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Abstract

Finding on-street parking in congested urban areas is a chal-
lenging chore that most drivers worldwide dislike. Previous
vehicle traffic studies have estimated that around thirty per-
cent of vehicles travelling in inner city areas are made up of
drivers searching for a vacant parking space. While there are
hardware sensor based solutions to monitor on-street park-
ing occupancy in real-time, instrumenting and maintaining
such a city wide system is a substantial investment. In this pa-
per, a novel vehicle parking activity detection method, called
ParkUs, is introduced and tested with the aim to eventually
reduce vacant car parking space search times. The system
utilises accelerometer and magnetometer sensors found in all
smartphones in order to detect parking activity within a city
environment. Moreover, it uses a novel sensor fusion feature
called the Orthogonality Error Estimate (OEE). We show that
the OEE is an excellent indicator as it’s capable of detect-
ing parking activities with high accuracy and low energy con-
sumption. One of the envisioned applications of the ParkUs
system will be to provide all drivers with guidelines on where
they are most likely to find vacant parking spaces within a
city. Therefore, reducing the time required to find a vacant
parking space and subsequently vehicle congestion and emis-
sions within the city.

Introduction

Since 1950 rural populations across the world have been
declining as a greater proportion of the world’s population
live in urban areas or cities. A recent UN urbanisation report
notes that 54% of the world’s population now live in urban
areas, this is expected to rise to 66% by 2050 (United Na-
tions 2014) . As cities grow in population, further demand
and pressure is placed on transportation systems. Vehicle
journeys accounted for 83% of the distance travelled by the
UK population in 2012 (a huge increase from just 27% in
1952) (Department for Transport 2015). Recent studies have
highlighted that approximately 30% of inner city congestion
is made up of drivers searching for a vacant parking space,
with the average parking search time being approximately
8 minutes. Although this may initially seem small, research
has shown that even a search time of just 3.3 minutes (as
experienced in Westwood Village, LA) per driver per park-
ing activity can have adverse consequences on congestion
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and pollution (Shoup 2007). Shoup concluded that over the
course of a year, vehicles searching for a parking space in
Westwood Village contributed over 600 tonnes of CO2 emis-
sions by driving over 1.5 million km.

One solution is to provide drivers with better, real-time
parking occupancy information, as this would reduce the
time spent searching or cruising for a vacant parking space.
Often this is done by using thousands of sensors mounted on
short pillars in private off-street parking facilities to monitor
parking occupancy levels. However, these systems are ex-
pensive, especially when implemented on a city wide scale
for all on-street parking. For example, San Francisco, US,
spent over US$20 million to equip 6, 000 on-street vehi-
cle parking bays (or 25% of on-street parking) with sen-
sors connected to the internet as part of their SFPark system.
As a result, recent research has focused on finding ways to
monitor in real-time parking occupancy without incurring
huge physical infrastructure costs. Potential solutions have
included: cameras overlooking parking spaces (Jermsura-
wong et al. 2012), ultrasonic distance sensors mounted on
vehicles (Mathur et al. 2010) and individual user report-
ing (Sherwin 2011). However, they are often either difficult
to implement and scale, relatively expensive and or require
users to collaborate by tirelessly logging all their parking
activities.

Motivated by the strong trend of smartphone ownership
and usage in paying for on-street parking, we develop a
novel parking activity detection system called ParkUs for a
smartphone. The primary design goal of the ParkUs system
is to maximise detection accuracy whilst minimising energy
consumption. The proposed system can eventually be scaled
to a city wide smart parking solution; whereby parking ac-
tivity detected by the ParkUs application can be collated and
plotted onto a road map of the city to high-light to other
users where it’s best to search for parking (given a destina-
tion address) and whether or not if it would be simpler or
faster to take public transport to their desired destination,
Figure 1 shows the envisaged ParkUs system diagram. The
main contributions of this paper are the following:

1. A robust and energy efficient vehicle parking activity de-
tection method;

2. Implementation as part of a generic system called ParkUs,
that uses a novel feature (also presented in this paper) to
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Figure 1: Overall envisaged ParkUs city smart parking system.

detect vehicle parking activities;

3. We demonstrate improved accuracy and reduced energy
consumption with respect to existing systems without re-
quiring any user input or sensor calibration.

