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Abstract

Large scholarly repositories are designed to provide scientists
and researchers with a wealth of information that is retrieved
from data present in a variety of formats. A typical schol-
arly document contains information in a combined layout of
texts and graphic images. Common types of graphics found
in these documents are scientific charts that are used to rep-
resent data values in a visual format. Experimental results are
rarely described without the aid of one form of a chart or
another, whether it is 2D plot, bar chart, pie chart, etc. Meta-
data of these graphics is usually the only content that is made
available for search by user queries. By processing the image
content and extracting the data represented in the graphics,
search engines will be able to handle more specific queries
related to the data itself. In this paper we describe a machine
learning based system that extracts and recognizes the vari-
ous data fields present in a bar chart for semantic labeling.
Our approach comprises of a graphics and text separation and
extraction phase, followed by a component role classification
for both text and graphic components that are in turn used for
semantic analysis and representation of the chart. The pro-
posed system is tested on a set of over 200 bar charts extracted
from over 1,000 scientific articles in PDF format.

Introduction

Search engines rely mainly on metadata of images to include
them in search results. In large scholarly paper repositories,
many publications contain experiment sections. Illustrative
charts and tables are among the most common methods to
present data of evaluation results. Additionally, charts exist
in the web and are used widely in a variety of domains such
as finance and news articles. In many instances where these
charts are present, the numeric data they contain in graphic
form is rarely mentioned in plain English text elsewhere.
Thus, we propose an approach to extract the data from chart
images, specifically bar charts, by using features extracted
from both graphic components and text components. Charts
contain both text and graphic components that are correlated
to represent the data. For instance, the y-axis scale in a chart
is represented by a line that contains ticks (or marks) to spec-
ify the unit step of the chart and the text containing a number
describes the numerical amount for that unit step. Thus, in
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order for a machine to read the y-axis scale it must find the
start and end point of a unit step and then read the text along-
side it to recover the axis scale.

Identifying and separating text and graphic component re-
gions in an image is one task, another is to determine the
roles for extracted components. In a bar chart a colored box
can either be a bar component that represents a data value,
which will give it the role: ”bar”, or it might be a box belong-
ing to the legend which, in this case, will have role: ”legend”.
Similarly, a text region can either be a label for a data unit
or the title of the entire chart, which are two different roles
a text component may take. Image processing and analysis
rely on feature extraction for the pixels and apply classifica-
tion methods to determine the class of the component. Fea-
ture based classification in images has shown to be highly
effective due to the nature of image features. Text-centric
features have also shown effective in the classification of text
component roles. In this work we aim to take advantage of
both approaches to produce better results in automatic text
and graphics role labeling. We describe the results of our
approach on over 200 bar charts extracted from over 1,000
scientific publications.

Related Work

Many applications have motivated the study of data extrac-
tion from scientific charts in various contexts. One appli-
cation of chart data extraction is in assisting the visually
impaired to read charts as in (Demir et al. 2010). They de-
velop an interactive chart summarizing tool called SIGHT
that reads graphical charts using extraction techniques fur-
ther described in (Chester and Elzer 2005). Chart data ex-
traction is also the basis for systems designed for extracting
data from diagrams published by statistical agencies. The
iGraph-Lite system proposed in (Ferres et al. 2007) is an ex-
ample for this type of applications. A large amount of stud-
ies on chart data extraction are found in image and document
search applications. Text strings and numerical values con-
tained in charts and tables in scholarly documents are used
along with their metadata, captions, document text mentions
to enhance query and ranking results. Examples of works on
this front include (Liu et al. 2007), (Kataria et al. 2008),
(Lu et al. 2009), (Tuarob et al. 2013), (Fang et al. 2012),
and (Al-Zaidy, Choudhury, and Giles 2016).

