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Abstract

We present a novel approach for planning the development of
hydrocarbon fields, taking into account the sequential nature
of well drilling decisions and the possibility to react to fu-
ture information. In a dynamic fashion, we want to optimally
decide where to drill each well conditional on every possi-
ble piece of information that could be obtained from previ-
ous wells. We formulate this sequential drilling optimization
problem as a POMDP, and propose an algorithm to search for
an optimal drilling policy. We show that our new approach
leads to better results compared to the current standard in the
oil and gas (O&G) industry.

1 Introduction

The life cycle of a reservoir consists mainly of five phases:
exploration, appraisal, development, production and aban-
donment. It is the development phase that is the most impor-
tant one from a decision making viewpoint since the largest
investments are associated with this phase. In addition, the
great amounts of uncertainty about the subsurface of the
reservoir make these investment decisions very challenging.
In this context, the evaluation and selection of the best de-
velopment plan is critical to guarantee the profitability of a
IEeServoir.

The reservoir is typically modeled as a grid with petro-
physical property values associated to each cell. The ex-
act values for these properties are obviously unknown.
Uncertainty around the reservoir’s petrophysical properties
is modeled probabilistically by estimating a geostatistical
model from well and seismic data obtained during the ap-
praisal phase. A field development plan (FDP) determines
the production strategy, specifying, among other things, the
location and drilling schedule of wells. Reservoir flow sim-
ulators (Batycky et al., 2007) are used to forecast field pro-
duction rates for any production strategy and petrophysical
properties. This allows the estimation of the economic value
of an FDP candidate.

Field development planning (FDP) can be formulated
as an optimization problem under uncertainty. The current
state-of-the-art for optimizing an FDP formulates the de-
cision making problem as a static stochastic mixed-integer
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nonlinear program (MINLP), where the objective function
is typically estimated running a computationally expensive
black-box reservoir flow simulator over a set reservoir’s
property realizations sampled from the geostatistical model.
Several methods based on local optimization and heuris-
tic global search approaches have been proposed for solv-
ing this MINLP formulation (Davidson and Beckner, 2003;
Litvak et al., 2002; Wang, 2003), all requiring an exces-
sive number of estimations of the objective function and
therefore impractical in many real applications. In particu-
lar, several authors, such as Artus et al. (2006) and Bangerth
et al. (2006) have favored genetic algorithms among these
methods when comparing their performance in several ex-
amples.

However, these optimization approaches for FDP do not
take into consideration the sequential nature of the problem.
In practice, drilling location decisions alternate with the ob-
servation of information acquired between drillings. For ex-
ample, petrophysical properties at the location of each well
become known after the well is drilled and this localized
information is used to infer properties in the nearby area
through spatial correlations of the geostatistical model. We
propose a dynamic programing approach to model the op-
portunity of adapting the drilling plan to the information that
is revealed as wells are drilled.

2 Sequential field development planning

We consider, without loss of generality, the following field
development optimization problem. Suppose we need to de-
cide the location and drilling schedule of n = 4 wells so
that the economic value obtained from the reservoir is max-
imized. We assume access to only one drilling rig and there-
fore that wells are drilled sequentially. Once a well is com-
pleted, information about the type of rock (facies) at the well
location is revealed before the next well is drilled. The time
taken to drill and analyze the core samples and well logs
needed to uncover facies is assumed to be 3 months. Thus,
the first well is drilled at time ¢ = 0, and the next wells are
drilled in intervals of 3 months. In this setting, we must op-
timize the well locations as well as the order in which wells
are drilled. The drilling order implicitly determines the new
information that is observed at each decision step, which is
used to improve the knowledge of the reservoir before the
next well decision. In particular, facies are observed at the



(a) Influence diagram

(b) Decision tree

Figure 1: The sequential FDP decision problem (for n = 4)

location of a well right after it is drilled, and used to update
the geostatistical model. A policy will tell us where to drill
the first well, as well as all the next ones conditional on the
facies observed at all the previously drilled sites.