Related Work

There have been several attempts to develop parking activity
detection systems with similar aims of reducing congestion
and pollution within urban areas. Most of these efforts have
focused on using energy consuming wireless radio modules
such as GPS and Wi-Fi to detect parking activity.

PhonePark (Stenneth et al. 2012), to our knowledge, was
the earliest attempt at detecting parking activities with a
driver owned smartphone. Stenneth et al. were able to sense
whether a user was walking, stationary or driving. They were
able to detect parking by virtue of identifying state changes.
Their detection algorithm relied on GPS, accelerometer and
Bluetooth connectivity data collected on the user’s smart-
phones. PhonePark was able to detect parking and unpark-
ing (when a driver vacates a parking space) activities with
80% and 85% accuracy respectively.

In an attempt to reduce the reliance on GPS sensors,
ParkSense (Nawaz, Efstratiou, and Mascolo 2013) chose to
use the Wi-Fi radio module of smartphones to approximate
speed and location in order to detect only unparking events
in a city. Each location was associated with a Wi-Fi access
point ID. Using the change in Wi-Fi ID’s (as the user drove
past multiple access points) they were able to infer speed
at which the user was travelling and as a result when the
user unparked their vehicle. ParkSense was able to achieve

83% true positive rate on unparking detections. However,
ParkSense was not able to run in the background of smart-
phones, since it relied on the user to manually geo-tag where
they had parked their vehicles (as ParkSense only focused on
detecting unparking events). ParkSense also required a 60s
data collection window and had a 5 minute detection delay.

Park Here! (Salpietro et al. 2015) utilised an accelerome-
ter as a well as a gyroscope sensor in order to detect parking
activity. Park Here!’s classification was binary; driving or
not driving. Similar to PhonePark’s system, it was able to
detect parking activities by recording changes between the
two states. Park Here! was able to achieve perfect detection
(with a true positive rate of 100%) when the user had a Blue-
tooth system installed in their vehicles.

PhonePark and Park Here! rely on energy intensive radio
modules and sensors such as GPS and gyroscopes as well as
Bluetooth connections to make parking detections. Whereas
our system, ParkUs, uses modality detection that matches
specific sequences detected using low-power sensors such as
the magnetometer and accelerometer before briefly trigger-
ing location sensors (such as GPS) to automatically geo-tag
the parking or unparking event. Using this method, ParkUs
was able to incur lower energy costs but still achieve a simi-
larly high parking activity detection and location accuracy.

ParkUs: Design and Algorithms

The ParkUs vehicle parking detection system is shown in
Figure 2 with four key components: an initial median data
filter, a feature processor, a modality detector (Figure 3) and
a finite state machine (FSM) model (Figure 4).
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Figure 2: ParkUs detection architecture.

Data Pre-Processing

Due to the openness and resultant fragmentation of the An-
droid platform, no sensor calibration was conducted. To
counter potentially low quality sensors, a median filter and
hard thresholds were used to remove any outlier data. A slid-
ing time window was carefully chosen to ensure that finer
changes in activities were captured and detected.

Feature Extraction

Previous research suggested that better detection between
stationary, walking and in-vehicle modes can be achieved
by estimating the gravity vector to generate an accurate de-
composition of the tri-axial data (Hemminki, Nurmi, and
Tarkoma 2013). Using this algorithm, the gravity and the
North vectors were estimated from the accelerometer and
magnetometer data respectively. The algorithm opportunis-
tically searched for moments where the accelerometer read-
ings were stable (low variance) in order to estimate the grav-
ity vector. The variance threshold would increase gradually
in order to obtain the optimal number of stable moments
within the accelerometer data. The North vector was esti-
mated using the same algorithm for the magnetometer data.