The problem of data extraction from charts involves two
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Figure 1: System Architecture

main steps. The first is graphic component and text region
identification and extraction. The next step is identifying the
roles that each of the extracted components play in the chart.
The second step is where the actual machine understanding
of basic chart elements occurs. In order to recover mean-
ingful information from the chart each component must be
assigned a label, e.g. x-axis, bar component, axis label value,
etc. Various approaches have been proposed for each of
these steps. In (Savva et al. 2011) the graphic components
are extracted using connected component labeling, and the
role recognition of the the components is done using heuris-
tics chosen based on the properties of the specific chart. As
for the text region identification and role identification, they
rely on manual labeling through a custom image labeling
interface. Fully automated systems have been developed as
well, examples include (Lu et al. 2009), which is 2D-line
plot data extraction system. In a more recent study (Al-Zaidy
and Giles 2015), a method is proposed to automate the ex-
traction of data from bar charts. Both graphic components
and text regions are extracted using connected component
analysis. As for components role identification, heuristics
similar to those used in (Savva et al. 2011) are used. Some
studies on the other hand focus on the text region extraction
and role labeling. In (Huang and Tan 2007), the text regions
are extracted using image processing techniques and then
are passed to a classifier that will select one of 11 roles to
label the texts. The method used in (Chen, Cafarella, and
Adar 2011) applies a multiphase method to assign a role
to the texts from 8 possible roles. The phases alternate be-
tween a features generation phase and a classification phase
to assign the role labels. The first feature generation phase is
based on text-centric features, the second is a location-based
grouping process to generate location features. Other studies
utilize the extracted data to generate summaries of the charts
such as (Demir, Carberry, and McCoy 2008).

Chart Component Extraction

In order to extract the data values represented by a bar chart,
the chart text and graphics components must be identified
and their locations retrieved. This section covers the tech-

niques and methods used for component extraction. The ex-
traction process follows the pipeline illustrated in figure 1.
The first step is to extract two types of components, the
graphic components and text components. Graphic com-
ponents include: x-axis and y-axis, chart legend, and bars.
By text component we refer to all text labels found in the
chart area. The graphic components are extracted using the
method described in (Al-Zaidy and Giles 2015).

Graphic Component Extraction

The method applied to extract graphic components follows
a 3 step process:
Image Color Space Conversion The image color is con-

verted from RGB space to the L*ab space. This step is
performed to provide higher accuracies in distinguishing
a wider spectrum of colors than can be achieved using
RGB color space.

Grid Line Removal Hough transforms are used to identify
horizontal lines that are not long enough to be the x-axis.
This step is useful in eliminating background boxes.

Color Connected Component Labeling This is per-
formed over the image in L*ab color. The distance
function used to measure the difference between pixel
colors is the deltaE95 function. This step returns, for
each of the connected components, the bounding box
coordinates, area, and color.

Text Component Extraction

The text region extraction steps are as follows:
Binarization The image is converted to binary format.
B/W Connected Component Labeling A pass of the

black and white connected component labeling is run
on the binary image. The returned components are
then filtered to remove large components that are not
candidates for being text characters. This step returns
regions for single characters in the image.

Isotropic Dilation Each extracted character is dilated, us-
ing a small enough window, only to make each character
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attach to the character next to it if they are in the same
word. The window size is chosen to be small enough to
not reach a standard space size.

2nd Pass Connected Component Labeling Since the pre-
vious dilation is performed, each word is now a single
component rather than each character. Thus, the output of
this pass is the coordinates of the bounding box of each
text word in the chart image.

Text Recognition-OCR The patch of the image where the
text region is located is passed to an OCR tool that returns
the text content of that part of the image in string format.

The output of the text region extraction step is the location of
the text region and the text string value. This is then passed
to the text role labeling step.

Figure 2: Role labels for Graphic and Text Components.

Component Role Classification

From the previous section, the chart has been reduced to a
set of image components. The information we have about
these components at this point is the location of their bound-
ing box in the image, whether they are text or graphics, color
for graphic components and text string for text components.
The next step to obtain the data is to correlate the text de-
scriptors and numerical values with the graphic component
whose value they are describing. We refer to this step as role
labeling or role classification. Figure 2 shows the different
role labels defined by our system for both graphic and text
components. (Sample chart is from (Zhang et al. 2014)). In
this section we describe the methods used for role classifica-
tion.

Graphic Component Classification

For bar charts, we define four role labels, bar, legend, x-axis,
and y-axis. The components are subject to a noise cleaning
step to remove false positives. We define 10 features for the
graphic components. The graphic features that are selected
for these components are:
Shape We are interested in rectangular/square shapes for

bars and legends. The extent of a shape is a value between
[0,1] that measures how much a shape fills its bounding
box. The higher this value, the more likely it is a box
shape. This feature is for both bars and legends, as both
are box shaped.