Figure 1 shows the sequential FDP decision problem rep-
resented both as an influence diagram and as decision tree.
The value node NPV (q, s) in the influence diagram, shown
as a hexagon, represents the economic valuation of a pro-
duction strategy consisting of a sequence of wells drilled at
locations a = (ay,as,as,ay) for a realization S = s of
the reservoir’s petrophysical properties. This evaluation typ-
ically requires running a computationally expensive ‘black-
box’ reservoir flow simulator to obtain simulated production
rates that are converted to cash flows when passed through
an economic model before computing their Net Present
Value (NPV). The company’s risk attitude (Pratt, 1964) is
modeled by a utility function u(NPV). Thus, the company
is assumed to prefer A = a with higher expected utility and
therefore the objective is to maximize expected utility.

A history hy = (a1, 01, .. .a,0;) is a sequence of well lo-
cation decisions A; = a; and observations of facies O; = o;
at wells ¢ = 1,...,t. Decisions at node A;; are taken
knowing history h;. The chance node S represents the state
of the reservoir’s petrophysical properties and its probabil-
ity distribution p(S) is given by the geostatistical model.
Next observation probabilities p(O;41|h¢, a;+1) correspond
to the marginals at location a;4; of the updated geostatis-
tical model p(S|h;). Updating the geostatistical model re-
quires reversing the arcs from chance node S to Oy,...O;
using Bayes rule.

In theory, an optimal FDP can be found applying the
standard decision analytic approach (French and Rios In-
sua, 2000) based on dynamic programming. For example,
the optimization problem to solve for n = 4 is

max Z rréz;xz max Z rrzgxz:u(a7 s) p(s|hs)

o1 02 03 s
ey

p(os|hz, az) p(oz|hy, az) p(o1|ar)
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Specifically, to solve (1) we would proceed as follows

1. Compute p(S = s|hs) x p(s)p(hs|s), for all hg by in-
verting arcs from S to O1, O3, and Os.

For every history (hs,a4), compute the expected utility
P(hs,as) = >, u(a,s)p(slhs) by eliminating chance
node S.

At decision node Ay, for every history hs find aj(h3) =
arg maxg, c A, (hs) ¥(h3,a4) to obtain the optimal policy
for the location of the fourth well, where A4(h3) repre-
sents the set of feasible locations at decision A4 given
hs. Node Ay is then eliminated by computing 1 (hs)
¥ (hs, a}), the expected utility of a} for every history hs.

Eliminate chance node O3 by computing ¢ (he,a3) =
>0, Y(h2, a3, 03) p(os|ha, az), the expected utility of ev-
ery history (hs, as).

Eliminate decision node A3 by expected utility maximiza-
tion to obtain the third well location policy aj(he) =
arg MaX,, e 4,(h,) ¥(h2,a3) and its expected utility
P (he) = ¢ (ha, a}) for every history ha.

Eliminate nodes O and As by computing 9 (h1,a2) =
>0, Y(h1,a2,02) p(02|h1, az), for all (hy az); and find-
ing a3(h1) = argmax,,ea,(n,) ¥(h1,a2), for all hy,
whose expected utility is ¢ (h1) = ¥(hy, a).

Eliminate nodes O; and A; in order to obtain aj
arg Mmaxq, c A, Zol Y(a1,01)p(o1|ar), the first well’s
optimal location, and its expected utility ¥*

Zol Y(ai,01)p(o1]ay)

Thus by using backward induction, we have found that a7,
ak(af,o1), ai(ay,01,a3,09), and aj(a},o01,as,0s,a%,03)
constitutes an optimal well location policy a™. It specifies the
best location for the first well, and every consecutive well as
a function of any future observations from previously drilled
optimal wells.

