73 84.37 76.35 73.10
ABM-R2L 83.37 87.12 71.60 75.86

Table 4: Recognition accuracy (in %) of prefixes-(2, 5) (the
first two or five symbols) and suffixes-(2, 5) (the last two or
five symbols) on CROHME 2014 test dataset with BML.

tention process of continuous decoding, as shown in Fig. 4.
Attention weights are visualized in red, and dark red denotes
a higher weight in the attention map. For example, when the
decoder translates the fifth character ”0”, viewing from left
to right direction, attention can obtain historical alignment
information, and from right to left direction, attention can
obtain future alignment information, and eventually accu-
rately locate the current attention position.
Features Visualization Further, we visualize feature dis-
tributions of ten symbols in CROHME 2014 test set by t-
SNE (Van der Maaten and Hinton 2008). We input all pre-
vious target symbols to the decoder to predict the current
symbols and then visualize the features before the first full
connection layer of the classifier. Fig. 5 shows that the fea-
tures of different symbols generated by our method are more
separable, compared to the baseline DWAP.
Evaluating Different Decoding Directions We verify the
superiority of bi-directional mutual learning over the uni-
directional mutual learning and original uni-trained model
(Uni-L2R or Uni-R2L). We equip the Uni-directional mu-
tual learning with AAM to form AUM for fair comparison.
From Table 3, our method (ABM) improves the recognition
accuracy by over 6.25%. It turns out that mutual learning
between two inverse decoders is more effective.
On Long-distance Dependence One major weakness of
RNNs is their unbalanced outputs with high-quality prefixes
but low-quality suffixes recognition. From Table 4, there is
a margin 5.27 % between prefix and suffix recognition accu-
racy in Uni-L2R. After using ABM, the accuracy of the L2R
branch increases from 85.29% to 88.73% in prefix and from
80.02% to 84.37% in suffix. Therefore, the L2R branch can
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Methods ExpRate ≤1 error ≤2 error
WAP-MobileNetv2 40.61 60.32 67.59
WAP-MobileNetv2† 45.08 64.56 73.60
WAP-Xception 43.05 62.45 70.10
WAP-Xception† 46.70 68.12 75.83
DWAP-GRU 50.60 68.05 71.56
DWAP-GRU† 56.85 73.73 81.24
DWAP-LSTM 49.64 65.62 76.06
DWAP-LSTM† 55.13 69.95 78.84
BTTR 48.13 66.90 74.30
BTTR* 49.49 - -
BTTR‡ 51.47 69.23 76.64
1 † denotes using AAM and BML modules.
2 BTTR* denotes applying Bi-trained method without

AJS and the results are directly cited from its paper.
3 ‡ denotes only applying BML module as AAM is not

suitable for BTTR which adopts parallel decoding.
4 Results from L2R branch when having two branches.

Table 5: Performances (in %) of different decoders equipped
with our modules.

learn the decoding knowledge from the R2L branch, and bet-
ter adapt to long-distance dependence. The recognition abil-
ities in both the directions are improved at the same time.
Generality on Different Encoders and Decoders We vali-
date the generality of the proposed method on different en-
coders (MobileNetV2 (Sandler et al. 2018), Xception (Chol-
let 2017), and DenseNet (Huang et al. 2017)), as well as
different decoders (GRU, LSTM, and Transformer). To be
fair, all experiments use the same settings. As shown in Ta-
ble 5, for different encoders, we replace DenseNet with Mo-
bileNetV2 and Xception, and their original modles are im-
proved by 4.47% and 3.65%, respectively, in ExpRate. For
different decoders, the GRU, LSTM, and Transformer are
improved by 6.25%, 5.49%, and 3.34%, respectively, in Ex-
pRate. We should note that the result of BTTR with one di-
rection training is 48.13%. Therefore, our method is univer-
sal on different encoders or decoders.
Performance on Different Lengths of Expressions Fur-
ther, to explore the ability of our method to decode the se-
quences of different lengths, we split test datasets into dif-
ferent groups according to the lengths of their correspond-
ing LaTeX sequences and then compare the models for each
group. Intuitively, the longer the expression, the more dif-
ficult the translation. From Table 6, BTTR solves the prob-
lem of long sequence recognition to a certain extent. This
is because it uses bi-directional Transformer as a decoder.

1
2
3
4
5
6
x
y
f

/sqrt

(a) DWAP (b) ABM

Figure 5: t-SNE Visualisation of DWAP (baseline) and ABM
on CROHME 2014.

Methods CROHME 2014
[1,10] [11,20] [21,30] [31,40] [41,∝]

DWAP 63.91 54.03 47.16 43.08 26.82
BTTR 68.92 58.06 50.00 52.03 20.32
ABM 72.85 58.46 51.88 53.65 27.66

Table 6: Accuracy for different lengths of expressions.

But for long formulas with a sequence length greater than
40, its recognition accuracy decreases instead. However, our
method can perform well on any sequence length.
Statistics of Recognition Errors In order to quantitatively
and accurately determine the advantages of our method, we
divide the types of decoding errors into three categories:
deletion error ,insertion error and substitution error. Among
them, the insertion and deletion errors are mainly caused by
the attention prohibition. Table 7 represents the numbers of
each error in different methods.

Methods del ins sub total
WAP (Zhang et al. 2017) 202 104 252 527
DWAP (Zhang et al. 2018) 175 83 229 487
BTTR (Zhao et al. 2021) 221 56 176 453
ABM 155 49 221 425

Table 7: Statistics of three types of recognition errors.

Conclusion
We propose a novel ABM network for HMER, which uses
dual-branch decoders in inverse decoding directions in a mu-
tual learning manner. Experimental results show that the
ABM is superior to the state-of-the-arts. Besides, it is ap-
plicable to existing decoders including GRU, LSTM and
Transformer, and can effectively improve their performances
without increasing extra parameters during inference.
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