
OPRA: An Open-Source Online Preference Reporting and Aggregation System

Yiwei Chen,1 Jingwen Qian, 2 Junming Wang, 3 Lirong Xia, 2 Gavriel Zahavi
1 New York University

2 Rensselaer Polytechnic Institute
3 Stanford University

reedyka3@gmail.com, qianj2@rpi.edu, jumingw@cs.stanford.edu, xial@cs.rpi.edu, gavriel.zahavi@gmail.com

Abstract

We introduce the Online Preference Reporting and Aggrega-
tion (OPRA) system, an open-source online system that aims
at providing support for group decision-making. We illus-
trate OPRA’s distinctive features: UI for reporting rankings
with ties, comprehensive analytics of preferences, and group
decision-making in combinatorial domains. We also discuss
our work in an automatic mentor matching system. We hope
that the open-source nature of OPRA will foster development
of computerized group decision support systems.

Introduction
The field of social choice, sometimes referred to as group
decision-making or collective decision-making, aims at de-
signing mechanisms to help people make a joint decision,
despite that they may have conflicting preferences. Typical
examples of social choice are (1) voting, ranging from high-
stakes (e.g. presidential elections) to low-stakes (e.g. decid-
ing a restaurant for dinner) voting scenarios; and (2) re-
source allocation, ranging from high-stakes (e.g. allocating
resources among countries) to low-stakes (allocating course
projects to students).

In this paper, we introduce a system for online group
decision-making: the Online Preference Reporting and Ag-
gregation (OPRA) system,1 which has the following distinc-
tive features:

User interfaces for reporting rankings with ties. OPRA
provides 5 intuitive interfaces for users to rank the alterna-
tives with ties. In particular, the one-column and two-column
UIs allow users to report rankings with ties via drag-and-
drop operations.

Comprehensive analytics of preferences. In addition to
standard information and statistics about voting outcomes,
OPRA also computes and displays other consensus metrics,
such as clusters of preferences based on learning mixture
of Plackett-Luce models (Zhao, Piech, and Xia 2016), and
margin of victory (Xia 2012).

Group decision-making in combinatorial domains.
OPRA supports reporting of Conditional Preference Net-
works (CP-nets) (Boutilier et al. 2004) for multi-issue vot-

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1site: opra.io; source code: github.com/PrefPy/opra

ing (Lang and Xia 2016) and multi-type resource alloca-
tion (Mackin and Xia 2016).

Matching OPRA includes a system for automatic assign-
ment of student mentors to courses based on their prefer-
ences and qualifications.

Open-source. OPRA is open-source, allowing easy mod-
ification and customization for deployment, and easy adap-
tation of its components to other systems.

Voting UIs
OPRA includes the following five UIs for users to report
weak orders over alternatives. (1) One-Column (Figure 1).
OPRA’s one-column UI is an extension of the widely-used
JQuery sortable class. Users perform drag-and-drop opera-
tions to achieve the rank order they desire (Li et al. 2019).
This UI supports ties among alternatives.(2) Two-Column.
The two-column UI is a variation of the one-column UI. The
left column is the same as one-column, and the right col-
umn allows clicking operation to rank. the alternatives that
remain in the right column are submitted as unranked. (3)
Sliders. each alternative is ranked from 0 to 100 using a
slider. (4) Star Rating. each alternative is ranked from 0
to 10 using a star rating UI. (5) Yes/No. each alternative is
associated with a checkbox allowing submission of approval
vote.

Figure 1: OPRA’s one column voting UI.

Comprehensive Analytics of Preferences
OPRA computes and shows the results of some voting rules,
preference learning, and margin of victory.

Commonly-studied voting rules. OPRA implements
commonly-studied voting rules, including Plurality, Borda,

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

16011



k-Approval, Single Transferable Vote (STV), and others. For
a poll, each voting rule is applied. The result is displayed
in a table, and the winner can be seen under different vot-
ing rules (Figure 2 below shows some rows from an exam-
ple table). While most voting rules are implemented using
standard algorithms based on their definitions, some voting
rules’ implementation uses state-of-the-art algorithms pro-
posed in recent literature. For example, implementation of
STV and Ranked pairs computes all parallel universe tie-
breaking (PUT) winners (Conitzer, Rognlie, and Xia 2009)
using a DFS-based algorithm in (Wang et al. 2019).

Figure 2: An example of poll result table on OPRA. Here, Cherry
wins under Plurality, but Apple wins under Borda and Veto.

Margin of victory. OPRA computes and shows the mar-
gin of victory (Magrino et al. 2011; Cary 2011; Xia 2012).
Margin of victory measures the robustness of the voting out-
come, and also plays an important role in post-election au-
dits. The higher the margin of victory is, the more robust the
outcome is.

Preference learning. OPRA implements the EGMM
method (Zhao, Piech, and Xia 2016) of learning mixtures
of Plackett-Luce model. Learned mixtures offer a high-level
overview of groups and strength of preferences based on
users’ ordinal preferences and can be used to make useful
decisions such as group activity selection (Darmann et al.
2012).

Group Decision-Making in Combinatorial
Domains

In a combinatorial domain, there are exponentially many al-
ternatives, each of which is characterized by its values on p
variables. For example, in combinatorial voting (Lang and
Xia 2016), voters vote to decide approval/non-approval of
p issues. In multi-type resource allocation (Mackin and Xia
2016), there are p types of items to be allocated to agents
according to their preferences.

The challenges in group decision-making in combinato-
rial domains are: First, there are often exponentially many
alternatives/bundles of items, which makes it hard for users
to report their preferences. Second, it is unclear what mecha-
nisms should be applied when users use a compact language,
e.g. CP-nets as we will recall shortly, to represent their pref-
erences. See (Lang and Xia 2016) for more discussions.