When resting, the smartphone is always supported by
some upward force (that opposes gravity). This constant
force forms the vertical vector referred to as G. On the other
hand, the magnetometer tends to point towards the magnetic
North pole, and is estimated as vector N . Although heavily
skewed by the Earth’s magnetic field, the horizontal North
vector, Nf , can be compensated by subtracting N ’s projec-
tion onto G from itself. Using these two vectors with respect
to the smartphone, any acceleration can be rotated (Figure
5) and decomposed into vertical and horizontal components
(Tundo, Lemaire, and Baddour 2013) (Figure 6). Once the
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Figure 3: ParkUs cascaded modality classifier.
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Figure 4: ParkUs FSM model. Solid and dashed lines are
parking and unparking state changes respectively.

magnetometer and accelerometer data were filtered, trans-
formed and decomposed, we derived per window; gravity
eliminated acceleration, and estimations of G and N .

Feature Family Descriptions

Over 300 features were considered in the development of the
ParkUs detection algorithm, many inspired by previous re-
search in human activity detection. The features fall roughly
into the following main feature families:
Statistical Features: Standard statistical metrics such as
minimum, maximum, mean, median, interquartile range,
variance, overall range and root mean square were used to
analyse and capture changes in the data. In addition, the
distribution of signal values (within the data window) were
represented by its empirical cumulative distribution function
(ECDF), with a resolution of 10 bins (Hammerla et al. 2013).
Discrete Fourier Transform (DFT): In the frequency do-
main, the 1-3Hz DFT coefficients were shown to be good
indicators of cyclical walking motion (Wang, Chen, and Ma
2010). Peak frequencies were also identified as features in
addition to the peak coefficient (inspired by ‘peak frequency
power’ in (Thiagarajan et al. 2010)). Similar statistics from
Welch’s power spectrum were also included.
Peak Statistics: A ‘peak’ in this context refers to a period
of sustained acceleration in one direction (see the horizon-
tal peak in Figure 6). Inspired by Jermsurawong et al., peak
characteristics were captured using area under curve, cumu-
lative sum, kurtosis, skewness, length between peaks, and
length of peak.
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Figure 5: Rotation of walking motion accelerations from
smartphone (top) to world axes.
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Figure 6: Acceleration components for each motions class.

Wavelet Entropy: The information contained in the
wavelet coefficients help analyse transient features and non-
stationary signals. A chaotic signal contains more informa-
tion than one that doesn’t vary significantly (Langley 2015).
Orthogonality Estimation Error (OEE): A novel feature
representation was developed for the ParkUs system which
works by estimating the error between the gravity and north
vectors. The OEE was a good indicator of vehicular motion,
as it had a correlation of −0.53 with the user’s travelling
speed. This level of correlation is similar to the Jaccard index
used by ParkSense. The OEE is calculated as follows; for an
arbitrary window, where G and N are approximations of the
vertical ‘up’ vector (opposite to gravity) and the magnetic
North vector respectively, the angle, θGN , between the two
vectors is given by:

θGN = cos−1

(
G ·N
|G| · |N |

)
;OEE = |θGN − 90°|
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Figure 7: Example of data recorded for a journey.

Figure 8: Screenshots from our data collection application.

Ideally, G always points vertically up and N always
points to true North without deviation. The angle between
them should therefore be perpendicular. Realistically, G and
N are almost never orthogonal due to the shape of the
Earth’s magnetic field. There is a natural inclination of N
in most areas on Earth except those very near to the equa-
tor. Since the study was conducted in the UK, the inclina-
tion effect was very pronounced (around 60 degrees below
the horizon). Furthermore, G and N are only approxima-
tions. They are both easily corrupted by unstable motion and
abrupt changes in orientation, which aides parking detection.