Color The color of the centroid of the shape is used for this
feature. The value is a binary true if the shape is either
black or white and false otherwise. This feature deter-
mines background boxes.

Distance to X-axis The value of this feature is a the dis-
tance between bottom edge of the bounding box and the
x-axis normalized over the image size. For bars, the dis-
tance will be very small or zero. For legends it can vary.

Relative position to Y-axis This takes a binary value of
true if the shape is to the right of the y-axis. Bars are al-
ways to the right of the y-axis. Legends may or may not
be.

Relative shape width The relative width of the shape to
mean width of all graphic components in the image. Leg-
ends are usually smaller or wider than bars. Also, small
sized bars may have their total area similar to that of a
legend box, but the difference is that it’s width is similar
to those of other bars.

Centricity This is the normalized distance of the compo-
nent from each bisector of the image. This is for legends
as they are typically closer to the borders of the image.

Height-width ratio The ratio of height to width of the
shape’s bounding box. This feature is for legends since
they are more commonly square-shaped.

Type of closest component This feature takes a binary
value of true if the closest component to the graphics is
a text component. This feature is also for legends since
they are typically closest to texts.

We use the features to classify the role of the graphic com-
ponent into either bar or legend. The classification results are
tested using the c4.8 and random forest methods to compare
accuracies.

Text Region Classification

For the text components we extract the features from the
graphic properties of the text regions. Additionally, we also
have one feature that is related to the actual text value of the
text region. The classification is to determine what graphic
component the text is describing. The approach we use is a
combination of two approaches. We propose three types of
features for the text role classification: location/position cen-
tric, text-centric and graphical features. The location-based
features are an adaptation of the classification method pro-
posed by (Huang and Tan 2007) where they specify 5 fea-
tures that are extracted from the texts to classify the regions.
The text centric features are adopted from the (Chen, Ca-
farella, and Adar 2011) method. Graphical features are sim-
ilar to those used in the heuristics-based methods of (Al-
Zaidy and Giles 2015) and (Savva et al. 2011). The texts
are classified into one of 7 roles: y-axis label, y-axis name,
x-axis label, x-axis name, legend name, chart title, and other.
The location/position based features mentioned are the fol-
lowing:

Distance to closest graphics The distance between the text
region and the closest graphic component to it, is deter-
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Table 1: Graphics Components Role Classification Accuracy using C4.8 and RF Classifiers
Role Multiclass Binary

Precision Recall F1 Precision Recall F1
RF C4.8 RF C4.8 RF C4.8 RF C4.8 RF C4.8 RF C4.8

bar 98.4 97.5 97.4 96.8 97.9 97.2 98.5 97.3 97.2 96.8 97.9 97
legend 92.5 89.9 93.5 88.7 93 89.3 93.6 90 90.4 86.3 92 88.1
Other 94.7 92.9 96.3 94.3 95.5 93.6 - - - - - -

mined as following:

h(Ti, Gj) = min
t∈Ti

min
g∈Gj

d(t, g)

where, Ti and Gi are the text and graphic components re-
spectively, and t and g are the sets of points on the perime-
ter of each component. This is a measure of the closest
Euclidian distance, d, between the two closest points on
the perimeter of each component.

Relative position of the closest graphics This is deter-
mined by the angle between a text block and it’s nearest
graphic component. The positions take values: top,
bottom, right, left. top right, top left, bottom left, bottom
right.

Position to Y-axis This is a binary value that is true if the
text is to the left of the y-axis.

Position to X-axis Also, a binary value. The value is true if
the text region is located below the x-axis.

Centricity Horizontal and vertical centricity are calculated
as the normalized distances between the centroid of the
text region and both the vertical and horizontal bisections
of the image.

The text-centric features are the following:

Capitalization Percentage of characters in the word that are
capitalized.

String Length Normalized number of words in the text re-
gion. Axes titles and chart title are more likely to contain
more than one word.

isNumeric Whether the text has a nominal or numeric
value. The y-axis labels are always numbers.

The following are the graphical based features:

Orientation Vertical or horizontal orientations of the text
box as a binary value. This feature is for the y-axis title,
which typically appears in charts in a vertical layout.