To measure the computational complexity of this
procedure, we can use the total number of branches
(a1,01,...,apn_1,0n_1,an, s) that need to be evaluated in
a decision tree like the one in Figure 1. For a reservoir
represented by a 2-dimensional n, x n, grid, a sequential
drilling problem with n well decisions, n,,s possible ob-
servations and ng realizations representing the reservoir’s
state space of petrophysical properties, would require ap-
proximately a total of (n, x mn,)"n”;.' ns NPV evalua-
tions at the leaf nodes of such a tree. Thus, for example,
let us suppose we are to decide the location and drilling or-
der of n = 4 wells in a 20 x 20 reservoir whose uncertainty
is characterized by ns = 1,000 possible reservoir realiza-
tions, and where we can observe at each drilling site one of
nobs = 2 types of facies. Then, we would need approxi-
mately 400% x 2471 x 1,000 = 2.048 x 10'* NPV evalua-
tions to start. In particular, there are approx. 2 x 10! combi-
nation of possible histories that have to be evaluated against
the set of ng possible reservoir realizations. If each evalua-
tion takes approximately 2 seconds, for such a small case,
this would already require over 12 million years to compute.



2.1 POMDP formulation

Now we formulate the sequential FDP optimization prob-
lem as a Partially Observable Markov Decision Problem
(POMDP). The world environment under consideration is
the reservoir with set of possible states consisting of all
the possible realizations of petrophysical properties for
that reservoir. We have n decision epochs at periods t =
1,...,n. The set of possible actions A; to choose from at
each decision epoch ¢ corresponds with all the possible lo-
cations in the reservoir grid at which a well can be drilled.
Since wells cannot be drilled very close to each other, we
need to consider location constraints defining A;(h;—1) as
a function of all previously chosen wells aq, ..., a;—1 spec-
ified by history h;_1. We have assumed so far that we will
always choose to drill a well at every decision epoch ¢ and,
therefore, that we do not have the option of not to drill. The
set of possible observations at epoch ¢ corresponds with all
the possible petrophysical properties that can be revealed at
location a, after drilling.

Since drilling actions do not affect the state of the reser-
voir’s petrophysical properties, the conditional transition
probabilities would thus be p(Si11 = §'|S: = s, Ay
a) = 1iff s = s, and zero otherwise. The petrophysical
properties are static, and hence do not change over time.
Our initial beliefs over these properties are given by the ini-
tial state probabilities p(Sy = s), which corresponds to the
spatial geostatistical model of the reservoir given by p(.5).
While the exact state of the reservoir is not observable, par-
tial observations of this state are available at every epoch in
the location where the well is drilled. For a reservoir’s state
S = s and a well drilling location A; = ay, the observation
is deterministic and given by o; = s[ay], the petrophysical
property at location a;. The conditional observation proba-
bilities at a given location p(O; |A; = ay) correspond with
the marginal of the geostatistical model p(S; = s) at the lo-
cation A; = a;. The state S = s of the reservoir and the ob-
servations O; = o; can be simulated from the probabilities
of the geostatistical model. Observations from drilled wells
update our beliefs over the state of the reservoir’s petrophys-
ical properties. Given the observations in history h;, Bayes
rule can be used to update the beliefs over the state of the
reservoir p(S; = s|hy).

The return corresponds with the economic performance
of the reservoir, measured as the NPV of the generated cash
flows. The NPV is equivalent to the total discounted reward
accumulated through all the decision periods. The return
NPV(a, s) is then calculated after all decisions have been
made and is a function of the actions a = (aq,...,a,) in
a complete history and the realization S,, = s of the final
state of the reservoir. This allows for the comparison of dif-
ferent development strategies over the productive life of the
reservoir.

A development policy specifies which action to take for
every possible history. We allow for random distributions
over the set of possible actions. An optimal policy is a so-
lution of (1) and then the optimal value function V*(h;)
Y (h¢, af, ) corresponds with the maximum achievable ex-
pected return given history h; (by following the optimal pol-
icy a*) .
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3 Partially observable Monte-Carlo
development planning

We present here a novel simulation-based search algorithm
to find optimal field development policies. The basic idea is
to start with a random rollout policy and iteratively modify
it as we simulate and evaluate histories generated from these
policies, until convergence is detected.