Parking and Unparking Detection

Parking and unparking detection was achieved by correctly
matching the modality sequences. For example, a sequence
of walking→walking/stationary→vehicle moving indicates
that the user has unparked and vice versa for parking detec-
tion (Figure 4). To reduce activity recognition fluctuations
the ParkUs modality detector took the mode of the past five
modalities. Figure 3 shows the cascaded modality classifier.

To further reduce false detections a modified version of
the detection algorithm was also developed and evaluated
using the same method (cross user validation). The modified
version, known as ParkUs-SA (Speed Assisted), included
speed data collected from the GPS sensor or network based
provider every 10 seconds until either the speed of the user
confirms with the current detection decision, or denies it.
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Training Data Collection

To implement the ParkUs system, we developed a custom
data logging and tagging Android smartphone application
for our volunteers (all located within Bristol, UK) to use
during the four-week long data collection period. The vol-
unteers were free to place and carry their smartphones as
they normally would everyday. The multiple sensor data
(along with the user tags) were stored within the application
and sent only over Wi-Fi to our IES Cities server platform
(López-de-Ipiña, Aguilera, and Pérez 2015). Figure 7 shows
sensor data recorded for a typical trip with our application;
the yellow and purple vertical lines respectively denote the
unparking and parking events annotated by the volunteer.
Screenshots of our application are shown in Figure 8.

By virtue of the Nyquist criterion, the accelerometer was
sampled at 25Hz, as it was previously shown that 98% of
human physical motions occur below 10Hz (Antonsson and
Mann 1985). We also sampled the magnetometer, GPS, am-
bient noise and light sensors at 5, 1, 10 and 5Hz respectively.

Seven volunteers recorded a combined total of 62 jour-
neys over the trial period. The mean journey length taken
was 43 minutes. Overall, we recorded 52 and 57 parking
and unparking events. The disparity was caused by volun-
teers occasionally forgetting to tag their parking activities.

Results and Evaluation

Modality Classification

One-vs-all classifiers were trained for three motions: walk-
ing, static and vehicular motion. The following learning al-
gorithms were compared: Decision Tree (J48), k-Nearest
Neighbour, Multilayer Perceptron, Support Vector Machine
(trained using a standard RBF kernel), Naı̈ve Bayes, Ada-
Boost and Random Forest. For non-ensemble learning, three
different feature selection algorithms were tested: correla-
tion based subset (Hall 1999), information gain and gain ra-
tio (Hall et al. 2009).

Overall, the Random Forest models achieved the highest
accuracies: 98.4% in 10-fold cross validation and 95.8% in
cross-user validation. The latter was done to mimic the real
world application where all the data from one user is ex-
cluded from the training set and is instead used as the test
set. To gauge the importance of our novel OEE feature pre-
sented in this paper, a Random Forest without the OEE fea-
ture was also trained, which in turn achieved a lower average
accuracy of 87.4%, 9% less than the Random Forest trained
with the OEE features.

A grid search of bagging parameters saw optimal accu-
racies at 100 simple trees with a maximum of 10 splits. En-
sembles of any greater size yielded negligible accuracy gains
while taking much longer training times, furthermore less
splits leads to better generalisation.

Parking Detection

The ParkUs algorithm was evaluated using cross-user vali-
dation, whereby in each fold all of the data from one user
is held out as the test set. This simulated the realistic situa-
tion where a deployed parking activity detection algorithm
is not able to train on every users’ data beforehand. This

avoids the contamination of information in the training data,
as highlighted by (Hammerla and Plötz 2015).

Detection Accuracy: Table 1 shows the results of the per-
formance comparison between the different parking detec-
tion systems. Using the sequence matching technique with a
27.5s confirmation window (the length in time of prior saved
modality classifications), ParkUs correctly detected 57 out
of 58 unparking events and 52 out of 53 parking events. Thus
achieving a True Positive Rate (TPR) of 0.981 and 0.983 for
unparking and parking detection respectively.