To address the first challenge, OPRA allows users sub-
mit CP-nets (Boutilier et al. 2004). To address the second
challenge, OPRA supports sequential voting (Lang 2007) on
multiple issues and sequential resource allocation of multi-
ple types of items, via the “Multi-Poll” section.

To execute sequential voting, OPRA allows users to ex-
press preferences either using a CP-net, indicating their con-

ditional preferences, or by waiting until previous sub-polls
finish, then submit their preferences over the current issue.

For sequential resource allocation, OPRA allows users to
use serial dictatorships to allocate indivisible items, when
the number of users is the same as the number of items.

Matching
OPRA offers an online Mentor application tool to automati-
cally assign student mentors to courses looking for mentors.
The matching is based on the kinds of mentors a course is
looking for, and the courses desired for mentoring by a stu-
dent. For each course, instructors and administrators are able
to modify the weights of its features (e.g. how important are
GPA, mentor experience, etc.), while from the student’s side,
they can submit their application form and their rankings of
courses. The personal features and course preferences will
be taken as their input of the matching algorithm. Adminis-
trators can also modify weights, add, remove, or fix students
through the ranking UI, and perform real-time re-matching.

Matching algorithm. For a given course, we calculate a
student’s score for that course as the dot product between the
course’s weight vector and the student’s feature vector. this
is done for each student, the resulting scores giving a prefer-
ence ranking for this course over all the students. we then use
these courses’ rankings over students and students’ (partial)
rankings over courses to perform a course-proposing Gale-
Shapley stable matching algorithm (Gale and Shapley 1962)
(with courses also having a max capacity). This process can
be re-run by administrators at any time.

Explainable AI. The system also supports some Explain-
able AI functionality (Ribera and Lapedriza 2019). From
their page, administrators can view reasons why a given stu-
dent was a assigned to a class or not. For example, a student
wasn’t assigned to the class because they were assigned to a
higher-ranked class instead, as seen in Figure 3.

Figure 3: An example of Explainable AI on OPRA.

Future Work
• Usability: Improve human computer interaction, such as

offering initial rankings to users without introducing bias.
• Explainability: Add more comprehensive analytics and

statistics for the purpose of better explanations.
• Algorithms: Improve algorithms for polls to aid in group

activity selection and group decision making, as well as
improve matching algorithms to handle min-max bounds
to course capacity (Nasre and Nimbhorkar 2017).

Acknowledgments
This work is supported by NSF #1453542, NSF #1716333,
and ONR #N00014-17-1-2621.

16012



References
Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004. CP-nets: A tool for representing and rea-
soning with conditional ceteris paribus statements. Journal
of Artificial Intelligence Research 21: 135–191.
Cary, D. 2011. Estimating the Margin of Victory for Instant-
Runoff Voting. In Proceedings of 2011 EVT/WOTE Confer-
ence.
Conitzer, V.; Rognlie, M.; and Xia, L. 2009. Preference
Functions That Score Rankings and Maximum Likelihood
Estimation. In Proceedings of the Twenty-First Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
109–115. Pasadena, CA, USA.
Darmann, A.; Elkind, E.; Kurz, S.; Lang, J.; Schauer, J.; and
Woeginger, G. 2012. Group activity selection problem. In
Proceedings of the 8th international conference on Internet
and Network Economics, 156–169.
Gale, D.; and Shapley, L. S. 1962. College Admissions
and the Stability of Marriage. The American Mathematical
Monthly 69(1): 9–15.
Lang, J. 2007. Vote and Aggregation in Combinatorial Do-
mains with Structured Preferences. In Proceedings of the
Twentieth International Joint Conference on Artificial Intel-
ligence (IJCAI), 1366–1371. Hyderabad, India.
Lang, J.; and Xia, L. 2016. Voting in Combinatorial Do-
mains. In Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.;
and Procaccia, A., eds., Handbook of Computational Social
Choice, chapter 9. Cambridge University Press.
Li, H.; Sikdar, S.; Vaish, R.; Wang, J.; Xia, L.; and Ye, C.
2019. Minimizing time-to-rank: a learning and recommen-
dation approach. arXiv preprint arXiv:1905.11984 .
Mackin, E.; and Xia, L. 2016. Allocating Indivisible Items
in Categorized Domains. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelli-
gence (IJCAI-16), 359–365.
Magrino, T. R.; Rivest, R. L.; Shen, E.; and Wagner, D. 2011.
Computing the Margin of Victory in IRV Elections. In Pro-
ceedings of 2011 EVT/WOTE Conference.
Nasre, M.; and Nimbhorkar, P. 2017. Popular Matching with
Lower Quotas. arXiv preprint arXiv:1704.07546 .
Ribera, M.; and Lapedriza, A. 2019. Can we do better ex-
planations? A proposal of user-centered explainable AI. In
IUI Workshops.
Wang, J.; Sikdar, S.; Shepherd, T.; Zhao, Z.; Jiang, C.; and
Xia, L. 2019. Practical Algorithms for STV and Ranked
Pairs with Parallel Universes Tiebreaking. In Proceedings
of AAAI.
Xia, L. 2012. Computing The Margin of Victory for Various
Voting Rules. In Proceedings of the ACM Conference on
Electronic Commerce (EC), 982–999. Valencia, Spain.
Zhao, Z.; Piech, P.; and Xia, L. 2016. Learning Mixtures of
Plackett-Luce Models. In Proceedings of the 33rd Interna-
tional Conference on Machine Learning.

16013