3.1 A PO-UCT based algorithm

We adapted the Partially Observable Monte-Carlo Planing
(POMCP) algorithm introduced by Silver and Veness (2010)
to solve the sequential field development planning problem.
See Algorithm 1. We aim to find a policy that optimizes the
well locations and drilling schedule for the POMDP formu-
lation described in Section 2.1. To initialize the algorithm
we need to specify (i) a characterization of the reservoir, in-
cluding a probabilistic geostatistical model quantifying the
uncertainty around the petrophysical properties; (ii) an ini-
tial set of possible well locations along any location con-
straints; and (iii) an exploration/exploitation trade-off pa-
rameter ¢ > 0.

As with the PO-UCT algorithm, we make use of a search
tree of histories. The nodes in this tree represent partial his-
tories. As complete Monte Carlo Tree Search (MCTS) histo-
ries are simulated, each node of the search tree keeps track of
N (h), the total number of times a partial history & has been
visited, and V'(h) the average return of all simulations start-
ing with h. Each MCTS simulation starts at the root node
(h = 0) of the search tree. Actions a; and observations o; are
then simulated sequentially at £ = 1,...n. The MCTS sim-
ulation ends with the last action a,, and a simulation s from
the updated geostatiscial model p(S|h,,—1). The reward of a
MCTS simulation is then computed as the NPV (a, s), where
the production strategy @ = (a1, ...,a,) is obtained from
the simulated actions.

The selection of action a;4; in a MCTS simulation de-
pends on whether h; is a node in the search tree. If this is the
case and all the feasible locations in the action set A1 (hy)
have been visited at least once in previous simulations, then
the UCB1 policy (Auer et al., 2002) is used to select the ac-
tion

logN (hs)
a1 = argmax,e 4, ., )V (hea) + ¢ N(ha)
This is our tree policy, which is used as far as nodes h:a
exist in the search tree as children of node h;, for all
a € Agp1(he). Otherwise, actions are selected by a Monte
Carlo rollout policy. In our implementation, the rollout pol-
icy selects actions randomly following a uniform proba-
bility distribution over the set of feasible actions: a;41 ~
U{Ais1(he)}

The search tree is expanded at every MCTS simulation
that generates a complete history that is not already in the
search tree. When a MCTS simulation trial reaches a leaf
node, we add to the search tree new nodes corresponding to
the next action and/or observation encountered by that sim-
ulation.



Algorithm 1 Partially Observable Monte-Carlo Develop-
ment Planning (POMCDP) algorithm
specify
Geostatistical model: p(.5)
Action space A (initial feasible locations) and
well location constrains
Exploration/exploitation parameter: ¢ > 0
repeat
1. Simulate reservoir realization s ~ p(S)
2. MCTS simulation
tho,h():@,Aoz.A
Start at the root node of the Tree Search
> Tree policy stage while in Tree Search
while all children of h; visited do
apy1 = argmax,e 4, | V(hia) + ¢
update Action Space: A;1 o
Simulate Ot4+1 = S[at+1] ~ p(St+1 |h,§7 at+1)
t=t+1
end while
> Expand Tree Search
if h; first time visited then add h;
add hia;y1 and hyqq with first rollout iteration
> Rollout policy
while A;,1 # 0 AND ¢t < n do
Choose well positions: a; 11 ~ U{As+1}
update Action Space: Az, o
t=t+1
end while
3. Evaluate NPV(a, s)
where a = (tree policy, rollout policy)
4. Backpropagation
update Tree Search for all h C A"
N(h)=N(h)+1
V(h) =V (h) S5t + NPV s
until detecting convergence or timeout

logN (h¢)
N (hia)

Our algorithm iteratively learns how to select best drilling
strategies by modifying the values of the N and V tree
search functions for each MCTS iteration using backprop-
agation as shown in Algorithm 1. At first the simulated
actions are random. As more MCTS simulations are per-
formed, the action selection policy progressively improves.
In particular, as for the POMCP algorithm, it is guaranteed
that for a suitable parameter c this policy asymptotically
converges (in probability) to an optimal FDP policy, and
V' (h) to the optimal value function.