In total, ParkUs falsely raised events 22.4% and 16.2% of
the time for parking and unparking respectively. Only one
false negative detection (i.e. a missed parking activity detec-
tion) occurred. Both versions of ParkUs considerably out-
performed rivals such as PhonePark and ParkSense in terms
of parking and unparking detection. Although ParkUs did
not achieve a TPR of 1 as Park Here! claims, in terms of
false positives ParkUs is 8.2% more likely to detect a non-
existent event than Park Here!. PhonePark and ParkSense
did not report false positives. ParkUs-SA was almost able to
match Park Here! in terms of false positives; 12% vs 11.1%
claimed by Park Here!.

This could have been for several reasons, firstly, ParkUs
was evaluated on a larger and more diverse data set than any
other system. Secondly, Park Here! produced a large number
of false modality detections during their all-negative experi-
ment. By contrast, there were extremely few false modality
detections for ParkUs in our all-negative (all driving or all
walking) journeys. Thirdly, our modality detection is more
accurate; 96% compared to 90%.

Detection Delay: In ParkUs the window length was 5s for
each of the motion classifiers in the cascaded modality de-
tector. A ten window ‘lookback scope’ was used to ensure
that fragmentation was low. Since each window overlapped
by 50% this meant a minimum of 30 seconds was required
for stable motion classifications. Lastly, error corrections
were applied to avoid illogical inferences such as two park-
ing events happening next to each other within a couple of
seconds. For the modified, ParkUs-SA detection algorithm
the speed requests were overlapped with error checking and
logical inferences, thus causing no extra delay during simu-
lation. However, realistically GPS sensor calls typically take
a few seconds in order to get accurate speed measurements.
Nonetheless the ParkUs system was able to detect events on
average within 1 minute of them occurring; a great improve-
ment over the only other reported detection delay by Park-
Sense of 5.3 minutes.

Energy Consumption

We developed a model to approximate energy consumption
for each stage of the detection process for each system, thus
allowing us to investigate and compare the relative perfor-
mances of the different parking detection systems.

Since all related work ran on different smartphones and
operating systems, their energy consumption has been es-
timated assuming that all parking detection systems ran on
a Nokia N95. Although it’s been nearly a decade since its
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Table 1: Performance comparison results of different parking detection systems.
Study Accuracy Unparking TPR Parking TPR FPR Detection delay Test dataset size Energy Usage

(%) (minutes) (events, users) (J)

ParkUs 98 0.98 0.98 0.19 0.90 111, 7 1240
ParkUs-SA 98 0.98 0.98 0.12 1.00 111, 7 1880
PhonePark 93 0.85 0.80 N/A N/A N/A, 5 10600
ParkSense 93 0.83 N/A N/A 5.30 41, N/A 3330
Park Here! 90 1.00 1.00 0–0.11 N/A 40, N/A 1840

initial launch, the Nokia N95 was equipped with all the sen-
sors necessary to run the various parking detection systems
being compared. Furthermore, multiple studies (Abdesslem,
Phillips, and Henderson 2009; Constandache, Choudhury,
and Rhee 2010; Wang et al. 2009; Perrucci et al. 2009;
Yang and Cho 2014; Kjærgaard et al. 2009; Perrucci, Fitzek,
and Widmer 2011) have evaluated and verified its sensor’s
power consumption. Their data was used in our energy con-
sumption model.

However, several assumptions had to be made to simplify
computation and allow for fair comparison. For example, 3G
and GPS signals were considered excellent and Wi-Fi was
ubiquitous. Initial GPS fixes took no extra time or energy.
Each GPS fix and Wi-Fi scan took 3s and 2s respectively to
obtain. There was no Bluetooth connection in the vehicle,
data packets were assumed small and took 1s to send.