Closest Graphic This feature stores the class of the graphic
component closest to the text box. This requires that the
graphic component classification has already been com-
pleted.

These features are then used to train both a c4.8 and a ran-
dom forest classifier to determine the role of the text label.

Semantic Analysis

The purpose of chart component extraction is to convert
the representation of information contained in a chart image

from graphical to a text representation. Depending on the ap-
plication requiring the chart information, the needed infor-
mation representation can vary. In this section we describe
how we produce machine-usable information from the data
extracted from bar chart images.

Data Inference

In order to recover the data in raw numerical form, we use
the method in (Al-Zaidy, Choudhury, and Giles 2016). Once
the graphical and textual components are determined, the
values of the data are recovered from the bars by multiply-
ing the height of the bars (in pixels) by the y-scale value-
to-pixel ratio. This ratio is computed by dividing the differ-
ence between two y-scale labels over their vertical distance
in pixels. This does not recover logarithmic scale y-axes val-
ues. The remaining values from the chart are extracted by the
classification results. By the end of this step the data is as if
it has been recovered to the original data table that was used
to generate the chart. Each legend is a column head and the
x-axis labels are the row names. The next steps process the
data values to generate a semantically-enhanced representa-
tion of the data.

Semantic Graph Representation

To enable the construction of the semantic graph represen-
tation of the chart, we use four main semantic values: trend,
maximum and minimum, x-axis is a timeline, x-axis is or-
dinal. We extract this additional information by analyzing
the extracted data values. The nodes in the graph represent
the x and y axes titles. The edge between them represents
the extracted semantics above. The chart is then stored as
these data triples and can be easily employed in applications
requiring this structure.

Chart Synopsis

A plain-text description of the charts is obtained as an ad-
dition to the previous semantics to enrich the metadata of
the charts. The description is generated using the algorithm
proposed in (Al-Zaidy, Choudhury, and Giles 2016). The
values obtained in the semantic graph are used to construct
an English text summary of the chart’s main message. The
assumption is that each chart can be described by certain
messages that the designer intended to illustrate graphically
through the chart. The message can be to simply present the
rank of each data value or to display a trend among the data
values. For further details on the messages charts present,
the reader is encouraged to read (Elzer et al. 2006). The syn-
opsis comprises of a sentence or two based on the features
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Table 2: Text Role Classification Accuracy using C4.8 and RF Classifiers
Role Multiclass Binary

Precision Recall F1 Precision Recall F1
RF C4.8 RF C4.8 RF C4.8 RF C4.8 RF C4.8 RF C4.8

Y-title 96.8 93.4 95.8 91.6 96.3 92.5 96.9 94.3 93.8 90.8 95.3 92.6
Y-label 96.4 95.8 99.1 98 97.7 96.9 97.4 95.6 98.6 97.6 98 96.6
Legend 87.5 81.2 90.9 85.9 89.2 83.5 93 84.6 85.1 82.8 88.9 83.7
X-labels 95.1 93.8 95.9 95.1 95.5 94.4 96 94.8 95.2 95 95.6 94.9
X-title 85.7 84.7 82.4 77.8 84 81.1 89.3 80.1 76.8 76.4 82.6 78.2
Chart-title 88.2 84.7 86.5 83.1 87.4 83.9 92.2 85.4 81.9 80.8 86.8 83
Other 91.9 83.5 80.4 74.4 85.8 78.7 - - - - - -

Table 3: Data Extraction accuracy for Rule-Based vs. Ma-
chine Learning Role Labeling -1

Precision Recall
RB ML RB ML

Data Values 89.65 98.14 93.48 78.06
X-labels 40.03 91.93 84.32 79.26
Legend - 59.26 - 43.75

Table 4: Data Extraction accuracy for Rule-Based vs. Ma-
chine Learning Role Labeling -2

Accuracy %
RB ML

X-title 75.76 90.91
Y-title 80.95 95.24
Y-scale 63.27 78
Chart-title - 99

found in the data using the analysis described in the previ-
ous section. If the data displays a trend, either increasing or
decreasing, we check if the x-axis is ordinal or a time series
and then construct a sentence stating the data trend along
with the trend in the ordinal values, or the timeline. Then
select that as the description. If no trend exists, we check for
maximum and minimum values in the data and display those
as the description sentence. If neither a trend or a max/min
value exists, we simply describe the rank of each data value.