3.2 Parallelization

One of the main empirical limitations of our POMCDP algo-
rithm is the computational time necessary to converge to the
optimal value function. Specifically, the NPV calculation at
each MCTS simulation is very time consuming and this lim-
its the number of MCTS simulations that can be performed
per time unit and, therefore, the time to convergence. In ad-
dition, the breadth of the tree at its action nodes given by the
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cardinality of the action space, e.g. | A1 (he)| = 1y X ny
for a 2D case, increases dramatically the time needed for the
tree policy to kick in for every new node added to the tree
search, since this will not happen until all its children have
been visited by a MCTS simulation at least once. Several
authors e.g. Kocsis and Szepesvari (2006) have proposed the
use of domain knowledge to initialize (N, V') in new nodes
and narrow the search to the most promising actions. How-
ever, this strategy is difficult to implement in our case be-
cause there is no clear intuition or enough data to fit an eval-
uation function that will be able to substitute the reservoir
flow simulator (Zubarev, 2009; Jurecka, 2007).

Our Parallel-POMCDP (P-POMCDP) algorithm modi-
fies Algorithm 1 by applying an at-the-leaves paralleliza-
tion approach (Cazenave and Jouandeau, 2007). Every time
the search tree must be expanded at one of its leaf nodes
hiy = (a1,01,...,as,0;) we, in parallel, add to the tree as
many new child action nodes hia;4; as alternatives in the
set A;11(he). In particular, for all azy1 € Aiqq(he) we
simulate from h; a;1 in parallel (and independently of each
other) the remaining sequence of actions and observations.
Access to a multicore processor or computer cluster allows
processing these simulation jobs in parallel by running si-
multaneously threads in different cores and reducing the to-
tal computational time of this step. This parallel rollout pol-
icy is only applied at the expansion stage when a new action
needs to be added to the tree search. After that, the stan-
dard serial rollout policy is applied within each of the paral-
lel simulations. At the beginning of each simulation branch
the geostatistical simulator is called to obtain each branch’s
own reservoir’s petrophysical realization conditional on A;.
The observations at each sampled well location are then ob-
tained from these simulated realizations. Then, the NPV as-
sociated with each parallel simulation branch is calculated
using the reservoir flow simulator. Once all of these parallel
simulations are finished, their results are propagated back-
wards through the search tree and the algorithm goes back
to serial mode. Specifically, for all nodes h C h; we up-
date V(h) = (N(h)V(h) + m NPV)/(N(h) + m) and
N(h) = N(h) + m, where m is the cardinal of the set
Ai11(ht) and NPV represents the average NPV across all
parallel m simulations started from h,.

We note that in our case each parallel simulation will take
very similar time to run. So if we have k available processors
to run simulations simultaneously, the improvement in the
estimation of the value function within a history h; is done
with | m/k | extra computational cost. In particular, if & > m
the improvement will be achieved at basically no extra com-
putational time. On the other hand, this parallelization only
increases the exploration of actions and not observations,
speeding-up the initialization of tree nodes created by the
addition an action succeeding leaf nodes that represent a his-
tory h; ending in an observation. Thus, this does not increase
the exploration or initialization of unvisited observations af-
ter leaf nodes h;asy1 representing histories ending in an ac-
tion. This ensures we do not spend too much time exploring
unpromising actions.



3.3 Implementation

We have implemented Algorithm 1 in Matlab. We used the
AD-GPRS software (Cao, 2002) as reservoir flow simulator
and the SGeMS software (Remy et al., 2009) to simulate re-
alizations from the geostatistial model. The parallelization is
done in a cluster with 6 nodes and a total of 216 processors.
The cluster’s nodes run in CentOS 6 with the IBM Platform
Load Sharing Facility (LSF) software as workload manager
in charge of controlling jobs dispatch and scheduling. Paral-
lel simulations are prepared in Matlab by generating the data
and batch scripts to be sent to the cluster for execution.

A computation of NPV (a, s) requires an AD-GPRS sim-
ulation which takes approximately an average of 2 secs in
our implementation. This is the most time-consuming com-
putation in each MCTS iteration and the bottleneck for any
optimization approach. The output of this simulation is a de-
terministic prediction of the production profile for a given
(a, s), which is later evaluated by an economic model to fi-
nally obtain the NPV (a, s).