In terms of battery life, Nokia N95 has a 1200mAh
(roughly 7992 J, assuming 100% efficiency) that supplies
3.7 V direct current. The test case for each algorithm was as
follows: a user carried a Nokia N95 for 3 hours. He took a
30 minute drive to visit town for a dinner with friends. Af-
ter having the dinner, which took 2 hours, he heads home.
Driving home also took 30 minutes. In total, 2 parking and 2
unparking events took place. This test case was chosen as it
closely resembled typical travel patterns and would allow for
fair estimation of the different parking detection algorithms’
energy consumption. The governing equations of the energy
model are included in the appendix (Table 2).

Each parking system was subjected to the same test sce-
nario. In order to aid comparison, some specific assumptions
were made for certain systems. For example, ParkSense only
detected unparking events, therefore, to aid comparison (by
virtue of the test scenario), it was assumed that it could also
detect parking events with the same energy consumption.

Overall ParkUs had the lowest estimated energy con-
sumption in the test scenario. The modified version, ParkUs-
SA, had a slightly higher energy consumption; this was due
to the fact that on average ParkUs-SA made four speed
data requests per event detection. Although ParkUs-SA con-
sumed more energy per detection, the false positive rate was
reduced to 10.3% and 13.6% for parking and unparking re-
spectively (roughly half of the original, detection algorithm).

Conclusions and Future Work

In this paper we presented the ParkUs parking activity de-
tection system: a novel method that leverages a smartphone
and its sensors to perform parking activity detection in the

background without user involvement. The parking detec-
tion system is robust and power efficient through its reliance
on a novel feature also presented here called the OEE. The
OEE relied on low power sensors such as the accelerometer
and magnetometer to achieve parking and unparking detec-
tion. We evaluated the system extensively through cross-user
validations conducted on over 50 hours of travel data pro-
vided by seven volunteers. The ParkUs parking activity de-
tection system was able to achieve detection accuracies com-
parable to the best of currently published methods whilst
utilising less energy (33% less than the next best method).

In our broader vision for the future, the ParkUs system
will incorporate the novel detection system presented in this
paper as well as features for allowing users to visualise park-
ing occupancy in a city. For this to happen, further research
needs to be conducted to understand when users start to
search for parking spaces during their journey towards a des-
tination. Statistically, any roads that the driver drives down
before eventually parking will have been full (devoid of va-
cant parking spaces). This knowledge will greatly reduce the
number of users required to provide real-time information
for other city dwellers also searching for parking.
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Appendix

Energy Model Test Case Scenario Assumptions

PhonePark: Bluetooth turned off, GPS sampled every
15s, 3G transmission every 15s, accelerometer briefly
turned on for 3 minutes after each parking event and no
false positives: Ego(Tout, Tout/15) + Egi(Tin, Tin/15) +
Eut(T, T/15) + Eac(3× 60× 2) = 10600J

ParkSense: Wi-Fi scans every 60s when user is away, Wi-
Fi scans every 2s when user driving, 3G transmission with
GPS location for 4 of the detected events, no false positives.
It is assumed that ParkSense is able to detect parking to
aid comparison: Ews(Tout, Tout/2) + Ews(Tin, Tin/60) +
4Eer = 3330J

Park Here!: Accelerometer and gyroscope turned on
throughout, 3G transmission with GPS location for 4 of
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Table 2: Energy consumption model; governing equations
Process Energy Estimate

U
T

M
S

Idle-off Eio(T,N) = max(min(T + Tio, N · Tio) · Pi, 0)
Active-idle Eai(T,N) = max(min(T + Tiai, Tai ·N) · (Pa, 0)
Tail Et(T,N) = Eai(T,N) + Eio(T −N · Tai, N)
Send Es(N) = N · Pa · Ttr

Total Eu(T,N) = Es(N) + Et(T −N · Ttr, N)

G
PS Outdoors Ego(T,N) = min(T + Tgpo, N · Tgpo) · (Pgo)

Indoors Egi(T,N) = min(T + Tgpo, N · Tgpo) · (Pgi)