Evaluation

In this section we describe the evaluation of our method on
a set of 213 bar charts extracted from over 1000 PDF files.
The tool used to extract the charts is PDFFigures (Clark and
Divvala 2015), (Clark and Divvala 2016). Further details
on the chart extraction from PDFs are found in (Al-Zaidy,
Choudhury, and Giles 2016). The charts were selected ran-
domly from the PDF documents, however, to obtain a more
diverse set of charts, we reject a chart if the set already con-
tained a chart extracted from that PDF. Most charts from the
same document have the same layout. The PDF documents
are articles published in top Computer Science conferences.

Graphics Role Labeling

The first part is to evaluate the classification of the graphic
components. Table 1 shows the results for multi-class and
binary classification using the c4.8 classifier and the random
forest classifier with 10-fold cross validation. As shown the
random forest produced better results and higher accuracies.
It is noted that the bar accuracies are higher and that is due
to the fact that bars have more consistent layout in the chart
as opposed to legend boxes. Also, the removal of small size
components during the connected components labeling step,
can cause some legend boxes to be filtered out of the image
all together.

Text Role Labeling

The extracted text regions are classified into one of 7 roles
and accuracies are reported for both the C4.8 classifier and
random forest. Table 2 shows the precision and recall for
each of the roles (the first column) obtained by each of the
classifiers applied as multi-class and binary. As noted, the
random forest classification scheme provides higher accu-
racies for the text role labeling. The results are highest for
the y-scale values, which is a very important field, since the
extraction of the y-scale, and consequently the data values,
rely on the correct extraction of these values. The title of the
x-axis has lowest accuracy, and that is due to the fact that
many charts in our data set did not contain an x-axis title.

Data Extraction Accuracy

The quality of the role labeling phase naturally affects the
accuracy of the final data values we recover from the chart.
To evaluate the effectiveness of our machine-learning ap-
proach where we train the classifiers to label the roles of
the components, we compare the data extraction accuracies
using our methods with those obtained by a rule-based ap-
proach proposed in (Al-Zaidy and Giles 2015). The data set
used for this evaluation is a set of 50 charts different than
those used in training our classifier. Tables 3 and 4 show
the precision and recall for the data extraction. As expected
the precision achieved using the ML approach is higher for
most of the values. Legends had low values for both preci-
sion and recall because the evaluation did not tolerate any
type of error in the recovery. If the entire legend map was
not recovered fully it was considered a miss. Also, in some
cases when the legend texts were correctly labeled as being
legend text, they were associated with an incorrect legend
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box, which is considered erroneous in our evaluation. Chart
titles have notably high accuracies, this is due to firstly, most
charts had the title at the top. This is a general observation
about the data set. Additionally, for the data set used in this
experiment only 11 out of the 50 charts contained a title.
Which is also noted as common in Computer Science pa-
pers as not many of the charts contain a title.

Conclusion

In this paper we present a machine learning approach to de-
termine the roles of both graphical and textual components
in bar chart images. The role classification is an essential
step in the chart data extraction process. Thus, a machine
learning approach for component role-labeling is proposed
to improve over existing rule-based methods. Rule based ap-
proaches, although produced high recall, were rather low in
precision. Additionally, the texts in charts have specific lay-
out features that make them good candidates for a machine
learning approach. To evaluate the results of the classifica-
tion we compare accuracies obtained by two decision tree
based classifiers. We also compare the results of the clas-
sification using multi-class and binary classification. More-
over, we compare the final data accuracies using an exist-
ing rule-based method against our proposed machine learn-
ing approach. The evaluation shows that for precision we
get the best results using the random forest binary classifi-
cation. The recall is highest we when use the results of the
multi-class random forest.

Current and future extensions to this work includes the de-
ployment of the extraction approach into a search tool that
will be able to index the extracted semantics and use them
for more complex user queries. Additionally, further meta
data such as chart captions and mentions in the text can be
used to enhance the synopsis as well as the semantics. Also,
since the system is also easily integrated in web applications,
web services for automatic reading of charts in scholarly ar-
ticles is one future extension of this work.
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