4 Results

We tested our FDP sequential optimization approach with a
numerical example. The selected case is based on a realistic
reservoir represented by a 20 x 20 grid with two types of
facies: sandstone and shale. These facies have high and low
porosity respectively and, therefore, yield different levels of
productivity. The reservoir’s depositional environment con-
sists of meandering channels where oil is trapped after gen-
eration and migration. Thus, we have a geostatistical model
of a reservoir with non-obvious features that would need to
be learnt by the optimization algorithm in order to come up
with a good solution.

We want to decide on the location and drilling order of
n = 4 wells. To reduce the search space, we imposed that
wells cannot be less than 6 cells distance from each other,
since it is known that it is not economically advantageous to
do so in practice due to interferences between wells. After
drilling a well, we observe the type of rock (facie) at that
well’s location. We have only two possible types of obser-
vations: sandstone or shale. The return of a well location
policy is measured by its expected NPV. This problem has
approximately 2 x 10! possible histories.

Figure 2 compares the results obtained with (i) POMCDP,
described in Algorithm 1, (ii) P-POMCDP, our parallel ver-
sion of it, and (iii) a standard static optimization approach
used in the O&G industry, specifically a parallel genetic
optimization algorithm (P-GA), see e.g. de Andrade Filho
(2010) for details. We have run each algorithm for 24 hours
(86,400 sec), our hypothetical time before having to make
a decision. During this time, POMCDP ran a total of ap-
proximately 27,000 serial MCTS simulation iterations, and
P-POMCDP ran 400 MCTS iterations, in which an average
of 320 simulations at each iteration were performed in paral-
lel, for a total of approx. 126,000 NPV evaluations. The ex-
ploration parameter c for our UCT-based algorithms, POM-
CDP and P-POMCDP, were set to different value schedules.
These parameter schedules were the ones that give us the
best results after a few trials and errors. For the genetic al-
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Figure 2: Convergence of P-POMCDP, POMCDP, and P-
GA. For P-POMCDP and POMCDP each point in the graph
shows the expected NPV of the policy at the corresponding
simulation time. For P-GA each point shows the expected
NPV of the best solution found so far. Best practices repre-
sent the best FDP suggested by subject matter experts.

gorithm we also fixed its meta-parameters in a similar way.
We can see in Figure 2 that in our implementation P-
POMCDP achieved the best results, followed by POMCDP,
both with approximately 13% higher expected NPV than P-
GA. Our P-POMCDP not only reached a slightly better op-
timal value than POMCDP, but it also converged faster. As
a baseline to benchmark these results, we used the best FDP
identified by our O&G industry experts. The expected NPV
of the expert’s solution is represented by a dashed horizontal
line. All the optimization approaches were able to find better
solutions than the one identified by the human experts.
Finally, the increment in expected NPV from the optimal
solution in P-GA to the one in P-POMCDP corresponds to
the value of the information (Vol) that can be obtained when
drilling wells in a sequential fashion. By comparing this Vol
with the cost of obtaining this information, we can decide
whether it is worth to invest in information acquisition pro-
cedures such as core sample analysis, well logging, etc.

5 Conclusion

Planning the development of an oil field is a very challeng-
ing task. Typical approaches do not take into account that
in actuality the decisions made during the development of
a field are sequential in nature. Their models fail to con-
sider the value of obtaining information that can be used for
future drilling decisions, leading to suboptimal planning. To
address these issues, we have formulated the optimization of
the location and drilling schedule of wells as a POMDP and
adapted the POMCP algorithm to search for optimal devel-
opment policies. Since the evaluation of simulated histories
in the Monte Carlo Tree Search is quite computationally ex-
pensive, we have proposed a new parallelization approach to
improve the computational efficiency of this algorithm.

We have illustrated our new approach with a numerical



example for which POMCDP was able to find sequential
FDP policies significantly better than the solutions obtained
with industry-standard optimization algorithms. The exam-
ple also showed how our parallelization (P-POMCDP) can
find even better solutions in considerably less time.
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