Event Report Eer = Ego(1, 1) + Eut(1, 1)
Wi-Fi Ews(T,N) = N · Twtr · Pws + T · Pwi

Gyr. Egy(T ) = T · Pgy

Acc. Eac(T ) = T · Pac

Compass Emg(T ) = T · Pmg

the detected events, no false positives: Eac(T ) + Egy(T ) +
4Eer = 1840J

ParkUS: Accelerometer and compass turned on through-
out, 3G transmission with GPS location for 4 of the detected
events, 0.192 false positive probability: Eac(T )+Emg(T )+
(4 + 4× 0.192)Eer = 1240J

ParkUs-SA: Accelerometer and compass turned on
throughout, 4 GPS samples per detected event, 3G trans-
mission for 4 of the detected events, 0.121 false positive
probability: Eac(T ) + Emg(T ) + (4 + 4 × 0.121)(Eer +
4Ego(30, 4)) = 1880J
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Collaboration-Centred Cities Through Urban Apps Based
on Open and User-Generated Data. In Proc. UCAmI.
Springer.
Mathur, S.; Jin, T.; Kasturirangan, N.; Chandrashekharan,
J.; Xue, W.; Gruteser, M.; and Trappe, W. 2010. ParkNet:
Drive-by Sensing of Road-Side Parking Statistics. In Proc.
MobiSys. ACM.
Nawaz, S.; Efstratiou, C.; and Mascolo, C. 2013. Park-
Sense: A Smartphone Based Sensing System For On-Street
Parking. In Proc. MobiCom. Cambridge: ACM.
Perrucci, G. P.; Fitzek, F. H. P.; Sasso, G.; Kellerer, W.; and
Widmer, J. 2009. On the Impact of 2G and 3G Network
Usage for Mobile Phones’ Battery Life. In Proc. European
Wireless Conference. IEEE.
Perrucci, G. P.; Fitzek, F. H. P.; and Widmer, J. 2011. Survey
on Energy Consumption Entities on the Smartphone Plat-
form. In Proc. Vehicular Technology Conference. IEEE.
Salpietro, R.; Bedogni, L.; Di Felice, M.; and Bononi, L.
2015. Park Here! A Smart Parking System Based on Smart-
phones’ Embedded Sensors and Short Range Communica-
tion Technologies. In Proc. WF-IoT. IEEE.
Sherwin, I. 2011. Google Labs Open Spot: A Useful Appli-
cation That No One Uses — AndroidAuthority.
Shoup, D. C. 2007. Cruising for Parking. ACCESS Maga-
zine 30:16–22.
Stenneth, L.; Wolfson, O.; Xu, B.; and Yu, P. S. 2012.
PhonePark: Street Parking Using Mobile Phones. In Proc.
Mobile Data Management. IEEE.
Thiagarajan, A.; Biagioni, J.; Gerlich, T.; and Eriksson, J.
2010. Cooperative Transit Tracking Using Smart-Phones.
In Proc. Embedded Networked Sensor Systems. ACM.
Tundo, M. D.; Lemaire, E.; and Baddour, N. 2013. Correct-
ing Smartphone Orientation for Accelerometer-based Anal-
ysis. In Proc. MeMeA. IEEE.
United Nations. 2014. World Urbanization Prospects. Tech-
nical report.
Wang, Y.; Lin, J.; Annavaram, M.; Jacobson, Q. a.; Hong, J.;
Krishnamachari, B.; and Sadeh, N. 2009. A Framework of
Energy Efficient Mobile Sensing for Automatic User State
Recognition. In Proc. MobiSys. ACM.
Wang, S.; Chen, C.; and Ma, J. 2010. Accelerometer Based
Transportation Mode Recognition on Mobile Phones. In
Proc. APWCS.
Yang, K., and Cho, S. 2014. A Non-GPS Low-Power
Context-Aware System using Modular Bayesian Networks.
In Proc. MOBILITY.

4656




